Symplektische Geometrie Albers, Fuchs

Abgabe am Dienstag, dem 9. Mai 2017 in der Vorlesung

Aufgabe 1. Sei $S^2 := \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 | x_1^2 + x_2^2 + x_3^2 = 1\} \subset \mathbb{R}^3$ die Einheitssphäre. a) Sei $\psi : S^2 \to \mathbb{C}\mathrm{P}^1$ die Abbildung definiert durch $x = (x_1, x_2, x_3) \mapsto [1 - x_3, x_1 + ix_2]$ für $x \in S^2 \setminus \{(0, 0, 1)\}$ und $(0, 0, 1) \mapsto [0 : 1]$. Zeigen Sie, dass ψ ein Diffeomorphismus ist.

b) Wir betrachten jetzt die symplektische Form $\omega_x^{S^2}(v,w) := \langle x, v \times w \rangle$ auf S^2 . Finden Sie einen Ausdruck für $(\psi^{-1})^*\omega^{S^2}$ in (homogenen) lokalen Koordinaten auf $\mathbb{C}P^1$.

Aufgabe 2. Sei (M, ω) eine symplektische Mannigfaltigkeit. Eine Untermannigfaltigkeit $L \subset M$ heisst Lagrange Untermannigfaltigkeit, wenn für jedes $x \in L$ der lineare Unterraum $T_x L \subset (T_x M, \omega_x)$ ein Lagrange Unterraum ist.

- a) Sei jetzt $W \subset M$ eine Untermannigfaltigkeit mit $\dim(W) = \frac{1}{2}\dim(M)$ und sei $i: W \to M$ die Inklusion. Zeigen Sie, dass W genau dann eine Lagrange Untermannigfaltigkeit ist, wenn $i^*\omega = 0$.
- b) Seien (M_1, ω_1) und (M_2, ω_2) symplektische Mannigfaltigkeiten und $\varphi: M_1 \to M_2$ ein Diffeomorphismus. Dann ist φ genau dann ein Symplektomorphismus, wenn $\operatorname{Graph}(\varphi) \subset (M_1 \times M_2, \omega_1 \oplus -\omega_2 := \pi_1^* \omega_1 \pi_2^* \omega_2)$ eine Lagrange Untermannigfaltigkeit ist.

Hier bezeichnen $\pi_i: M_1 \times M_2 \to M_i$ für i=1,2 die kanonischen Projektionen.

Symplektische Geometrie Albers, Fuchs

Abgabe am Dienstag, dem 9. Mai 2017 in der Vorlesung

Aufgabe 3.

- a) Für eine 1-Form $\beta \in \Omega^1(V)$ setzen wir $\Gamma_{\beta} := \{(x,\xi) \in T^*V | x \in V, \xi = \beta_x\}$. Beweisen Sie, dass $\Gamma_{\beta} \subset (T^*V, \omega_{can})$ genau dann eine Lagrange Untermannigfaltigkeit ist, wenn $d\beta = 0$.
- b) Sei $N\subset V$ eine Untermannigfaltigkeit. Wir definieren das Konormalenbündel $TN^\perp\subset T^*V$ von N durch

$$TN^{\perp} = \{(x,\xi) \in T^*V | x \in N, \xi \in T_x^*V \text{ verschwindet auf } T_xN \subset T_xV \}.$$

Zeigen Sie, dass $TN^{\perp} \subset (T^*V, \omega_{can})$ eine Lagrange Untermannigfaltigkeit ist.

Aufgabe 4. Sei $S^1 = \mathbb{R}/\mathbb{Z}$ die eindimensionale Sphäre und $x = id_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$ die Identitätsabbildung mit Differential $dx \in \Omega^1(\mathbb{R})$.

- a) Zeigen Sie, dass $dx \in \Omega^1(\mathbb{R})$ eine geschlossene (aber nicht exakte) 1-form $dx \in \Omega^1(S^1)$ induziert.
- b) Beweisen Sie, dass $\omega_0 = \sum_i dx_i \wedge dy_i \in \Omega^2(T^{2n})$ eine symplektische Form auf dem 2n-Torus $T^{2n} := (S^1)^{2n} \cong \mathbb{R}^{2n}/\mathbb{Z}^{2n}$ definiert.
- c) Finden Sie einen n-Torus $L\cong T^n\subset T^{2n}$, welcher eine Lagrange Untermannigfaltigkeit ist.