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Abstract

This master thesis considers aspects of Fukaya’s and Kato’s equivariant ε-isomorphism con-

jecture ([FK06] Conj 3.4.3). We start with some preliminaries on determinant functors, p-adic

Hodge theory and Galois cohomology. Then we elaborate Fukaya’s and Kato’s construction

of ε-isomorphisms for de Rham representations and incorporate ideas of Nakamura [Nak17]

concerning the multiplicativity. Assuming the existence of an equivariant ε-isomorphism

for an instance of a certain class of triples (Λ,T(T ), ξ) we establish in the main chapter of

this work that the equivariant ε-isomorphism exists for a twisted triple (Λ,T(T (χ)), ξ) as

well. We do this by viewing the twist as a base change as in section 4.5 of [LVZ15] and

check that the properties in the equivariant ε-isomorphism conjecture are compatible with

this base change. Our arguments show with little gerneralisation effort that the properties

in [FK06] Conj 3.4.3 are compatible with any base change of adic rings. As an outlook we

present ideas how a stronger connection concerning the specialisation to ε-isomorphisms of

de Rham representations could be established between the equivariant ε-isomorphisms for

T(T ) and the twisted representation T(T (χ)). Here, we assume that the character χ is finite

and unramified.

Zusammenfassung

Diese Masterarbeit behandelt Aspekte der äquivarianten ε-Isomorphismen Vermutung von

Fukaya und Kato ([FK06] Conj. 3.4.3). Wir beginnen mit einigen Grundlagen zu

Determinanten-Funktoren, p-adischer Hodge Theorie und Galois Kohomologie. Dann führen

wir Fukayas und Katos Konstruktion von ε-Isomorphismen zu de Rham Darstellungen unter

Berücksichtigung von Nakamuras Ideen zur Multiplikativität in [Nak17] aus. Im Hauptteil

der Arbeit zeigen wir ausgehend von der Existenz eines äquivarianten ε-Isomorphismus zu

einem Tripel (Λ,T(T ), ξ) einer gewissen Klasse von Triplen auch die Existenz des äquivari-

anten ε-Isomorphismus zum getwisteten Tripel (Λ,T(T (χ)), ξ). Die Kernidee ist, den Twist

wie in Sektion 4.5 von [LVZ15] als Basiswechsel aufzufassen. Wir prüfen dann, dass die Eigen-

schaften der äquivarianten ε-Isomorphismen Vermutung kompatibel mit diesem Basiswechsel

sind. Mit wenig Aufwand sieht man mit unseren Argumenten auch, dass die Eigenschaften

in [FK06] Conj. 3.4.3 kompatibel mit allgemeinem Basiswechsel adischer Ringe ist. Als

Ausblick halten wir abschließend einige Gedanken zu einer stärkeren, die Spezialisierung zu

ε-Isomorphismen von de Rham Darstellungen betreffenden Verbindung zwischen den äquiv-

arianten ε-Isomorphismen zu T(T ) und dem getwisteten T(T (χ)) fest. Dazu nehmen wir an,

der Charakter χ sei endlich und unverzweigt.
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Introduction

Motivation

The thesis deals with the equivariant ε-isomorphism conjecture of Fukaya and Kato ([FK06]

Conj 3.4.3). For its relation to the ε-conjectures by Fontaine/Perrin-Riou or Benois/Berger see

chapter 2 of [Izy12]. Fukaya and Kato formulate their ε-conjecture in a very general setting,

working, for instance, over non-commutative rings, to relate the (non-commutative) Equivariant

Tamagawa Number Conjecture (ETNC) of Burns and Flach ([BF01]) with the non-commutative

Iwasawa Main Conjecture with p-adic L-functions ([Ven05a] and [CFK+05]). The connection of

these topics has been elaborated in the survey [Ven05b]. We briefly recall some aspects.

For a motive M Bloch/Kato ([BK07] Conj. 5.15) and Fontaine/Perrin-Riou ([FPR94]) conjec-

tured a relation between the leading coefficient of the L-function, L(M, s), associated to M at

zero, L∗(M), and Galois cohomology groups of integral representations associated to M up to

some period and regulator. This strong conjecture, the Tamagawa Number Conjecture (TNC),

implies, for instance, in the case of elliptic curves the Birch and Swinnerton-Dyer conjecture

([Ven05b] 3.1). Fukaya and Kato generalised it to an equivariant version, the ζ-isomorphism

conjecture, in their [FK06] Conj. 2.3.2 extending the ETNC of Burns and Flach. One can view

the ζ-isomorphism conjecture as an interpolation of the TNC for twists of M by representations

of a p-adic Lie group.

Conjecturally, L(M, s) satisfies a functional equation relating it to the L-function of the Kummer

dual M∗(1). Taking the leading coefficients of this functional equation implies the equation

L∗(M) = (−1)ηε(M) · L
∗
∞(M ∗ (1))

L∗∞(M)
· L∗(M∗(1)).

One reason for the importance of the equivariant ε-isomorphism conjecture is that assuming

the existence of the functional equation, it implies the equivalence of the ζ-isomorphism con-

jecture for M and the ζ-isomorphism conjecture for M∗(1) (and hence also the ETNC for the

respective motives) via the functional equation and establies a functional equation between the

ζ-isomorphisms for M and M∗(1) (see [Ven05b] thm 5.11).

In [CFK+05] the existence of certain p-adic L-functions is conjectured. Assuming their ζ- and

equivariant ε-conjectures Fukaya and Kato can construct these p-adic L-functions (see §4 of

[FK06], in particular 4.1.3 and section 4.3).

Some known results

The equivariant ε-isomorphism conjecture predicts the existence of ε-isomorphisms with certain

properties for tripels (Λ,T, ξ), where Λ is an adic ring (see definition 1.3.9), for instance the

Iwasawa algebra ZpJGK of a Galois group G of a p-adic Lie extension of Qp . T is a Λ-linear

representation of GQp , often an induction from a GK-representation with K/Qp finite. There

are several results which establish the existence of ε-isomorphisms for some choices of G and
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T. One of the first results was Benois’ and Berger’s proof of the existence of ε-isomorphisms

for T being any crystalline representation and G = Gal(F/K) with K/Qp finite unramified

and F ⊂ K∞ = ∪∞n=1K(ζpn) a finite subextension ([BB05a]). Venjakob proved in [Ven13]

the equivariant ε-isomorphism conjecture for T being the Iwasawa deformation of Zp(η)(r),

where η is an unramified character, K any unramified extension of Qp and G = Gal(K∞/K).

