
REDUCTIONS OF THE MAIN CONJECTURE

R. SUJATHA

Introduction

The main aim of these lectures is to discuss the reduction of the proof of the noncom-
mutative main conjecture for totally real fields to the case when the p-adic Lie extension
F∞/F has dimension one. As we shall need the localization sequence in algebraic K-
theory, we will begin by providing a quick review of the K-groups K0 and K1 and also
the relevant localization exact sequence. For the proofs of the results stated, the reader
is referred to [B] or [Sw]. Throughout these notes, all rings considered will be (not neces-
sarily commutative) unital, associative, left and right Noetherian rings, and modules shall
mean left modules.

1. Algebraic K-theory

Let C be an abelian category. Recall that a nonempty full subcategory D of C is a Serre
subcategory if given an exact sequence

A′
f→ A

g→ A′′

in C, we have A′ and A′′ are objects in D if and only if A is an object in D. Let C be an
abelian category. The group K0(C) is the abelian group generated by classes [A], where
A runs over the objects of C, and subject to the relation

[A] = [A′] + [A′′],

for each short exact sequence

0→ A′ → A→ A′′ → 0

in C. The group K0(C) is universal with respect to this property in the following sense.
Suppose we are given an abelian group G and a map f : Ob(C)→ G, such that for each
short exact sequence

0→ A′ → A→ A′′ → 0

in C, we have f(A) = f(A′) + f(A′′) in G. Then there exists a unique homomorphism
φ : K0(C)→ G making the diagram

Ob(C) → K0(C)
↘ f ↙ φ

G
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commutative. More generally, the group K0 can be defined analogously for any exact
category, which we will not define rigorously (see [B]); intuitively, it is an additive category
in which exact sequences are well-defined. Then the map

C → K0(C)
is a covariant functor from the category of abelian categories and exact functors to Ab,
the category of abelian groups. The following proposition is well-known.

Proposition 1.1. Let A, B be objects of C. If [A] = [B] in K0(C), then there is an object
C ∈ C such that A⊕ C ' B ⊕ C.

Examples: i) Let k be a field and C be the category of finite dimensional vector spaces.
Then K0(C) ' Z, the isomorphism being given by the dimension homomorphism.

ii) Let C be the category of finite abelian groups. Then K0(C) is free abelian on the basis
[Z/pZ], where p runs over all primes. This is seen to be true via an induction argument on
the cardinality of the finite group, combined with the structure theorem for finite abelian
groups.

iii) Let R be a ring and CR be the category of finitely generated (left) R-modules and let
PR be the full subcategory of CR consisting of finitely generated projective left R-modules.
This is an exact category, and the natural inclusion PR ⊂ CR induces a homomorphism
K0(PR)→ K0(CR).

Definition 1.2. Let R be a ring. The group K0(R) is defined to be the group K0(PR).

Proposition 1.3. (see [Sw, Part II, Chap. 1]) Let R be a ring. Then the following
assertions hold:
i) The group K0(PR) is generated by [P ], where P is a finitely generated projective R-
module with the relations [P ] = [Q] if P ' Q and [P ⊕Q] = [P ] + [Q].
ii) Any element of K0(R) can be written as [P ] − [Q] for finitely generated projective
R-modules P and Q. Further, [P ] − [Q] = [P ′] − [Q′] in K0(R) if and only if there is a
finitely generated projective R-module M such that P +Q′ +M = P ′ +Q+M.

Given a ring homomorphism η : R→ R′, the base change map P 7→ R′⊗R P induces a
group homomorphism K0(R)→ K0(R′) as η induces an exact functor from the category
PR to PR′ . We shall also need the following result (see [Sw, Part II, Chap. 2]).

Proposition 1.4. If R is complete with respect to a two sided ideal I, the map K0(R)→
K0(R/I) induced by the projection R→ R/I is an isomorphism.
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The following result due to A. Heller, is important in relating K0(R) and K0(CR). Recall
that a subcategory A is closed under subobjects (resp. quotient objects) in C if subobjects
(resp. quotient objects) in C of an object in A are again in A.

Theorem 1.5. ([Sw, Part II, Chap. 3]) Let C be an abelian category, A and B be full
subcategories with A ⊂ B, and such that A is closed in C under subobjects and quotient
objects. Assume further that every object of B has a finite filtration with all quotients in
A. Then the canonical map K0(A)→ K0(B) is an isomorphism.

Definition 1.6. For a ring R, the group G0(R) is defined to be the abelian group K0(CR).

Note that the inclusion PR ⊂ CR induces a group homomorphism

(1) i : K0(R)→ G0(R),

called the Cartan homomorphism.

Theorem 1.7. Let I be a nilpotent two sided ideal of a ring R. Then the map G0(R/I)→
G0(R) given by [A] 7→ [A] is an isomorphism.

Suppose that h : R → R′ is a ring homomorphism such that R′ is flat as an R-module.
Then the natural functor CR → CR′ obtained from the base change map induces a homo-
morphism G0(R)→ G0(R′). To make precise the relationship between G0(R) and K0(R),
we need some more groundwork.

Definition 1.8. Let C be an abelian category. Recall that an object P ∈ C is projective
if the functor

Hom (P, ) : C → Set

preserves epimorphisms. The projective dimension of A ∈ Ob(C) denoted pd(A) is the
smallest n such that there exists an exact sequence

0→ Pn → Pn−1 → · · ·P0 → A→ 0

with all the Pi’s projective. If the projective dimension of A is undefined we write pd(A) =
∞. In the particular case that C = CR, we say that R has finite global dimension ≤ n if
every object of CR has finite projective dimension at most n.

Commutative regular local rings have finite global dimension n where n is the Krull
dimension of R. This is a deep result of Auslander-Buchsbaum in commutative ring
theory. In noncommutative ring theory, Noetherian Auslander regular local rings [Bj] are
known to have finite global dimension. For such rings, there is a well developed dimension
theory for modules which plays a central role.
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Theorem 1.9. [Sw, Theorem 4.4] Let C be an abelian category and P be the full sub-
category of projective objects. If pd(A) < ∞ for every A in C, then the natural map
K0(P) → K0(A) is an isomorphism. In particular, if a ring R has finite global dimen-
sion, then the natural homomorphism i : G0(R)→ K0(R) is an isomorphism.

Corollary 1.10. (cf. [Sw, Cor. 4.6]) Let R be a commutative Noetherian regular local
ring or a noncommutative Noetherian Auslander regular local ring. Then the natural
homomorphism i : G0(R)→ K0(R) is an isomorphism.

If C is an abelian category, P is the full subcategory of projective objects, and H the full
subcategory of all A ∈ C with pdA <∞ (note that H need not be an abelian category),
then the natural map K0(P)→ K0(H) is again an isomorphism. If B is a full subcategory
such that P ⊂ B ⊂ H, then the natural map K0(P)→ K0(B) is a split mono. It is onto
if for every exact sequence 0→ C → P → B → 0, P ∈ P and B ∈ B implies C ∈ B.

