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1. Introduction

In this seminar, we will study the two main results of the paper [LV18] by Brian Lawrence
and Akshay Venkatesh.

Firstly, Lawrence and Venkatesh give a new proof of Falting’s Theorem (Mordell’s
conjecture):

Theorem 1 (Faltings). Let K be a number field and let Y/K be a smooth projective curve
of genus ≥ 2. Then the set Y (K) of K-valued points is finite.

The new proof utilizes the set-up of Faltings’ original proof, but makes no usage of
abelian varieties. Instead, Lawrence and Venkatesh use p-adic Hodge theory to construct
a p-adic period map, which encodes the variation of p-adic Galois representations in a
family of algebraic varieties. One important aspect of their argument then is the interplay
between the p-adic period map and the complex period map: a crucial statement about
the former can be verified on the latter, which the authors do by explicit topological
computations of monodromy on the relevant Riemann surfaces. In [LV18, §1.5], the
authors compare their proof to Faltings’ and assess that it is not simpler or less difficult
than the latter. The real gain of their method is its applicability to higher-dimensional
varieties. This brings us to the second main result of their paper.

Lawrence and Venkatesh apply the same methods in a higher-dimensional situation to
show that the set of hypersurfaces in a projective space, with good reduction away from
a fixed set of primes, is contained in a proper Zariski-closed subset of the moduli space of
all hypersurfaces. More precisely, they obtain:

Theorem 2 (Lawrence-Venkatesh). There exists a positive integer n0 and a function
d0(n) with the following property: If n ≥ n0 and d ≥ d0(n) and if X → Y denotes the
universal family of hypersurfaces in Pn of degree d, then Y (Z[S−1]) is not Zariski dense
in Y for any finite set of primes S.

Since the bigger part of our seminar will be devoted to understanding the proof of
Faltings’ Theorem in [LV18], we give an outline in the next section.

2. Outline of the arguments in [LV18]

The following is a rough sketch of the strategy of the proof, with some oversimplifications.
See [LV18, §1.2] for a more detailed outline of the proof, with precise statements. Our



presentation also follows the overview in [Gör]. LetK be a number field and Y/K a smooth
projective curve of genus ≥ 2. Suppose that we have a smooth projective morphism
f : X → Y . Given a point y ∈ Y (K), we denote by Xy the fiber of f over y. For every
“good” prime number p, we have a Galois representation ρy of the absolute Galois group
GK on the étale cohomology H∗et(Xy ×K K,Qp). We write ρss

y for the semisimplification
of the GK-representation ρy. Faltings’ finiteness result on Galois representations (see
[LV18, §2.3] for a suitable version of the statement) basically says that, as y varies through
Y (K), there occur only finitely many isomorphism classes ρss

y . Thus, Faltings’ Theorem
is obtained by showing that both of the following statements hold for a suitable choice of
f and a suitable choice of a place v of K above p:

(i) The representation ρy is semisimple for all but finitely many y ∈ Y (K);
(ii) The map

Y (K) −→ (representations of GKv )/ ∼=
y 7−→ ρy|GKv

has finite fibers.
Instead of using the theory of heights of abelian varieties to prove the above (as Faltings
did), Lawrence and Venkatesh proceed as follows. We focus on sketching their proof of
(ii), see [LV18, §1.4] for a discussion of (i). To simplify notation, let us write ρy,v for the
restriction of ρy to GKv . By p-adic Hodge theory, we have a fully faithful embedding

(crystalline representations of GKv ) −→ (filtered φ-modules over Kv).