Together with Izychev ([IV16]) he later proved the case where T is a p-adic Tate module of a

one-dimensional Lubin-Tate group defined over Zp and G = Gal(F/K), where both F and K

are finite extensions of Qp and F/K is at most tamely ramified. Loeffler, Venjakob and Zerbes

[LVZ15] considered the situation of T being a crystalline representation and G an abelian p-adic,

p-torsion free Lie-extension. They also worked with more general coefficients for Λ. This work

was extended by Bellovin and Venjakob [BV16] using Wach modules. Bley and Cobbe [BC16]

proved the existence of equivariant ε-isomorphisms for T = Zp(η)(1), where η is an unramified

character, K an unramified extension of Qp and G = Gal(F/K) with F/K abelian, weakly

and wildly ramified so that the residue degrees of K/Qp and F/K are coprime. Nakamura

([Nak17]) considered ε-isomorphisms for rank one (ϕ,Γ)-modules over the Robba ring. Our own

work considers the situation of L and K being finite extensions of Qp , T a finitely generated

projective OL-module with continuous GK-action, G chosen so that Λ = OLJGK is an adic ring

and χ : GK → O×L a continuous character. We show that the existence of the ε-isomorphism

for (Λ,T(T ), ξ) implies the existence of the ε-isomorphism for (Λ,T(T (χ)), ξ), where T(−) is

Ind
Qp

K (Λ\ ⊗OL −). The thesis thus extends a few of the above results.

Structure of the thesis

In the first chapter, we recall some preliminaries. We treat determinant functors using Deligne’s

category of virtual objects, collect some key aspects of p-adic Hodge theory and of continuous

Galois cohomology, in particular Shapiro’s lemma and Tate duality.

The second chapter begins with a review of Deligne’s local constants. Next, we elaborate the

construction of ε-isomorphisms for de Rham respresentations including the correction factor

proposed by Nakamura [Nak17]. Lastly, we state of the equivariant ε-isomorphism conjecture.

The third chapter contains the main result of the thesis. By viewing a twist with a continuous

character χ as a base change of the ring Λ, we show that the existence of an ε-isomorphism for a

triple (Λ,T(T ), ξ) implies the existence of the ε-isomorphism for a twisted triple (Λ,T(T (χ)), ξ).

With little extra effort, our arguments show that the properties in the equivariant ε-isomorphism

conjecture are compatible with base change in general.

The last chapter is an outlook. We present some rough ideas on a stronger connection be-

tween εΛ,ξ(T(T )) and εΛ,ξ(T(T (χ))) regarding the specialisation to ε-isomorphisms of de Rham

representations. Here, we assume χ to be finite and unramified.
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Chapter 1

Preliminaries

1.1 Determinant functors

In this section, we will describe a method of defining a “determinant” for isomorphisms in

general exact categories. For our purposes we will need a determinant functor for the exact

category PMod(Λ) of finitely generated projective modules over a not necessarily commutative

(but always unital) ring Λ. The first work on determinant functors was Knudsen’s and Mumford’s

[KM77], which Knudsen generalised in [Knu02]. We follow mainly the approach taken by Deligne

in [Del87]. There is also more modern work on deteminant functors on triangulated categories

by Breuning [Bre11] and on Waldhausen categories by Muro, Tonks and Witte [MTW15], whose

generality we won’t need in our work.

In the prototypical setting of determinants of L-vector space isomorphisms, the determinant is

an element of L×, which is just K1(L). It will be this intuition that carries over to general exact

categories.

1.1.1 K-theory

We now recall properties of the K0 and K1 group of a ring following the explicit descriptions

in section 1.1 of [FK06] and touch on general K-theory of exact categories by mentioning some

results from [Wei13].

Definition 1.1.1. The group K0(Λ), or Grothendieck group, is the (additively written) abelian

group with generators [P ] for P an object of PMod(Λ) and relations [P ⊕Q] = [P ] + [Q] as well

as [P ] = [Q] for isomorphic Λ-modules P and Q.

Definition 1.1.2. The group K1(Λ), or Whitehead group, is the (multiplicatively written)

abelian group generated by elements [P, α], where P is an object of PMod(Λ) and α an auto-

morphism of P , subject to the following relations:

(1) If [P, α] and [Q, β] are elements of K1(Λ) and φ : P → Q a Λ-isomorphism such that the

diagram

P P

Q Q

α

φ φ

β

commutes, then [P, α] = [Q, β].

(2) [P, αβ] = [P, α] · [P, β]

(3) [P ⊕Q,α⊕ β] = [P, α] · [Q, β].
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The following theorem gives an alternative definition of K1(Λ). It is more prominent in the

literature and provides a good intuition for K1(Λ):

Theorem 1.1.3. Let GL(Λ) := colimn GLn(Λ), where the transition maps are given by

GLn(Λ)→ GLn+1(Λ), g 7→

(
g 0

0 1

)
.

Then the map

ω : GL(Λ)/[GL(Λ),GL(Λ)]→ K1(Λ), g 7→ [Λn, g]

is an isomorphism of abelian groups.

Proof. ω is well-defined since K1(Λ) is commutative and because by the third relation in defi-

nition 1.1.2 we have [
Λn+1,

(
g 0

0 1

)]
= [Λn ⊕ Λ, g ⊕ idΛ] = [Λ, g] · [Λ, idΛ]

and [P, idP ] is the neutral element in K1(Λ) for any P in PMod(Λ). It is a homomorphism by

relation (2) of definition 1.1.2. By choosing a complement P ⊕Q ∼= Λn for a finitely generated

projective Λ-module P , one sees that [P, α] = [Λn, α ⊕ idQ], so ω is surjective. The remaining

injectivity is intuitive, since in GL(Λ)/[GL(Λ),GL(Λ)] all the relations of K1(Λ) hold. A formal

proof is given in [Ros94] theorem 3.1.7. combined with Whitehead’s lemma, see proposition

2.1.4 in [Ros94].