We next deal with localization and the corresponding maps between G0 (see [Sw, Chap.
5]). Let R be a ring and S a subset such that S contains 1 and is either a multiplicatively
closed set contained in the centre of R or a left and right Ore set. For ease of exposition,
we shall always assume that the elements of S are nonzero divisors in R. In both these
cases, the corresponding localizations exist and we denote by RS the localized ring. For
a module M over R, the localization is denoted by MS. The natural map f : M → MS

given by f(m) = m/1 is an R-homomorphism and a ring homomorphism in the special
case when M = R. The kernel Ker (f) consists of the set of elements m ∈ M such that
there exists an element s ∈ S with sm = 0. Recall that RS is a flat R-module. Let CS be
the subcategory consisting of finitely generated R-modules M such that MS = 0. Then
CS is a Serre subcategory and there is an exact sequence

(2) K0(CS)→ K0(R)→ K0(RS).

The right map is not always surjective, but there is always an exact sequence

(3) 0→ K0(CS)→ G0(R)→ G0(RS)→ 0.

If the ring R (and hence the ring RS) has finite global dimension, then (2) gives an exact
sequence

(4) K0(CS)→ K0(R)→ K0(RS)→ 0.

To deal with a broader class of rings which do not necessarily have finite global di-
mension, and also to extend the above exact sequences on the left with K1 groups, we
introduce the notion of the relative K-group. For more details, the reader is referred to
Weibel’s book [We].
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Definition 1.11. Let f : R→ R′ be a ring homomorphism. The category Cf consists of
triplets (P, a,Q) as objects, where P and Q are finitely generated projective R-modules,
and a is an isomorphism

a : R′ ⊗R P
a−→ R′ ⊗R Q.

Morphisms between two objects (P, a,Q) and (P ′, a′, Q′) consist of a pair of R-morphisms
g : P → P ′ and h : Q→ Q′ such that

a′ ◦ (1R′ ⊗ g) = (1R′ ⊗ h) ◦ a.
It is an isomorphism if both g and h are isomorphisms. A sequence of maps

(5) 0→ (P ′, a′, Q′)→ (P, a,Q)→ (P ′′, a′′, Q′′)→ 0

is a short exact sequence if the underlying sequences

0→ P ′ → P → P ′′ → 0, 0→ Q′ → Q→ Q′′ → 0

are short exact. The group K0(f) (also called the relative K0) is an abelian group defined
by generators [(P, a,Q)] with (P, a,Q) an object in the category Cf subject to the following
relations:

• [(P, a,Q)] = [(P ′, a′, Q′)] if the two objects are isomorphic.
• [(P, a,Q)] = [(P ′, a′, Q′)] + [(P ′′, a′′, Q′′)] for every short exact sequence as in (5).
• [(P1, b ◦ a, P3)] = [(P1, a, P2)] + [(P2, b, P3)].

For the natural map ι : R → RS, the relative K-group K0(ι) is usually denoted by
K0(R,RS). This group can also be identified with the following group. Let ChbS denote
the category of bounded complexes of finitely generated projective R-modules whose ho-
mology modules are S-torsion. The abelian group K0(ChbS ) is defined as the abelian group
with generators [C], where C is in ChbS , and relations (i) [C] = 0 if the complex C is acyclic,
and (ii) [C] = [C ′] + [C ′′], for every short exact sequence of complexes

0→ C ′ → C → C ′′ → 0

in ChbS . Let HS denote the category of finitely generated R-modules which are S-torsion
and which have a finite resolution by finitely generated projective R-modules. There are
isomorphisms

(6) K0(ChbS )
∼← K0(R,RS)

∼→ K0(HS).

To describe the isomorphisms in the special case when S is central, first note that every
isomorphism a from RS ⊗R P to RS ⊗RQ is of the form s−1α, where α is an R-map from
P to Q and s ∈ S. The first isomorphism is given by

[(P, a,Q)] 7→ [P
α→ Q]− [Q

s→ Q],

while the second is given by

[(P, a,Q)] 7→ [Q/α(P )]− [Q/sQ].
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For more general localizing sets S, the isomorphisms are a little more subtle and proceed
via the Euler characteristic.

Definition 1.12. Given a bounded chain complex

C• : 0→ Cm → · · · → C0 → 0

of objects in an abelian category C., the Euler characteristic χ(C•) of C• is defined to be
the element Σ(−1)i[Ci] of K0(C).

If C• is a bounded complex of objects in C, the element χ(C•) depends only upon the
homology of C• and χ(C•) = Σ(−1)i[Hi(C

•)]. In particular, if C• is acyclic, then χ(C•) =
0. In the general case, the isomorphisms in (6) are fleshed out using the Euler characteristic

map. The first isomorphism takes [(P, a,Q)] to the complex [0→ P
a→ Q→ 0] while the

second maps [(P, a,Q)] to [Coker (a)]− [Ker (a)].

We now discuss the group K1(R) for a ring R. There are various (equivalent) definitions
though checking the equivalence involves several technicalities and hence beyond the scope
of these lectures. We shall largely consider the algebraic definitions which only use linear
algebra and elementary group theory. Let GLn(R) denote the group of (n× n) matrices
over R that are invertible. Each such matrix g is naturally viewed as an (n+ 1)× (n+ 1)

matrix given by

(
g 0
0 1

)
and thus gives an embedding of GLn(R) into GLn+1(R). The

group GL(R) is defined as the union ⋃
n

GLn(R),

and is called the infinite linear group over R.

Recall the commutator subgroup [G,G] of a groupG, which is always a normal subgroup
of G and is universal with respect to the quotient group being abelian. The first definition
of K1(R) (also called the Whitehead group of R) is as the quotient of GL(R) by its
commutator subgroup.

Definition 1.13. K1(R) is the abelian group GL(R)/[GL(R),GL(R)].

The abelian group K1(R) thus has the universal property that every homomorphism from
GL(R) to an abelian group must factor through K1(R). Given a ring homomorphism
R → R′, it induces a homomorphism from K1(R) to K1(R′) and K1 is thus a covariant
functor from the category of rings to Ab.

Example: If R happens to be commutative, then the determinant homomorphism is a
group homomorphism from GL(R) onto the (abelian) group R× of units in R, and we
denote the induced surjective map from K1(R) by det,

det : K1(R)→ R×,
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and the kernel of this surjection is defined to be the abelian group SK1(R). The infinite
special linear group SL(R) is defined as the union ∪

n
SLn(R), where SLn(R) is the group

of matrices in GLn(R) of determinant 1. There is a direct sum decomposition K1(R) '
R× ⊕ SK1(R).