Furthermore, the representation ρy,v is crystalline and is mapped to (HdR(Xy/Kv),Fil•, ϕ)
under the above functor, where Fil• is the Hodge filtration inside the de Rham cohomol-
ogy HdR(Xy/Kv) and the semilinear automorphism ϕ is the Frobenius coming from crys-
talline cohomology via a suitable comparison theorem between crystalline and de Rham
cohomology. Hence it suffices to show that

Y (Kv) −→ (filtered φ-modules over Kv)/ ∼= (∗)
y 7−→ (HdR(Xy/Kv),Fil•, ϕ)

has finite fibers. At this point it is useful to interpret the de Rham cohomology group
HdR(Xy/Kv) as the fiber of the relative de Rham cohomology vector bundle over y. This
bundle comes equipped with a connection - the Gauss-Manin connection - which allows
us to identify nearby fibers in a canonical way. Fixing y0 ∈ Y (Kv), the Gauss-Manin
connections gives us identifications HdR(Xy/Kv) ∼= HdR(Xy0/Kv) for all y ∈ Ω, where
Ω ⊆ Y (Kv) is a small p-adic disk around y0. These identifications respect the Frobenius
morphisms, but not necessarily the Hodge filtrations Fil•. The variation of the filtrations
is described by the p-adic period map

Periodv : Ω −→ F(Kv)
y 7−→ (Fil•HdR(Xy/Kv) transported to HdR(Xy0/Kv))

where F is a suitable flag variety parametrising certain chains of subspaces inHdR(Xy0/Kv)
=: H. The period map is a Kv-analytic map. Two points y, y′ have the same image un-
der the map (∗) precisely when the triples (H,Periodv(y), ϕ) and (H,Periodv(y′), ϕ) are
isomorphic. This is the case if and only if there exists an element in the centralizer
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Z(ϕ) of ϕ transforming the filtration Periodv(y′) into Periodv(y), i.e. when Periodv(y′) ∈
Z(ϕ) · Periodv(y). One observes thus that the fiber of (∗) over (H,Periodv(y), ϕ) is con-
tained in

Period−1
v (Periodv(Ω) ∩ Z(ϕ) · Periodv(y)).

Assuming that we have shown that the Z(ϕ)-orbit is a proper subvariety and that the
image of Periodv is Zariski dense, then their intersection is contained in the zero set of a
non-zero Kv-analytic function. Hence our fiber is contained in the zero set of a non-zero
analytic function (obtained by pullback via Periodv) on the disk Ω, which as such is finite.

It remains to construct a specific family f : X → Y for which Z(ϕ) is small and the
image of Periodv is large. Such a family is constructed in [LV18, §7] and is given the
name the Kodaira-Parshin family. See [LV18, §1.3] for some details on controlling the
centralizer. To check Zariski density of the image of the p-adic period map, the crucial
point is the passage to the complex period map, which is possible because the Gauss-
Manin connection is defined over K. But over the complex numbers, Zariski density can
be verified by studying the monodromy action of π1(Y ) on the C-points of a flag variety
and by other topological methods.

3. Time and Place

The seminar takes place Thursdays at 11:00 o’clock in Seminarraum 4, INF 205. The first
talk will be on the 23rd of April.

4. Contact

Milan Malčić • INF 205 Room 03.410 • mmalcic@mathi.uni-heidelberg.de

Please contact me if you are interested in giving a talk. Since the subject matter com-
bines methods of number theory, algebraic geometry, complex geometry, and differential
geometry/topology, we hope for a broad range of participants.

5. Talks

We note that [LV18, §1.6] gives a very neat summary of the structure of the paper.

Talk 1. Introduction
Give an overview of the seminar following the introduction in [LV18].

Talk 2. De Rham cohomology over C and the Gauss-Manin connection
Expand on [LV18, §3.2] by recalling de Rham cohomology, its comparison with singular
cohomology and the monodromy representation. Introduce the Gauss-Manin connection
and discuss how it allows us to compare the de Rham cohomology of nearby fibers; [Lit]
might be one useful reference for this. Introduce the complex period map and prove [LV18,
Lemma 3.1]. Strive to supplement the phenomena you discuss with some examples (e.g.
on elliptic curves).
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Talk 3. Algebraic de Rham cohomology and the p-adic period map
Recall de Rham cohomology for a general variety over an arbitrary field of characteristic
zero, as in e.g. [Ked]. Discuss the Gauss-Manin connection in this setting ([LV18, §3.1
and §3.3]). For a thorough discussion of the diagram (3.9) in [LV18], state the necessary
results on crystalline cohomology that Lawrence and Venkatesh refer to. Finally, prove
[LV18, Lemma 3.2 and Lemma 3.3].