We have a determinant map on K1(Λ) if Λ is commutative:

Lemma 1.1.4. Let Λ be commutative. Then the determinant homomorphisms

det : GLn(Λ)→ Λ× induce a map det : K1(Λ)→ Λ× with section Λ× → K1(Λ), λ 7→ [Λ, λ].

Proof. The determinant functors det : GLn(Λ) → Λ× are compatible with the inclusions

GLn(Λ) ↪→ GLn+1(Λ) and Λ× is commutative by assumption.

If Λ is also semi-local, det is an isomorphism:

Definition 1.1.5. Let Λ be a (not necessarily commutative) ring. Its Jacobson radical J(Λ) is

the two sided ideal {λ ∈ Λ|1 + ΛλΛ ⊂ Λ×}.
The ring Λ is called semi-local if Λ/J(Λ) is a left-semisimple ring, i.e. if every left-submodule

of Λ/J(Λ) is a direct summand.

Remark 1.1.6. Any left-semisimple ring is also right-semisimple by corollary 3.7 in [Lam01].

Therefore, it makes sense to simply speak of semi-local rings.

We give some examples of semi-local rings that are important in this work.

Example 1.1.7.

(1) Every field is semi-local.

(2) Every local ring Λ is semi-local, since J(Λ) is the maximal ideal and thus Λ/J(Λ) is a

field.

(3) (Left)-Artinian rings are semi-local (see theorem 4.14 in [Lam01]).

4



(4) If L/k and K/k are field extensions with K/k finite. Then L⊗k K is semi-local. In fact,

L⊗k K is Artinian as finite ring extension of the Artinian ring L.

(5) Every adic ring is semi-local (see definition 1.3.9 and lemma 1.3.11).

Lemma 1.1.8. Let Λ be a semi-local ring. Then the homomorphism Λ× → K1(Λ), λ 7→ [Λ, λ]

is surjective. If Λ is commutative, the map is an isomorphism and hence so is det.

Proof. This is lemma 1.4 in chapter III of [Wei13]

Remark 1.1.9. By the above lemma 1.1.8 the determinant can be seen as a map to K1(Λ)

in the case of semi-local commutative rings. Using K1(Λ) as the target for a determinant is

further motivated by exercise 1.2 in chapter III of [Wei13] where a unique group homomorphism

det : GL(Λ) → K1(Λ), which satisfies some key properties of the commutative determinant, is

constructed for semi-local non-commutative rings.

Lemma 1.1.10. Let Λ and Λ′ be two rings and Y a finitely generated projective Λ′-module with

a commuting right action of Λ. Then there are base change morphisms K0(Λ) → K0(Λ′) and

K1(Λ)→ K1(Λ′) induced by the functor Y ⊗Λ − : PMod(Λ)→ PMod(Λ′).

In particular, if Y = Λ′ and the right action of Λ is given by a ring homomorphism f : Λ→ Λ′,

we denote these base change homomorphisms K0(Λ) → K0(Λ′) and K1(Λ) → K1(Λ′) both by

f∗. Moreover, we have the following commutative diagram:

Λ× Λ′×

K1(Λ) K1(Λ′)

f

f∗

in which the vertical maps are surjective (isomorphisms) if Λ is semi-local (and commutative).

Proof. For a projective Λ-module P the Λ′-module Y ⊗Λ P is projective, since if P ⊕Q ∼= Λn,

then (Y ⊗Λ P ) ⊕ (Y ⊗Λ Q) ∼= Y n. The functor Y ⊗Λ − is additive and thus induces group

homomorphisms

K0(Λ)→ K0(Λ′), [P ] 7→ [Y ⊗Λ P ] and K1(Λ)→ K1(Λ′), [P, α] 7→ [Y ⊗Λ P, idY ⊗α].

If f : Λ → Λ′ is a ring homomorphism, we get an induced group homomorphism

GL(f) : GL(Λ) → GL(Λ′), which maps each entry of a matrix via f . Let g ∈ GLn(Λ) rep-

resent an element of GL(Λ)/[GL(Λ),GL(Λ)]. One the one hand, ω(GL(f)(g)) is [Λ′n,GL(f)(g)].

On the other hand, we have f∗(ω(g)) = f∗([Λn, g]) = [Λ′ ⊗f Λn, idΛ′ ⊗g]. The isomorphism

Λ′n ∼= Λ′ ⊗f Λn shows that both elements are the same in K1(Λ′). Thus, the following diagram

commutes

Λ× Λ′×

GL(Λ) GL(Λ′)

K1(Λ) K1(Λ′).

f

ω

GL(f)

ω

f∗

The semi-local case follows directly from lemma 1.1.8.
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Lemma 1.1.11. Let A ↪→ B and A ↪→ C be extensions of (not necessarily commutative) rings

and τ a ring automorphism of B. Let further P be a finitely generated projective C-module and

f a B⊗A C-automorphism of B⊗A P . Then (τ ⊗ idP )f(τ−1⊗ idP ) is a B⊗A C-automorphism

of B ⊗A P and in K1(B ⊗A C) we have[
B ⊗A P, (τ ⊗ idP )f(τ−1 ⊗ idP )

]
= (τ ⊗ idP )∗

(
[B ⊗A P, f ]

)
.

Proof. The map (τ ⊗ idP )f(τ−1 ⊗ idP ) is clearly a C-linear bijection and it is B ⊗A C-linear

because f is, so that the action of τ cancels on scalars from B. Choosing a complement of P ,

we can assume it to be free. Given a C-base p1, . . . pn of P we obtain 1 ⊗ p1, . . . 1 ⊗ pn as a

B ⊗A C-base of B ⊗A P . This base is invariant under τ−1 ⊗ idP . So the matrix representing

(τ ⊗ idP )f(τ−1 ⊗ idP ) with respect to the above base is just the matrix representing f mapped

element-wise via τ ⊗ idP , i.e. (τ ⊗ idP )∗
(
[B ⊗A P, f ]

)
.

K-theory is neither only defined for rings nor limited to the groups K0 and K1. To illustrate,

we cite some properties of Quillen’s K-theory for exact categories.