Recall that for an element r in R, the elementary matrix eij(r) in GL(R) is the matrix
which has 1 across the diagonal, r at the (i, j)-spot, and zero elsewhere. If En(R) is the
subgroup of GLn(R) generated by all elementary matrices eij(r) with i ≤ i, j ≤ n, then
the group E(R) is the union ∪

n
En(R). The group E(R) is the commutator subgroup and

the classical Whitehead’s lemma asserts therefore that

K1(R) ' GL(R)/E(R).

The group K1(R) measures the obstruction to taking an arbitrary invertible matrix over
R and reducing it to the identity via a series of elementary operations.

Recall that a ring R is said to be semilocal if R/radR is a left artinian ring, or equiv-
alently R/radR is a semisimple ring; here radR is the radical of the ring R. If R has
finitely many maximal left ideals, then R is semilocal. The following result of Vaserstein
is very useful.

Proposition 1.14. Let R be a semilocal ring. Then the natural inclusion of R× = GL1(R)
into GL(R) induces an isomorphism K1(R) ' R×/[R×, R×].

Example: i) If R is the group ring Z[G] of a group G, the (first) Whitehead group
Wh(G) is the quotient of K1(Z[G]) by the subgroup generated by ±1 and the elements
of G, considered as elements of R× and hence in GL1(R). If G is abelian, then Z[G] is
commutative and we have

Wh(G) =
(
Z[G]×/±G

)
⊕ SK1(Z[G]).

If G is finite, then Wh(G) is known to be a finitely generated group.

ii) More generally if A is a Dedekind domain with quotient field K, and G is a finite
group, the group SK1(A[G]) is defined by

(7) SK1(A[G]) = Ker (K1(A[G])→ K1(K[G]).

The important results proved by Wall, Oliver and others will be used subsequently and
[O] is a good reference for this. The group SK1(Z[G]) was shown by Wall to be the torsion
subgroup of the Whitehead group Wh(G) and having various topological applications.

Let us now turn to an alternate definition of K1(R) using projective modules. Let
P be a finitely generated projective R-module. Choosing an isomorphism P ⊕ Q ' Rn

gives a group homomorphism from Aut(P ) to GLn(R), by sending α to α ⊕ 1Q. This
homomorphism is well-defined when viewed as a homomorphism into GL(R), up to inner
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automorphisms of GL(R), and thus there is a well-defined homomorphism Aut(P ) →
K1(R).

Definition 1.15. For a ring R, the group K1(R) is an abelian group which consists of
generators [P, a] where P is a finitely generated projective R-module and a is in Aut(P ),
subject to the relations

• [P, a] = [Q, b] if there is an isomorphism f : P → Q such that f ◦ a = b ◦ f,
• [P, a ◦ b] = [P, a][P, b]
• [P, a] · [Q, b] = [P ⊕Q, a⊕ b].

The equivalence of this definition with the earlier one is seen using the well-defined
homorphism from Aut(P ) to GL(R) as discussed above. There is a homological interpre-
tation of K1(R) given by

K1(R) = H1(GL(R),Z),

the first group homology of GL(R) with Z-coefficients. A further topological interpretation
elucidates K1(R) as π1(K(R)) where K(R) is a certain topological space built using the
category PR.

Let R be a ring and S a (left and right) localising Ore set as before. Consider the
relative K-group K0(R,RS). There is a connecting homomorphism

(8) ∂ : K1(RS)→ K0(R,RS)

that maps an element [PS, αS] in K1(RS) (PS is a finitely generated projective module
over RS and αS is an automorphism of PS) to [Rn, α̃, Rn]. Here P is a projective module
such that RS ⊗R P = PS and Q is a projective R-module such that P ⊕Q ' Rn, and α̃ is
an endomorphism of Rn such that 1RS⊗R (α⊕1Q) ' αS. We can also use the isomorphism
of K1(R) with GL(R)/E(R) to define this homomorphism. Map an element g in GL(n,R)
to [(Rn, g, Rn)] in K0(R,RS). This commutes with the map GL(n,R)→ GL(n+1, R) and
thus gives a well-defined homomorphism from GL(R) to K0(R,RS). But the latter group
being abelian, this homomorphism factors to give the desired map from K1(R). There is
also a homomorphism

(9) η : K0(R,RS)→ K0(R)

that maps [(P, a,Q)] to [P ]− [Q] in K0(R). These maps are used to construct a long exact
sequence of K-groups as in the theorem stated below. A proof of this theorem when S is
a central multiplicatively closed set can be found in [Sw, Part II, Chap. 15].

Theorem 1.16. Let R be a ring and S a left and right Ore set of R whose elements are
nonzero divisors. Then there is an exact localization sequence

(10) K1(R)→ K1(RS)
∂−→ K0(R,RS)

η−→ K0(R)→ K0(RS).

The sequence is surjective on the right if K0(RS) is replaced by G0(RS), and the same
holds if the ring R has finite global dimension.
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Another important property of the groups K0 and K1 is Morita invariance. If R is a
ring, then this property states that there are natural isomorphisms Ki(R) ' Ki(Mn(R))
for i = 0, 1. We shall need the norm or transfer maps defined in K-theory, which we recall
for the K1-groups.

Definition 1.17. Let R be a ring and R′ a ring containing R such that R′ is finitely
generated and projective as an R-module. Let PR′ and PR denote the categories of finitely
generated projective modules over R′ and R respectively. Then the natural forgetful
functor PR′ → PR induces a homomorphism K1(R′) → K1(R) which is called the norm
or transfer homomorphism.

A particular case of this will be that of group rings, with G a subgroup of finite index in
another group G′, R′ = Z[G′] and R = Z[G].

We shall close this section with the following definition which will be extended later to
Iwasawa algebras.

Definition 1.18. Let G be a finite group and A be a Dedekind domain. Consider the
group ring R = A[G]. The group K ′1(A) is defined by K ′1(R) = K1(R)/SK1(R), where
SK1(R) is defined as in (7).

We shall see later that the integral logarithm which will be discussed in the lectures of
[SV] gives a nice description of K ′1(R).

2. The Noncommutative Main Conjecture

In this section, we shall formulate the Noncommutative Main Conjecture for the trivial
motive over totally real fields. We shall follow notation as in the lectures of J.Coates [C].
Thus F will denote a totally real number field and F∞ will be an admissible, totally real
p-adic Lie extension of F . Let G denote the Galois group Gal(F∞/F ) and Λ(G) denote
the Iwasawa algebra

Λ(G) := lim←− Zp[G/U ]

where U varies over open normal subgroups of G and the inverse limit is taken with
respect to the natural surjections. If O is the ring of integers of Zp in a finite extension of
Qp, then ΛO(G) is the Iwasawa algebra of G over O, defined as above with O replacing
Zp. Fix a finite set Σ of primes of F that contain the primes above p, and denote the
maximal extension of F that is unramified outside Σ by FΣ. Recall that for any extension
L of F , X(L) is the Galois group of the maximal abelian p-extension contained in FΣ.
As discussed in the lectures by Coates, X(F cyc) is a torsion module over the Iwasawa
algebra Λ(Γ), where Γ ' Zp = Gal(F cyc/F ). Throughout, we shall make the assumption
that µ = 0 for the torsion module X(F cyc).