Talk 4. Galois representations and Hodge structures
Carefully discuss and prove Faltings’ finiteness result on Galois representations ([LV18,
Lemma 2.3]), e.g. by following the references given in [LV18]. Then discuss [LV18, §3.5].
You may take the classification of crystalline representations by filtered φ-modules for
granted. Carefully discuss and prove [LV18, Proposition 3.4], which is a preliminary form
of the main result of the paper. This method of proof will be used again and again.

Talk 5. The S-unit equation
As a first application, [LV18, §4] gives an alternative proof of the finiteness of the set
of solutions to the S-unit equation. Talk a bit about the history and applications of
the S-unit equation. The proof in [LV18, §4] serves as a warm-up and introduction
to the new proof of Faltings’ theorem, which follows similar lines. All of the following
refers to [LV18]. Explain the reduction of the theorem to Lemma 4.2. Then introduce the
modified Legendre family. Carefully explain why we choose this family for the application
of Proposition 3.4. Prove Lemma 4.3 and then (assuming Lemma 4.4) prove Lemma 4.2.
If time permits, sketch the proof of Lemma 4.4.

Talk 6. Proof of Falting’s theorem, assuming the ingredients
Cover the whole of [LV18, §5]. In particular, state Proposition 5.3 without proof and give
an outlook on the key properties of the Kodaira-Parshin family (which will be introduced
in a later talk). Explain how Theorem 5.4 (Falting’s theorem) is obtained by applying
Proposition 5.3 to the Kodaira-Parshin family.

Talks 7-10 elaborate on the ingredients used in Talk 6.

Talk 7. Rational points on the base of an abelian-by-finite family
The goal of this talk is to prove [LV18, Proposition 5.3]. This takes up the whole of [LV18,
§6]. Prove as much as you can. One suggestion is to focus on the reduction to Lemma
6.1, for which you may then merely give a sketch of the main ideas.

Talk 8. The Kodaira-Parshin family
Cover the whole of [LV18, §7]. In particular, discuss the construction of the Kodaira-
Parshin family and explain how properties (ii) and (iii) in the list after Proposition 5.3
follow from the construction.

Talk 9. The monodromy of Kodaira-Parshin families (Part 1)
This talk and the next are purely topological. The goal is to show the last missing
ingredient in the proof of Faltings’ theorem: the Kodaira-Parshin family satisfies property
(i) in the list after Proposition 5.3, i.e. it has full monodromy. Cover the first half of
[LV18, §8], i.e. §8.1-§8.4. Aside from 8.2.3, the main result should be Proposition 8.5.
Recall background on mapping class groups and Dehn twists along the way.
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Talk 10. The monodromy of Kodaira-Parshin families (Part 2)
Cover the second half of [LV18, §8], i.e. §8.5-§8.6. Prove as much as you can. Argue by
picture if necessary.

At this point we have proven Faltings’ theorem! The next talks turn to higher-
dimensional cases.

Talk 11. The Ax-Schanuel theorem of Bakker and Tsimerman
The goal is to make preparations for Talk 12. Cover the whole of [LV18, §9]. In particular,
deduce the transcendence property of period mappings (Corollary 9.2) from the theorem
of Bakker and Tsimerman, and transfer it to a p-adic setting (§9.2).

Talk 12. Higher dimensions
Give a survey of [LV18, §10]. The main result should be Proposition 10.2, which in combi-
nation with Theorem 10.1 implies Theorem 2 (Lawrence-Venkatesh) in our introduction.
Moreover, sketch the strategy of the proof of Theorem 10.1. Explain how the results of
Talk 11 factor into the proof of Lemma 10.5.
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