Definition 1.1.12. An exact category is an additive category E admitting a small skeleton

which is a full subcategory of an abelian category A and closed under extensions. That is, for

each short exact sequence 0 → E′ → E → E′′ → 0 in A, where E′ and E′′ are isomorphic to

objects in E, there is an object in E which is isomorphic to E in A.

So an exact category comes with a collection of exact sequences, namely those sequences that

consists of objects in E and are short exact sequences in A.

An exact functor F : E → E ′ is an additive functor between exact categories E and E ′ which

maps short exact sequences to short exact sequences.

We give some examples of exact categories:

Example 1.1.13.

(1) Every small abelian category is an exact category.

(2) If Λ is a ring, the category PMod(Λ) of all finitely generated projective Λ-modules is exact

as the full subcategory of the abelian category Mod(Λ) of all Λ-modules. Note that in

PMod(Λ) every short exact sequence splits. We call such an exact category split exact.

PMod(Λ) is not an abelian category in general, since not all cokernels of homomorphisms

between finitely generated projective modules are projective.

(3) The category of torsion abelian groups is an exact category via the embedding into the

category of abelian groups. However, for instance the following sequence does not split

0→ Z/2Z ·2−→ Z/4Z pr−→ Z/2Z→ 0.

Quillen described in [Qui73] an approach to associate Ki groups to an exact category for i ∈ N0.

Theorem 1.1.14. For every exact category E, there is a topological space BQE, which is the

geometric realisation of an auxiliary category QE, such that Kn(E) := πn+1(BQE) yields a

functor from the category of exact categories and exact functors to the category of abelian groups.

Moreover, for E = PMod(Λ) we have K0(PMod(Λ)) = K0(Λ) and K1(PMod(Λ)) = K1(Λ).
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Proof. The construction of the category QE is described in chapter IV §6 of [Wei13]. Definition

6.3. and the following remarks establish the functoriality. Finally, corollary 7.2 together with

definition 1.1 [ibid.] establish that the conceptual and the explicit construction of K0 and K1

of a ring coincide.

Remark 1.1.15. For every exact category E , one can explicitly describe K0 as the free group

on isomorphism classes of objects of E modulo the relations given by the short exact sequences.

For a ring this reflects the explicit construction of K0 in definition 1.1.1. One could be inclined

to describe K1(E) explicitly in a similar way as in definition 1.1.2. This however only yields the

correct K1 group only if E is split exact (see theorem 3.3 in [She82] and §5 in [Ger73] for counter

examples of non split exact categories).

Remark 1.1.16. The group homomorphisms in lemma 1.1.10 are the homomorphisms induced

by the exact functor Y ⊗Λ − : PMod(Λ)→ PMod(Λ′) via the functoriality in theorem 1.1.14.

1.1.2 Picard Categories

The target category of a determinant functor will be a certain Picard category. In this subsection

we discuss some concepts of Picard categories in general. We follow the material in [Bre11] 2.1.

and 2.3. For more details, see also the material in appendix A of [Knu02]. Picard categories are

monoidal categories with additional structure.

Definition 1.1.17. An AC tensor category is a category C with a covariant bifunctor

−⊗− : C × C → C subject to coherent associativity and commutativity constraints.

Remark 1.1.18. In the light of theorem 4.2. of [Mac63] the coherence of the associativity and

commutativity constraints is equivalent to the associativity constraint satisfying the hexagon

axiom ([Mac63] (3.5)), the commutativity constraint being self-inverse ([Mac63] (4.2)) and both

of them satisfying the hexagon axiom ([Mac63] (4.5))

Definition 1.1.19. A (commutative) Picard category is a non-empty AC tensor category P in

which every morphism is an isomorphism and for which the functors A⊗− are auto-equivalences

for every object A of P.

Remark 1.1.20. Let P be a Picard category.

(1) A unit in C is an object 1 together with natural isomorphisms λA : A
∼−→ 1⊗A, satisfying

the conditions in [Mac63] (5.2) and (5.3). A morphism of units f : (1, λ) → (1′, λ′) is a

morphism f : 1 → 1
′ which satisfies (f ⊗ idA) ◦ λA = λ′A for all objects A in P. Every

Picard category has a unit object and is thus automatically a monoidal category. The unit

object is unique up to isomorphism of unit objects ([Riv06] I. 1.3.2.1). This isomorphism

is itself unique. For if α and β : 1→ 1
′ are two isomorphisms of units, then we have

(α⊗ id1′) ◦ λ1′ = λ′
1′ = (β ⊗ id1′) ◦ λ1′ .

Cancelling λ′
1′ and using the faithfulness of −⊗ id1′ , we get α = β.

(2) Let A be an object of P. An inverse of A is an object B together with an isomorphism

µA : A ⊗ B → 1. We denote an inverse of A by A−1 and call an application of µ a

trivialisation of A. Since A ⊗ − is an auto-equivalence for every A, every object of a

Picard category has an inverse, which is by commutativity a two-sided inverse. As for
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units, the full- and faithfulness of A ⊗ − shows that inverses are unique up to unique

isomorphism of inverses (i.e. isomorphisms consistent with the µ’s). It is clear that A is

an inverse of A−1. Moreover, inverses commute with the product structure in the following

way: For all objects A and B an inverse of A ⊗ B is A−1 ⊗ B−1 as well as B−1 ⊗ A−1.

Note however, that inverses might not be coherent with the associativity constraints, see

[Del87] (4.1.1).

(3) Taking inverses with respect to − ⊗ − even is a functor. Given a choice of inverses for

every object of P we need to define f−1 : A−1 → B−1 for a morphism f : A→ B in such

a way that the diagram

A⊗A−1 B ⊗B−1

1

µA

f⊗f−1

µB

commutes. Therefore, we set f−1 to be the unique morphism A−1 → B−1 which is mapped

to f ⊗ idB−1◦µB◦µA under the fully faithful functor idA⊗−. Here and later on f̄ means the

inverse of the morphism f with respect to composition. Writing

f ⊗ f−1 = f ⊗ idB−1 ◦ idA⊗f−1 shows that the above diagram commutes. Clearly,

id−1
A = idA−1 by the faithfulness of idA⊗−. Taking inverses also agrees with composition.