The ring Λ(G) is known to be a left and right noetherian ring. If G is pro-p and
has no elements of order p, it is an Auslander regular, local domain (see [V]). In general
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however, it is a semilocal ring. The statement of the main conjecture needs the localization
sequence, which is contingent on a choice of a left and right Ore set. Recall that H =
Gal(F∞/F

cyc).

Definition 2.1. The set S is defined as

S = {x ∈ Λ(G) | Λ(G)/sΛ(G) is a finitely generated Λ(H)−module}.
It is proven in [CFKSV] that the set S consists of nonzero divisors and is a left and right
Ore set of Λ(G). The set S∗ is defined by S∗ =

⋃
n≥0

pnS.

In this set-up, we have the localization exact sequence

(11) K1(Λ(G))→ K1(Λ(G)S)
∂−→ K0(Λ(G),Λ(G)S)

η−→ K0(Λ(G))→ K0(Λ(G)S).

It is proven in [FK] that if G is a profinite group, then

(12) K1(ΛO(G)) ' lim←− K1(O[G/U)],

where the groups G/U vary over the finite quotients of the profinite group G. An addi-
tional important result (see for example [K]) is that the connecting homomorphism ∂ is
surjective. This is easily seen to be true when Λ(G) is local and G has no element of order
p, as then the map η is injective since the last two groups on the right are isomorphic to Z,
the isomorphism being given by the rank. The general case needs a little more work, along
with the fact that G always contains an open normal pro-p subgroup P . The hypothesis
that µ = 0 for the Iwasawa module X(F cyc) guarantees that the module X(F∞) is in fact
an S-torsion module. However, as we are not assuming that G has no elements of order
p, X(F∞) might not have a finite resolution by projective modules. We shall therefore
associate a complex which we denote by C(F∞/F ), with the following properties:

•Hi(C(F∞/F )) = 0 for i 6= 0, 1

•H0(C(F∞/F )) = Zp and H1(C(F∞/F )) = X(F∞).

Moreover, it was proved by Fukaya and Kato [FK] that the complex C(F∞/F ) is quasi-
isomorphic to a bounded complex of finitely generated projective Λ(G)-modules. It is
clear by the remarks above that Λ(G)S ⊗LΛ(G) C(F∞/F ) is acyclic. Further, there are

complexes C(K/F ) for any extension F ⊂ K ⊂ F∞ with derived isomorphisms

Λ(Gal(K/F ))⊗LΛ(G) C(F∞/F ) ' C(K/F ).

Thus there is an object [C(F∞)/F ] in the category ChbS which we then view as being in the
relative K-group K0(Λ(G),Λ(G)S) via the isomorphism (6). This object is closely linked
to X(F∞/F ). In fact, when G has no elements of order p, the module X(F∞) can be
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viewed as an object in the category HS and under the isomorphisms in (6), the complex
C(F∞/F ) maps to the module X(F∞).

Definition 2.2. Let O be the ring of integers in a finite extension L of Qp. If G is a
profinite group, then SK1(ΛO(G)) is defined as the inverse limit

SK1(ΛO(G)) := lim←− SK1(O[G/U ])

where U varies over open normal subgroups of G and SK1(O[G/U ]) is defined for the group

ring as in (7), noting that G/U is a finite group. The ring Λ̂O(G)S is the completion
(in the p-adic topology) of the localisation of the Iwasawa algebra ΛO(G)S. We define

SK1(ΛO(G)S) and SK1(Λ̂O(G)S) to be the image of SK1(ΛO(G)) in K1(ΛO(G)S) and in

K1(Λ̂O(G)S) respectively under the corresponding natural maps

K1(ΛO(G)→ K1(ΛO(G)S) and K1(ΛO(G)→ K1(Λ̂O(G)S).

The following definition extends that of 1.18.

Definition 2.3. Let R denote any of the rings ΛO(G) or ΛO(G)S or Λ̂O(G)S. Then we
define

K ′1(R) = K1(R)/SK1(R).

It is easily seen that there is a localization exact sequence

(13) K1(Λ(G))→ K ′1(Λ(G))S)
∂→ K0(Λ(G),Λ(G)S)→ 0.

The formulation of the main conjecture uses this exact sequence along with the fact
noted earlier, namely that [X(F∞)] lies in the relative K-group K0(Λ(G),Λ(G)S). It is
convenient to work with K ′1 rather than the K1 groups in the localization sequence as this
gives a uniqueness statement in the main conjecture. To make a precise formulation, we
need to discuss noncommutative determinants. Let ρ be a finite dimensional Artin repre-
sentation of Gal(F̄ /F ) factoring through G. Then we have a continuous representation

ρ : G→ GLnO
where O is the ring of integers of a finite extension of Qp. Let QO(Γ) be the fraction field
of the Iwasawa algebra ΛO(Γ). There is an induced homomorphism (see [CFKSV])

Φρ : Λ(G)S → Mn(QO(Γ))

which by functoriality induces a group homomorphism

Φρ′ : K ′1(Λ(G)S)→ K ′1(Mn(QO(Γ)) = QO(Γ)×,

where the last equality holds by Morita invariance. On the other hand, the augmentation
map φ : ΛO(Γ)→ O extends to a homomorphism

φ : ΛO(Γ)p → L,
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where p is the kernel of φ and ΛO(Γ)p is the corresponding localisation. Extend this map
to

φ′ : QO(Γ)→ L ∪∞
by mapping any x ∈ L \ ΛO(Γ)p to ∞. Composing Φ′ρ with φ′, we get a map

K1(Λ(G)S) → L ∪∞
x 7→ x(ρ).

Thus elements of K1(Λ(G)S) can be evaluated on Artin characters to get values. The
main conjecture predicts a precise interpolation of these values as below. For any Artin
representation ρ of the Galois group of F , let LΣ(ρ, s) denote the imprimitive L-function
associated to ρ with the Euler factors at the primes in Σ being removed.

Theorem 2.4. (MAIN CONJECTURE) Let F∞/F be an admissible p-adic Lie extension
satisfying the hypothesis µ = 0. Then there is a unique element ζ(F∞/F ) in K ′1(Λ(G)S)
such that ∂(ζ(F∞/F )) = −[C(F∞/F )] where C(F∞/F ) is the complex defined above,
and such that for any Artin character ρ of G and any positive integer r divisible by the
extension degree [F∞(µp) : F∞], we have

ζ(F∞/F )(ρκrF ) = LΣ(ρ, 1− r),
where κ is the cyclotomic character.