For this we write f⊗f−1 = idB ⊗f−1◦f⊗idA−1 to see that idB ⊗f−1 = µB ◦µA◦f⊗idA−1 .

So, we get that on the one hand idB ⊗(g−1 ◦f−1) = g⊗ idC−1 ◦µC ◦µA ◦f ⊗ idA−1 . On the

other hand, we have idC ⊗(g ◦ f)−1 = µC ◦µA ◦ (g ◦ f)⊗ idA−1 . Since g ◦ idB ◦g = idC , we

get that idC ⊗(g−1 ◦ f−1) = idC ⊗(g ◦ f)−1. Using the faithfulness of idC ⊗−, we conclude

that taking inverses indeed is a functor.

Definition 1.1.21. For a Picard category P, we define homotopy groups of P as follows: π0(P)

is the group with the isomorphism classes of objects of P as elements and multiplication induced

by −⊗−. Furthermore, we set π1(P) to be the group Aut(1) of automorphisms of a fixed unit

(general automorphisms, not automorphisms of units).

Remark 1.1.22. Via the map Aut(1) → Aut(A), f 7→ λA ◦ f ⊗ idA ◦λA and its inverse

Aut(A) → Aut(1), g 7→ µA ◦ g ⊗ idA−1 ◦µA we can canonically identify the group of auto-

morphisms of any object in P with that of a unit. So we can canonically view π1(P) as Aut(A)

for any object A.

The “value” of a determinant functor is a morphism in a Picard category. We will now see how

we can interpret this value as an element of π1(P) (and later for universal Picard categories as

an element of a K1 group). For this we need the notion of a torseur.

Definition 1.1.23. Let X be a set and G a group. X is called a G-torseur if X is non-empty,

and G operates freely and transitively on X.

Since the torseurs in our work will always be over commutative groups, we do not need to

distinguish left and right actions. The following lemma shows in which situations we will consider

torseurs.
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Lemma 1.1.24.

(1) For all objects A and B of a Picard category P there are either no morphisms from A to

B or P(A,B) is a π1(P)-torseur.

(2) Let φ : A → B and ψ : B → C be two composable morphisms in P and α an element of

π1(P). Then α(ψ ◦ φ) = (αψ) ◦ φ = ψ ◦ (αφ).

(3) π0(P) and π1(P) are commutative.

Proof.

(1) All morphisms in P are isomorphisms, so that if P(A,B) is not empty, it is automatically

an Aut(A)-left and an Aut(B)-right torseur. More explicitly, let φ : A→ B and α : 1→ 1.

Then the image of φ under the action of α is

A 1⊗A 1⊗B B

1⊗B 1⊗B

B .

λA

φ

α⊗φ

id⊗φ

λB

λB

α⊗id

λB
α∈Aut(B)

The left square commutes because the λ’s are natural . The long right arrow is α viewed

as an element of Aut(B) according to remark 1.1.22. So the whole diagram commutes. A

similar diagram could be drawn with A at the bottom and α acting as element of Aut(A).

(2) The discussion above shows that both (αψ) ◦ φ and φ ◦ (αφ) are given by

A
φ−→ B

α∈Aut(B)−−−−−−→ B
ψ−→ C, which, again by the above diagram, is the same as view-

ing α as automorphism of A (or C) and pre- (post-) composing it with ψ ◦ φ, which is

α(ψ ◦ φ).

(3) The commutativity of π0(P) is due to the commutativity constraints on − ⊗ −.

For the commutativity of π1(P) = Aut(1) we recall the fact ((5.2) in [Mac63]) that

λ1 = c(1,1) ◦ λ1, where c(1,1) is the commutativity constraint 1 ⊗ 1 → 1 ⊗ 1 (since

we are working in a Picard category, λ1 is an isomorphism and hence c(1,1) = id1⊗1).

For α and β in Aut(1) we thus get together with the above diagram for A = 1 = B:

α ◦ β = λ1 ◦ α⊗ β ◦ λ1 = λ1 ◦ β ⊗ α ◦ λ1 = β ◦ α.

We will need the following lemma later:

Lemma 1.1.25. Let X be a G-torseur and G→ G′ a group homomorphism. Then the quotient

X ′ := X
G
×G′ := X ×G′/(x ∗ g, g′) ∼ (x, gg′)

is a G′-torseur.

Proof. Clearly, X ′ is not empty. We define a G′-action on X ′ via (x, g1)g2 := (x, g1g2). Let

(x, g1) represent an element of X ′ on which g2 ∈ G′ acts as the identity. Since G acts freely on

X, the equation (x, g1) = (x, g1g2) also holds in X × G′. Therefore, g2 = e and G′ acts freely

on X ′. Let (x1, g1) and (x2, g2) represent two elements of X ′. Since G acts transitively on X,

there is an element g ∈ G such that x1 = x2g. But then (x2, g2)g−1
2 gg1 represents (x1, g1) and

G′ acts transitively on X ′.
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Now we discuss some subtleties concerning the commutativity constraints.

Definition 1.1.26. We write c(A,B) for the commutativity constraint A⊗B → B⊗A. Usually,

we will omit it from the notation, but there are subtleties involved if A = B since c(A,A) does

not need to be the identity. We will sometimes refer to it as the commutativity constraint of A.

We write ε(A) for the self-inverse element of π1(P) corresponding to c(A,A) ∈ AutP(A⊗A).

Remark 1.1.27. Keeping track of the ε(B)’s, we have the following identities in a Picard

category (see [Ven05b] Remark 1.2).

(1) The inverse f−1 : A−1 → B−1 of a morphism f : A→ B can be written as

ε(B)f−1 = λB−1 ◦ c(B−1,1) ◦ idB−1 ·µA ◦ idB−1 ·f · idA−1 ◦ µB−1 · idA−1 ◦ λA−1 .

Here and in the following we will often write “·” instead of “⊗” for the product structure

in a Picard category or omit it entirely. This should not cause confusion with the π1(P)-

torseur structure of the morphisms.

(2) Moreover, we can write a composition A
f−→ B

g−→ C as

ε(B) · λC ◦ µB−1 · idC ◦ idB−1 ·c(B,C) ◦ idB−1 ·g · f ◦ µB−1 · idA ◦λA.