The element ζ(F∞/F ) is called a p-adic zeta function for the extension F∞/F . It
depends on the finite set Σ but we shall suppress this in the notation. It can be shown
that the validity of the Main Conjecture is independent of Σ as long as it contains all the
primes of F that ramify in F∞.

3. Reductions

In this section, we show how the proof of the main conjecture can be reduced to the
case when the Galois group G has dimension one. In other words, the validity of the main
conjecture for one dimensional p-adic Lie groups implies the main conjecture for p-adic
Lie groups of arbitrary dimension. This was first proven by Burns [Bu] using slightly
different methods.

Let us start with some preliminary observations. By a result of Higman (see [O]), it is
known that the groups SK1(O[∆]) are finite for all finite groups ∆. Combining this with
(12), for a compact p-dic Lie group P , we have

(14) K ′1(ΛO(P )) ' lim←−

∆

K ′1(O[∆]),

where ∆ varies over the finite quotients of P . Let G be the Galois group F∞/F as before.
The following set of quotient groups of G plays an important role.

Definition 3.1. The setQ1(G) = {G/U : U is an open subgroup of H and is normal in G}.
12



Proposition 3.2. The natural map

K ′1(Λ(G))→ lim←−
G′∈Q1(G)

K ′1(Λ(G′))

is an isomorphism.

Proof. We have

lim←−
G′∈Q1(G)

K ′1(Λ(G′)) ' lim←−
G′

lim←−
∆G′

K ′1(Zp[∆G])

' lim←−
∆

K ′1(Zp[∆])

' K ′1(Λ(G)),

where ∆′G runs through finite quotients of G′ and ∆ runs through all finite quotients of
G. �

The first reduction is the following:

Theorem 3.3. Assume F∞/F is an admissible p-adic Lie extension satisfying µ = 0
hypothesis. Then the main conjecture is true for F∞/F if it is true for each of the
extensions FU

∞/F for all open subgroups U ⊆ H such that U is normal in G, and if
for each group GU := G/U, the group K ′1(Λ(GU) injects into K1(Λ(GU)S).

Proof. (sketch) Note first that FU
∞/F is an admissible p-adic Lie extension which again

satisfies the µ = 0 Hypothesis. (This is true because the µ = 0 hypothesis is equivalent
to X(F∞) being finitely generated as a Λ(H)-module, and observing that Λ(U) is a
subalgebra of Λ(H) with the property that Λ(H) is finite as a Λ(U)-module). Consider
now the following commutative diagram:

K ′1(Λ(G)) −−−→ K ′1(Λ(G)S)
∂−−−→ K0(Λ(G),Λ(G)S) −−−→ 0

o
y y y

1 −−−→ lim←−
GU

K ′1(Λ(GU)) −−−→ lim←−
GU

K ′1(Λ(GU)S) −−−→ lim←−
GU

K0(Λ(GU),Λ(GU)S).

Using the hypothesis on the validity of the main conjecture for the quotients G/U ,
we see that there exist elements ζU in K ′1(Λ(GU)S)) satisfying the main conjecture for
each GU . Let f ∈ K ′1(Λ(G)S) be a characteristic element of C(F∞/F ) and let (fU)U ∈
lim←−
GU

K ′1(Λ(GU)S) be the image of f under the second vertical map. Put wU = ζUf
−1
U ∈

K ′1(Λ(GU)S). Then (wU)U∈Q1(G) ∈ lim←−
GU

K ′1(Λ(GU)). There is an element w ∈ K ′1(Λ(G))

that maps to (wU)U under the first vertical isomorphism. Let us check that ζ := wf is
the required p-adic zeta function. Uniqueness is clear, and an easy diagram chase gives
∂(ζ) = −[C(F∞/F )].

13



To check the interpolation property, let ρ be an Artin representation of G. Note
first that there is a G′ in Q1(G) such that ρ factors through G′. Since ζ maps to ζG
in K1(Λ(G)S), for any positive integer r divisible by [F∞(µp) : F∞], we have

ζ(ρκrF ) = ζG(ρκrF ) = LΣ(ρ, 1− r),
as required.

�

The next reduction steps help us to reduce further to special kinds of admissible p-adic
extensions of dimension one. Let Γ ' Zp be the Galois group of the cyclotomic extension
F cyc/F . Pick and fix a lift of Γ in G so that we get an isomorphism G ' H oΓ. Fix also
an open subgroup Γp

e
of Γ that acts trivially on H and put Ge = G/Γp

e
. We need the

following definitions.

Definition 3.4. Let l be prime integer. A finite group P is called l-hyperelementary if P
is of the form Cn o P1, with Cn cyclic group of order n and P1 a finite l-group with l - n.
Let K be a field. An l-hyperelementary group Cn o P1 is called l-K-elementary if

Im[P1 → Aut(Cn) ' (Z/nZ)×] ⊂ Gal(K(µn)/K.

A hyperelementary group is one which is l-hyperelementary for some prime l. A K-
elementary group is one which is l-K-elementary for some prime l.

The above definition is extended to p-adic Lie groups as follows.

Definition 3.5. Let l be a prime. A p-adic Lie group is called l-K-elementary if it is of
the form P o Γ for a finite group P and such that there is a central open subgroup Γp

r

of P o Γ such that (P o Γ)/Γp
r

is an l-K-elementary finite group. A p-adic Lie group is
K-elementary if it is l-K-elementary for some prime l.

The next tool we use is the induction theory of A. Dress which reduces the computation
of K ′1 for finite group rings O[P ] to l-K-elementary subgroups of the finite group P , where
K is the fraction field of O. In particular, we need the following theorem (see [O, Theorem
11.2] and also [W]).

Theorem 3.6. Let P be a finite group. Then there is an isomorphism

K ′1(O[P ]) ' lim←−
π

K ′1(O[π]),

where π runs through all K-elementary subgroups of P . The inverse limit is taken with
respect to norm maps and the maps induced by conjugation. In other words, (xπ) ∈∏
π

K ′1(O[π]) lies in lim←−
π

K ′1(O[π]) if and only if

• For all g ∈ P, gxπg−1 = xgπg−1 , and

• For π ≤ π′ ≤ P, the norm homomorphism K ′1(O[π′])→ K ′1(O[π]) maps xπ′ → xπ.
14



Hence in the above isomorphism, we may restrict the inverse limit to only maximal K-
elementary subgroups of P .

Lemma 3.7. Let Gn = G/Γp
n+e

for all n ≥ 0. We have an isomorphism

K ′1(Λ(G)) ' lim←−
P

K ′1(Λ(UP )),

where the inverse limit ranges over all Qp-elementary subgroups of Gn, and it is with
respect to the maps induced by conjugation and the norm maps. The group UP is the
inverse image of P in G under the surjection G→→ Gn.

Proof. Note that Gn is a finite group as we have reduced to the case when G has dimension
one. Letting P run through all Qp-elementary subgroups ofGn and taking all inverse limits
with respect to the maps induced by conjugation and the norm maps, by Theorem 3.6 we
have an isomorphism

K ′1(Zp[Gn]) ' lim←−
P

K ′1(Zp[P ])

Claim:

K ′1(Zp[Gn+i]) ' lim←−
P

K ′1(Zp[Up/Γp
n+e+i

]).

We remark that UP/Γ
pn+e+i is the inverse image of P in the groupGn+i under the surjection

Gn+i → Gn. Further, any Qp-elementary subgroup of Gn+i is contained in UP/Γ
pn+e+1

for
some P . Hence

lim←−
P

K ′1(Zp[UP/Γpn+e+1]) ' lim←−
P

lim←−
CP

K ′1(Zp[CP ])

' lim←−
Q

K ′1(Zp[Q])

' K ′1(Zp[Gn+i]);

where CP runs through all Qp-elementary subgroups of Up/Γ
pn+e+i and Q runs through

all Qp-elementary subgroups of Gn+i. Hence the claim is proved and the lemma follows
by passing to the inverse limit and using (14). �

The following theorem reduces proving the main conjecture to the case of Qp-elementary
extensions.

Theorem 3.8. Assume that the main conjecture is valid for all one dimensional, ad-
missible p-adic Lie extensions satisfying µ = 0 hypothesis and whose Galois group is
Qp-elementary. Also assume that for all Qp-elementary p-adic Lie groups U , the group
K ′1(Λ(U)) injects into K ′1(Λ(U)S). Then the main conjecture is valid for all admissible
p-adic Lie extensions F∞/F satisfying µ = 0 hypothesis. Moreover, if G = Gal(F∞/F ),
then K ′1(Λ(G)) injects into K ′1(Λ(G)S).
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Proof. We sketch the essential steps. First note that if the µ = 0 hypothesis is valid
for an admissible p-adic Lie extension F∞/F of dimension one, then it is valid for all
its admissible p-adic Lie subextensions as well. This is a consequence of the fact that
µ = 0 is equivalent to X(F∞/F ) being a finitely generated module over Zp[H] where
H = Gal(F∞/F

cyc). Assume that the main conjecture is valid for all admissible p-adic
Lie subextensions of F∞/F whose Galois group is Qp-elementary, and let Gn = G/Γp

n+e
,

for n ≥ 0. Consider the following commutative diagram where P runs through all Qp-
elementary subgroups of Gn and UP denotes the inverse image of P in G.

K ′1(Λ(G)) −−−→ K ′1(Λ(G)S)
∂−−−→ K0(Λ(G),Λ(G)S) −−−→ 0

o
y y y

1 −−−→ lim←−
P

K ′1(Λ(UP )) −−−→ lim←−
P

K ′1(Λ(UP )S) −−−→ lim←−
P

K0(Λ(UP ),Λ(UP )S).

Pick f inK ′1(Λ(G)S) such that ∂(f) = −[C(F∞)/F ] and let (fP ) be its image in lim←−
P

K ′1(Λ(UP )S).

From our hypothesis, we get a p-adic zeta function ζP for each P , which gives, by unique-
ness, an element (ζP ) ∈ lim←−

P

K ′1(Λ(UP )). Put uP = ζPf
−1
P ∈ K ′1(Λ(UP )) and note that there

is a u ∈ K ′1(Λ(G)) mapping to (uP ). Then ζ = uf is the sought after p-adic L-function.
Being the only element in K ′1(Λ(G)S) such that ∂(ζ) = −[C(F∞/F )] and whose image in
K ′1(Λ(UP )) is ζP , itis independent of the choice of n.

The interpolation property is seen to hold as follows. Let ρ be an Artin character of G,
then ρ factors through a quotient Gn for some n. By the Brauer Induction theorem (see
[CR, (15.9)], we can write

ρ = Σ
P
np IndGUP ρP ,

remembering that P runs through Qp-elementary subgroups of Gn, and also that ρP ’s
need not be one dimensional. Let FP denote the field extension of F that is the fixed field
of UP and suppose that κFP is the corresponding cyclotomic character. For any positive
integer r divisible by [F∞(µP ) : F∞], we then have

ζ(ρκrF ) =
∏
P

ζ(IndGUP ρPκ
r
F )nρ

=
∏
P

ζP (ρPκ
r
FP

)nP

=
∏
P

LΣ(ρP , 1− r)nP ,

thereby establishing the interpolation property. The remaining assertions follow easily
from a diagram chase and the theorem is proved. �

We have thus reduced the proof of the main conjecture to Qp-elementary extensions.
Within this reduction, we proceed to analyse the case under the assumption that G is
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l−Qp-elementary for some prime l 6= p. The first observation is the following whose proof
we omit.

Lemma 3.9. If a p-adic Lie group G is l-Qp-elementary for some prime l 6= p, then it is
isomorphic to Γpe × E for some finite l-Qp-elementary group E. �

This lemma enables us to take the further step of reducing to the case when G is of the
form Γ× E, with E a l-Qp-elementary finite group . We may write E = C o U where C
is a cyclic group of order prime to l and U is a finite l-group. If p - the order of C, then
the main conjecture is valid for F∞/F by the following classical theorem (see [C] ).

Theorem 3.10. Let F∞/F be a p-adic Lie extension with Galois group G = E ′ ×E × Γ
where E ′ is a finite group whose order is prime to p and E is a finite abelian group. Then
the main conjecture is true for the extension F∞/F.

�The main idea in the proof of the above theorem is to use the images Cχ of the
complex C(F∞/F ) for characters χ in the set R(χ) of irreducible characters of E ′ , where

Cχ := (ΛOχ(E × Γ)S ⊗LΛ(G)S
C(F∞/F ).

Then

∂(Lp(χ)) = −[Cχ] ∈ K0(ΛOχ((E × Γ),ΛOχ(e× Γ)S).

One then uses the isomorphism

K0(Λ(G),Λ(G)S))→ ⊕
χ∈R(E′)

K0(ΛOχ(E × Γ),ΛOχ(E × Γ)S).

We therefore assume that our group G is an l-Qp-elementary group of the form

(15) G = Γ× E with E = C o P,

with C a cyclic group of p-power order and P a finite group of order prime to p. By a result
of Oliver (see [O, Proposition 12.7]), if G′ is a finite group such that the p-Sylow subgroup
of G′ has an abelian normal subgroup with cyclic quotient, then SK1(Zp[G′]) = 1. By
passing to the inverse limit, one then concludes that SK1(Zp[G]) = 1 for G as reduced
above in (15).

Definition 3.11. Let G be as in (15). Since P acts on C, the homology groups Hi(P,C)
are defined. Put C̄ = H0(P,C), H̄ = C̄ ×P and Ḡ = Γ× H̄. We also define G1 = Γ×C.