Since all morphisms in a Picard category are isomorphisms, we have ε(B) = ε(C) for any

morphism g : B → C. So if we write the composition of three morphisms as product of

those morphisms, the factors ε(B) and ε(C) cancel, since they are self-inverse.

In the next section, we introduce the category of virtual objects, which will be the only Picard

category of interest in this thesis. In this setting ε(B) gives rise to signs, see remark 1.1.44.

We saw in remark 1.1.20 that Picard categories are monoidal categories. Subsequently, we will

also need the notion of monoidal functors, which we indroduce following [Bre11] 2.2.

Definition 1.1.28. Let (C,⊗) and (D,�) be two monoidal categories with commutativity con-

straints. A monoidal functor (F,m) : (C,⊗) → (D,�) is a functor F : C → D together with

natural isomorphisms mA,B : F (A) � F (B) → F (A ⊗ B), which respects the associativity and

commutativity constraints ([Riv06] I 4.2.1 and 4.2.2) and which maps each unit of (C,⊗) to a

unit of (D,�).

Let (F,m), (G,n) : (C,⊗)→ (D,�) be two monoidal functors. A morphism of monoidal functors

µ : (F,m)→ (G,n) is a natural transformation t : F → G such that for all objects A,B of C we

have tA⊗B ◦mA,B = nA,B ◦ (tA � tB).

The category of monoidal functors from (C,⊗) to (D,�) is denoted Hom⊗(C,D).

Remark 1.1.29. If (F,m) : (A,⊗)→ (B,�) and (G,n) : (B,�)→ (C, ∗) are monoidal functors,

then the composition (G ◦ F,Gm ◦ nF−,F−) : (A,⊗)→ (C, ∗) is again a monoidal functor.

Lemma 1.1.30. Let (F,m) : P → Q be a monoidal functor between Picard categories. Then F

commutes with units and inverses up to unique isomorphisms of units and inverses.

Proof. A monoidal functor is defined to map units to units and these are unique up to unique

isomorphism of units by remark 1.1.20. Let A be an object of P. Then the isomorphism

µ′F (A) : F (A)⊗Q F (A−1)
mA,A−1

−−−−−→ F (A⊗P A−1)
F (µA)−−−−→ F (1)→ 1,

where the last morphism is the commutativity of F with units, exhibits F (A−1) as an inverse

of F (A). Thus the uniqueness of inverses in remark 1.1.20 proves the claim.
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Example 1.1.31. By remark 1.1.20 (2) and (3) taking inverses with respect to the product

structure of a Picard category is a monoidal functor.

1.1.3 Determinant functors

Now we have introduced the necessary concepts to be able to define a determinant functor. We

follow the presentation in [BF01] 2.3 and [Del87]. Let E be an exact category, let (E , is) be its

subcategory of all objects and all isomorphisms and P a Picard category.

Definition 1.1.32. A determinant functor from E to P consists of the following data:

� a functor d : (E , is)→ P,

� an isomorphism d(Σ) : d(B)→ d(A)⊗d(C) for every short exact sequence Σ : A→ B → C

in E which is natural in isomorphisms of exact sequences,

� for each zero object 0 in E an isomorphism ζ(0) : d(0)→ 1 such that for every isomorphism

f : A→ B in E, we have

d(f) = d(A)
d(0→A→B)−−−−−−−→ d(0)⊗ d(B)

ζ(0)⊗id−−−−−→ 1⊗ d(B)
λ−1
B−−→ d(B) and

d(f−1) = d(B)
d(A→B→0)−−−−−−−→ d(A)⊗ d(0)

id⊗ζ(0)−−−−−→ d(A).

which satisfies associativity and commutativity:

Associativity:

Let Σ4 : B/A→ C/A→ C/B be the exact sequence induced by three short exact sequences

Σ1 : A→ B → B/A

Σ2 : B → C → C/B

Σ3 : A→ C → C/A

then the following diagram commutes in P:

d(C) d(B)⊗ d(C/B)

d(A)⊗ d(C/A) d(A)⊗ d(B/A)⊗ d(C/B)

d(Σ2)

d(Σ3) d(Σ1)⊗id

id⊗d(Σ4)

Commutativity:

If Σ1 : A→ A⊕B → B and Σ2 : B → A⊕B → A are exact sequences given by inclusion

and projection, the following diagram commutes in P:

d(A⊕B)

d(A)⊗ d(B) d(B)⊗ d(A).

d(Σ1) d(Σ2)

c
(
d(A),d(B)

)
Given an exact category E and a Picard category P, a morphism between two determinant

functors d, d′ : E → P is a natural transformation t : d → d′ such that for each exact sequence

Σ : A→ B → C we have d′(Σ) ◦ tB = (tA · tB) ◦ d(Σ). The category of determinant functors of

E with values in P is denoted det(E ,P).

[Del87] showed in §4.2-4.5 that there is a universal determinant functor:
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Definition 1.1.33. For an exact category E we define a category V (E), the category of virtual

objects as the category with closed loops based at 0 in the topological space BQE as objects and

homotopy classes of homotopies between such loops as morphisms. The product structure of

V (E) is given by composition of loops.

Theorem 1.1.34. Let E be an exact category. Then there exists a universal determinant functor

d : E → V (E), such that for all Picard categories P there is an equivalence of categories

Hom⊗(V (E),P)→ det(E ,P)

F 7→ F ◦ d.

Lemma 1.1.35.

(1) Let Eop be the opposite category of an exact category. It is also exact and V (E) = V (Eop).
(2) An exact functor F : E → E ′ induces a monoidal functor V (F ) : V (E) → V (E ′) such that

the following diagram commutes up to isomorphism of determinant functors

(E , is) V (E)

(E ′, is) V (E ′).

d

F V (F )

d′

Similarly, if F is a contravariant exact functor, it induces a contravariant, monoidal func-

tor V (F ) : V (E)→ V (E ′) so that for an isomorphism f : A→ B in E, we have a natural

isomorphism between V (F ) ◦ d and d′ ◦ F . For a short exact sequence

Σ : 0→ A→ B → C → 0 in E, the map d′(F (Σ)) is V (F )(d(Σ)) ◦ c
(
d′(F (A)), d′(F (C))

)
.

(3) Let F : E → E ′ and G : E ′ → E ′′ be exact functors. Then V (G ◦ F ) and V (G) ◦ V (F ) are

isomorphic as monoidal functors.

(4) We have Ki(E)
∼−→ πi(V (E)) for i ∈ {0, 1}. The map for i = 0 is induced by d. If E is split

exact, the isomorphism for i = 1 is given by d and remark 1.1.22. That is to say, that the

automorphisms of an object A of E are mapped like this:

AutE(A)
d−→ AutV (E)(d(A)) ∼= AutV (E)(1) = π1(V (E)).

In particular, each object of V (E) is isomorphic to an object d(A)⊗d(B)−1 for some objects

A and B of E.

(5) Let Ki(F ) : Ki(E)→ Ki(E ′) for i = 0, 1 be the homomorphisms induced by an exact functor

F . The monoidal functor V (F ) induces homomorphisms πi(V (F )) : πi(V (E))→ πi(V (E ′))
for i = 0, 1. These are identified using the isomorphism above.

Proof. This proof elaborates parts of section 4.11 in [Del87].

(1) The auxiliary categories QE and QEop are isomorphic by exercise 6.3 in chapter IV of

[Wei13]. So BQE and BQEop are the same topological space.

(2) Since F is exact, d′ ◦ F is a determinant functor. The universality of d (theorem 1.1.34)

yields a monoidal functor V (F ) which makes the diagram commute up to isomorphism in

det(E , V (E)). If F : E → E ′ is contravariant, we can use the universality of d to obtain

a covariant monoidal functor Ṽ (F ) so that the outer rectangle of the following diagram

commutes up to isomorphism of determinant functors
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(E , is) V (E)

(E ′, is) V (E ′)

(E ′op, is) V (E ′)op.

d

F V (F )

Ṽ (F )
d′

inv inv

(d′)op

Here, inv the contravariant functor that inverts the morphisms of a groupoid. A short

exact sequence Σ : A→ B → C in E is mapped to the morphism c
(
d′(F (A)), d′(F (C))

)
◦

d′(F (Σ)) in V (E ′)op. This turns the composition of the left and bottom morphisms into

a determinant functor and thus induces the existence of the monoidal covariant functor

Ṽ (F ). The desired covariant, monoidal functor V (F ) is defined by post-composition with

inv.

(3) By the previous statement, we have that both V (GF )◦d and V (G)V (F )◦d are isomorphic

as determinant functors to d◦GF . The category equivalence of theorem 1.1.34 shows that

V (GF ) and V (G)V (F ) are isomorphic as monoidal functors.

(4)&(5) The isomorphism stems from the topological construction of V (E), see [Del87] 4.2., from

which the description of the isomorphism for i = 0 also follows. For the case of i = 1 see

[BF01] 2.3. which also states the compatibility of the induced morphisms. In particular,

by K0(E)
d−→
∼
π0(V (E)) every object of V (E) is isomorphic to

d

 n∑
i=1

[Ai]−
m∑
j=1

[Bj ]

 = d

([
n⊕
i=1

Ai

])
⊗ d

 m⊕
j=1

Bj

−1

for objects Ai and Bj in E .

Remark 1.1.36. The construction of the covariant functor associated to a contravariant, exact

functor F : E → E ′ in part (2) of lemma 1.1.35 is slightly different than in [Del87] section 4.11.

There, Deligne uses part 1 of lemma 1.1.35 and defines a contravariant functor (E , is) → V (E)

presumably as

(E , is) F−→ (E ′, is) inv−−→ (E ′op, is)
d
E′op−−−→ V (E ′op) = V (E ′).

For the two constructions to be the same, it seems that a commutative diagram of the form

(E ′op, is) V (E ′op)

V (E ′)op V (E ′)

d
E′op

(d′)op

is needed The obvious choice for the dotted arrow seems to be inv, but this messes up the

co-/contravariance from the upper left to the lower right corner.
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Corollary 1.1.37.

(1) For A and B in Ob(E) we have that d(A) ∼= d(B) if and only if [A] = [B] in K0(E).

(2) Let M and N be objects of V (E). Then there is a morphism from M to N if and only if

M ∼= d(P )d(Q)−1 and N ∼= d(P ′)d(Q′)−1 with [P ] + [Q′] = [P ′] + [Q] in K0(E).

(3) For all objects M and N of V (E) the morphisms from M to N , V (E)(M,N), are either

empty or a K1(E)-torseur.

Remark 1.1.38. By the third part of corollary 1.1.37, we have reached our goal of the section.

The determinant of an isomorphism is at least non-canonically an element of K1(E). Each

automorphism group of an object in V (E) can be even canonically identified with K1(E) by

sending the identity to 1 ∈ K1(E). Roughly speaking, one can say that the information of V (E)

is in the morphisms rather than in the objects.

Proof.

(1)&(2) By lemma 1.1.35 (2) we have K0(E) ∼= π0(V (E)) with the isomorphism induced by d. (2)

follows from (1) and part (4) of the above lemma 1.1.35.

(3) This is immediate from lemma 1.1.35 (4) and lemma 1.1.24.

From now on let Λ be a (not necessarily commutative) ring. We will need determinant functors

in this work only for the case where E = PMod(Λ) is the category of finitely generated projective

modules over Λ. For this case Fukaya and Kato ([FK06] §1.2) introduce an ad hoc construction

of a universal determinant functor category, which they claim to be equivalent to the category

of virtual objects (ibid. 1.2.10). Unfortunately, there are some gaps in their presentation.

Therefore, we work with the setting of Deligne’s virtual category.

Example 1.1.39. Burns and Flach show in [BF01] 2.5 (see also [Del87] 4.13) that if Λ is a

commutative ring and local or semisimple, the category of graded line bundles on Spec(Λ) is

equivalent to V (Λ) and the determinant functor is d(P ) =
(∧rkΛ P

Λ P, rk(P )
)

. For Λ being a

field this shows that we recover the usual definition of a determinant.