We have the natural maps

can : K1(Λ(G)→ K1(Λ(Ḡ)), norm : K1(Λ(G))→ K1(Λ(G1)).

(16)
θ : K1(Λ(G)) → K1(Λ(Ḡ))×K1(Λ(G1)),

θS : K1(Λ(G)S) → K1(Λ(Ḡ)S)×K1(Λ(G1)S),
17



where the map in the first component is the one induced by the natural surjection and
the map in the second component is the norm map. This is used to define the following
set which will play a key role in the description of K1(Λ(G)).

Definition 3.12. Consider the maps

can : K1(Λ(Ḡ)→ K1(Λ(Γ× C̄), norm : K1(Λ(Ḡ))→ K1(Λ(Γ× C̄)).

Let Φ (resp. ΦS) be the set of all pairs (x0, x1) ∈ K1(Λ(Ḡ)×K1(Λ(G1)) (resp. K1(Λ(G)S)×
K1(Λ(G1)S)) such that norm(x0) = can(x1), and x1 is fixed under the conjugation action
by every element of P .

Proposition 3.13. The map θ induces an isomorphism between K ′1(Λ(G)) and Φ. The
image of θS is contained in ΦS. In particular

Im(θS) ∩ (K1(Λ(Ḡ))×K1(Λ(G1)) = Im(θ).

Thus there is a commutative diagram

K1(Λ(G)
θ−−−→ Φ ⊆ K1(Λ((̄G))×K1(Λ(G1))y y

K1(Λ(G)S)
θS−−−→ ΦS ⊆ K1(Λ((Ḡ))S)×K1(Λ(G1)S).

Proof. Let us verify that the image of θ is contained in Φ; the corresponding verification
for θS is similar. Let B be the set of right coset representatives of P in H. Then B is a
basis of the Λ(G1)-module Λ(G). Let x ∈ K1(Λ(G)). The image of x in K1(Λ(G1)) under
the norm map is described as follows. Let x̃ be a lift of x in Λ(G)×. Multiplication on
the right by x̃ gives a Λ(G1)-linear map on Λ(G). Let A(B, x̃) be the matrix of this map
with respect to the basis B. Then the norm of x is the class of this matrix in K1(Λ(G1)),
and is independent of x̃ and the basis B.

Let g ∈ P . Then gBg−1 is also a Λ(G1)-basis of Λ(G), and gA(B, x̃)g−1 = K1(Λ(Ḡ)×
K1(Λ(G1)). Since gx̃g−1 is also a lift of x, the class of A(gBg−1, gx̃g−1) in K1(Λ(G1)) is
the same as that of A(B, x̃). Hence θ(x) satisfies the second condition on the definition
of Φ, namely invariance under conjugation. Choosing the same set B as a basis of the
Λ(Γ× C̄)-module Λ(Ḡ), one sees that the following diagram commutes:

K1(Λ(G))
norm−−−→ K1(Λ(G1))

can
y ycan

K1(Λ(Ḡ)) −−−→
norm

K1(Λ(Γ× C̄)).

Hence θ(x) also satisfies the first condition in the definition of Φ.
We show that θ surjects onto Φ. Let (x0, x1) ∈ Φ. Since K1(Λ(G)) surjects onto

K1(Λ(G)), we can assume that x0 = 1. Then the first condition in the definition of Φ
18



implies that

x1 ∈ J := Ker (can : K1(Λ(G1))→ K1(Λ(Γ× C̄))).

By [O, Theorem 2.10] and [FK, Proposition 1.5.3], the subgroup J is pro-p. Let JP be
the subgroup of elements of J that are fixed pointwise under the conjugaton action of P ,
and let x1 ∈ JP . Note that the above result tells us that JP is pro-p as well. Let x1 ∈ JP ,
and suppose that n is the order of P . Let z ∈ JP be such that zn = x1. Denote by z
the image of z in K1(Λ(G)). Let θ(z) = (z0, z1). By construction, we have z0 = z1, and
we have norm(z0) = zn0 = 1 in K1(Λ(Γ× C̄)). But z0 lies in a pro-p subgroup and hence
z0 = 1, thereby proving the sujectivity of θ onto Φ.

We now show that θ is injective. For a finite group G′, let Conj(G′) denote the set of
conjugacy classes of G′. Let n be a non-negative integer. Consider the map

β : Qp[Conj(G/Γ
pn)]→ Qp[Conj(Ḡ/Γ

pn)]×Qp[G1/Γ
pn ]

where the map into the first component is induced by the natural surjection and the map
into the second component is defined as follows. Let B be a set of left coset representatives
of G′ in G/Γp

n
and let g ∈ G/Γpn . Then the map is the Qp-linear map induced by

g 7→ Σ
x∈B
{x−1gx : x−1gx ∈ G1/Γ

pn}.

To see this injectivity property the following result (see [Se, Proposition 25]) is used:

Lemma 3.14. Any irreducible representation of G is obtained either by inflating an ir-
reducible representation of C̄ ×H or by inducing an irreducible representation of C.

�It follows from the above lemma that β is injective. It induces an injection

β : lim←−
n

Qp[Conj(G/Γ
pn ]→ lim←−

n

Qp[Conj(Ḡ/Γ
pn ]× lim←−

n

Qp[G1/Γ
pn ].

A final crucial ingredient in proving the injectivity of θ is the logarithm map on K1 (see
[SV]) defined by Oliver and Taylor. For a finite group G′, there is a group homomorphism

log : K1(Zp[G′])→ Qp[Conj(G)]

with kernel the torsion subgroup. By a theorem of Wall [W, Theorem 7.4], the torsion
subgroup of K1(Zp[G′]) is µp−1 ×Gab × SK1(Zp[G]). Thus the exact sequence

1→ µp−1 × (G/Γp
n

)ab → K1(Zp[G/Γp
n

]
log→ Qp[Conj(G/Γ

pn)]

induces a homomorphism

1→ µp−1 ×Gab → K1(Λ(G))
log→ lim←−

n

Qp[Conj(G/Γ
pn)].
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There is a commutative diagram (see proof of [O, Theorem 6.8])

K1(Λ(G)) −−−→
log

lim←−
n

Qp[Conj(G/Γ
pn)]

θ
y yβ

K1(Λ(Ḡ))×K1(Λ(G1))
log−−−→ lim←−

n

Qp[Conj(Ḡ/Γ
pn)] × lim←−

n

Qp[G1/Γ
pn ].

We complete the proof of the injectivity of θ. Let x ∈ Ker(θ). As β is injective, x ∈
Ker (log), and hence x ∈ µp−1 ×Gab. But under the natural surjection

K1(Λ(G))→ K1(Λ(Ḡ)),

which is in fact the first component of the map θ, µp−1 ×Gab maps identically on µp−1 ×
(Ḡ)ab (note that Gab = Ḡab). Hence x = 1 and the proposition is proved. �

Theorem 3.15. Let F∞/F be an admissible extension satisfying the hypothesis µ = 0
and let G = Gal(F∞/F ). Assume that G is l−Qp-elementary for some prime l 6= p. Then
the main conjecture for F∞/F is valid. Moreover, K1(Λ(G)) injects into K1(Λ(G)S).

Proof. Let f ∈ K1(Λ(G)S) such that ∂(f) = −[C(F∞/F )], and let θS(f) = (f0, f1) ∈ ΦS.
Recall that G1 ' Γ×C with C a cyclic group of p-power order, and Ḡ ' Γ× C̄×P, with
P a finite group of order prime to p. Let L = FG1

∞ , and F ′∞/F be the Galois extension of
F such that Gal(F ′∞/F ) = Ḡ. By the earlier reductions, the main conjecture is valid for
subextensions F∞/L and the extension F ′∞/F . Let ζ1 and ζ0 be the corresponding p-adic
zeta functions satisfying the main conjecture. By the uniqueness and the interpolation
property, one verifies that (ζ0, ζ1) ∈ ΦS. Let (ζ0, ζ1) ∈ ΦS and ui = ζif

−1
i . (for i = 0, 1).

Then ζ = uf is the required p-adic ζ-function. That ∂(f) = −[C(F∞)/F ] is clear, and
we check the interpolation property. By Lemma 3.14, ρ is either obtained by inflating a
representation ρ̄ of Ḡ or by inducing a representation ρ1 of G1. Hence for any positive
integer r divisible by [F∞(µp) : F∞], we have for i = 0 or 1, and κ0 = κF , κ1 = κL,

ζ(ρκrF ) = ζi(ρiκ
r
i ) = LΣ(ρi, 1− r) = LΣ(ρ, 1− r).

To see the assertion about injectivity, note that if x ∈ K1(Λ(G)) maps to 1 in K1(Λ(G)S),
then θ(x) = 1 and hence x = 1. Hence the theorem is proved. �

The final reduction is to pro-p extensions. We may assume by the results proved so far
that G is p-Qp-elementary, say G = Cn o Hp where Hp is a p-group and Cn is a cyclic
group of order n prime to p. The Galois group Gal(Qp(µn)/Qp) acts on the set of one

dimensional characters Ĉn of Cn, and we let C be the orbit set of Ĉn under this action.
Then the ring Zp[Cn] decomposes as

Zp[Cn] ' ⊕
χ
Oχ,
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where χ varies over a representative character from each orbit, and Oχ is the ring of
integers in a finite extension Lχ of Qp. The action of Hp on Cn induces an action on each
Oχ through

Hp → Gal(Lχ/Qp).

Set UHp to be the inverse image of Hp in G which for ease of notation, we denote by U.
Then G = Cn o U . Let tχ denote the composition

tχ : U → Hp → Gal(Lχ/Qp),

and let Uχ denote Ker (tχ).

Proposition 3.16. We have an isomorphism

K ′1(Λ(G))→ ⊕
χ
K ′1(ΛOχ(Ui))

U/Uχ .

Proof. For every n ≥ 0, let Gn = G/Γp
n+e
. Define Uχ,n to be the kernel of the map

U/Γp
e+n → Hp → Gal(Lχ/Qp).

Then by [O, Theorem 12.3], we have

K ′1(Zp[Gn]) ' ⊕
χ
K ′1(Oχ[Uχ,n])U/Uχ,n .

The required result follows on passing to the inverse limit. �

Let us recall the set-up; G = Gal(F∞/F ) is a p-adic Lie extension such that it satisfies
the µ = 0 hypothesis and such that G contains a p-Qp-elementary subgroup G′ and G′

contains a fixed open subgroup Γp
e

of Γ which is central in G. Let χ be a character as in
the paragraph above.

Theorem 3.17. Let F∞/F be a p-adic Lie extension satisfying µ = 0 hypothesis such
that G′ is a p-Qp-elementary group G = Cn oHp. With notation as above, assume that

the main conjecture is true for FKer χ
∞ /F

CnoUχ
∞ for each χ ∈ Ĉn and that K ′1(ΛOχ(Uχ))

injects into K ′1(ΛOχ(Uχ)S). Then the main conjecture is true for F∞/F and K ′1(Λ(G))
injects into K ′1(Λ(G)S).

Proof. Assume that the main conjecture is valid for each of the extensions FKer χ
∞ /F

CnoUχ
∞ .

Let ζχ ∈ K ′1(Λ(Cn/(Ker χ × Uχ)S) be the p-adic zeta function in the main conjecture.
Let Lp(χ) be the image of ζχ under the natural map

K ′1(Λ(Cn/(Ker χ× Uχ)S)→ K ′1(ΛOχ(Uχ)S),
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induced by the natural surjection Zp[Cn/Ker χ]→ Oχ. Consider the following commuta-
tive diagram

K ′1(Λ(G)) −−−→ K ′1(Λ(G)S)
∂−−−→ K0(Λ(G),Λ(G)S)

o
y y y

⊕
χ
K ′1(ΛOχ(Uχ))U/Uχ −−−→ ⊕

χ
K ′1(ΛOχ(Uχ)S)U/Uχ

∂−−−→ K0(ΛOχ(Uχ),ΛOχ(Uχ)S).

We have Lp(χ) ∈ K ′1(ΛOχ(Uχ))U/Uχ . Suppose f ∈ K ′1(Λ(G)S) is such that ∂(f) =
−[C(F∞/F )]. Denote the image of f under the middle vertical arrow by (fχ), and put
uχ = Lp(χ)f−1

χ . Then (uχ) ∈ ⊕
χ
K ′1(ΛOχ(Uχ))U/Uχ , and there is a unique u in K1(Λ(G))

mapping to (uχ) under the left vertical isomorphism. Then ζ := uf is the sought after
p-adic L-function. We only check the interpolation property. Let ρ be an irreducible Artin
representation of G. Then by [Se, Proposition 35], there is a χ and an Artin representation
ρχ of Uχ such that

ρ = IndGCnoUχ (χρχ).

Thus for any positive integer r divisible by [F∞(µp) : F∞], we get

ζ(ρκrF ) = ζχ(χρχκ
r) = LΣ(ρ, 1− r),

where κ is the p-adic cyclotomic character of F
CnoUχ
∞ . The uniqueness of the p-adic zeta

function and the statement abut K ′1-groups follows from an easy diagram chase and the
theorem is proved. �

We have thus reduced the proof of the main conjecture to the case where the Galois
goup G is of the form G = ∆ × Gp, where ∆ is a finite cyclic group of order prime to p
and Gp is a pro-p compact p-adic Lie group of dimension 1.
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