In the following, we will collect some properties of the universal determinant functor for

E = PMod(Λ) and in particular see how we can extend determinant functors to the derived

category. Most of these properties are mentioned in [FK06] 1.2 and [Ven05b] §1. We set

V (Λ) := V (PMod(Λ)) and denote d : PMod(Λ)→ V (Λ) by dΛ.

Lemma 1.1.40.

(1) We have dΛ(P ⊕Q) ∼= dΛ(P )⊗ dΛ(Q) naturally in objects P,Q of PMod(Λ).

(2) Let Λ′ be another ring, Y a finitely generated projective Λ′-module carrying a Λ-right-

module structure which commutes with the action of Λ′. Then there is a monoidal functor

Y ⊗Λ − : V (Λ) → V (Λ) such that the following diagram commutes up to isomorphism of

determinant functors:

(PMod(Λ), is) V (Λ)

(PMod(Λ′), is) V (Λ′).

dΛ

Y⊗Λ− Y⊗Λ−
dΛ′
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If Y = Λ′ and Λ acts via a ring homomorphism on Λ′, then we denote Λ′ ⊗Λ dΛ(−) by

dΛ(−)Λ′.

(3) The functor HomΛ(−,Λ) : PMod(Λ)→ PMod(Λ°) induces a contravariant monoidal func-

tor (−)∗ : V (Λ)→ V (Λ°) such that

(PMod(Λ), is) V (Λ)

(PMod(Λ°), is) V (Λ°)

dΛ

HomΛ(−,Λ) (−)∗

dΛ°

commutes up to natural isomorphism and we have for a short exact sequence Σ in PMod(Λ)

that dΛ°
(Σ∗) = dΛ(Σ)∗. We sometimes also denote the functor HomΛ(−,Λ) itself by (−)∗.

Proof.

(1) This is just an instance of the naturality of dΛ on short exact sequences.

(2) The functor Y ⊗Λ − : PMod(Λ)→ PMod(Λ′) is exact. So by lemma 1.1.35 (2) it induces

a functor monoidal V (Λ)→ V (Λ′), which we also call Y ⊗Λ −.

(3) We first show that the functor HomΛ(−,Λ) is well defined. For P ∈ PMod(Λ) we equip

HomΛ(P,Λ) with a Λ°-action by letting λ ∈ Λ° act from the left on f ∈ HomΛ(P,Λ)

by right multiplication in Λ, i.e. (λ · f)(p) = f(p) · λ. Since HomΛ(−,Λ) is an additive

functor, it maps finitely generated projective Λ-modules to finitely generated, projective

Λ°-modules. So it is well-defined. Finally, it is exact since HomΛ(−,Λ) is left-exact on

the category of all Λ-modules and it is also right-exact because every exact sequence in

PMod(Λ) splits and the splitting is preserved under the additive functor HomΛ(−,Λ). All

that remains to do is to invoke the contravariant part of lemma 1.1.35 part (2)

The universal determinant functor dΛ extends to perfect complexes. The key ingredient is the

work of Knudsen and Mumford [KM77] Proposition 4 and Theorem 2, where they extend dΛ in

the case of Λ being commutative. The following (which is structered after [BF01] section 2.4) is

a slight generalisation for not necessarily commutative rings.

Definition 1.1.41. Let Cp(Λ) be the full subcategory of the category of complexes of Λ-modules,

C(Λ), consisting of bounded complexes of finitely generated projective Λ-modules. We also call

it the category of strictly perfect complexes. Its subcategory, where only quasi-isomorphisms

are considered will be denoted (Cp(Λ), qis). For an object A of PMod(Λ) we denote by A[r] the

complex which is A in degree r and zero elsewhere.

Let D(Λ) be the derived category of the category of all Λ-modules. Then we define Dp(Λ) as

the full subcategory of the derived category D(Λ) consisting of those complexes that are quasi-

isomorphic to a strictly perfect complex. We call it category of perfect complexes.

We also define the homotopy category K(Λ) as the category with complexes of Λ-modules as

objects and with homotopy classes of complex morphisms as morphisms. Kp(Λ) shall denote the

full subcategory generated by strictly perfect complexes.

Proposition 1.1.42. The functor dΛ : (PMod(Λ), is)→ V (Λ) factors as

(PMod(Λ), is)
A 7→A[0]−−−−−→ (Cp(Λ), qis)→ (Dp(Λ), is)→ V (Λ).
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For every short exact sequence of perfect complexes Σ = Σ(f, g) : 0→ C ′
f−→ C

g−→ C ′′ → 0 there

is an isomorphism dΛ(Σ) : dΛ(C) → dΛ(C ′) ⊗ dΛ(C ′′), which is natural in morphisms of short

exact sequences of complexes that consist of quasi-isomorphisms. The following properties hold

in addition:

(1) For each acyclic complex C there is an isomorphism ζC : dΛ(C)→ 1.

(2) If f (or g) in Σ is a quasi-isomorphism, then

dΛ(f) = λdΛ(C′) ◦ c(dΛ(C ′),1) ◦ id⊗ζC′′ ◦ dΛ(Σ)

(or dΛ(g) = λdΛ(C′′) ◦ ζC′ ⊗ id ◦dΛ(Σ)).

(3) The determinant functor commutes with base change. That is to say that for Λ′ an-

other ring, Y a finitely generated projective Λ′-module carrying a Λ right structure that

commutes with the Λ′-structure and Σ a short exact sequence of complexes, we have

dΛ(Y ⊗Λ Σ) = Y ⊗Λ dΛ(Σ) and the following diagram commutes (up to isomorphism

of determinant functors in the right square):

(PMod(Λ), is) (Dp(Λ), is) V (Λ)

(PMod(Λ′), is) (Dp(Λ′), is) V (Λ′).

Y⊗Λ−

dΛ

Y⊗L
Λ− Y⊗Λ−

dΛ′

The corresponding statement holds for the duality functors HomΛ(−,Λ).

(4) For every commutative nine term diagram of complexes

C ′1 C1 C ′′1

C ′2 C2 C ′′2

C ′3 C3 C ′′3

f1

f ′

g1

f f ′′

f2

g′

g2

g g′′

f3 g3

in which all rows and columns are short exact sequences of complexes the following diagram

commutes up to a commutativity constraint:

dΛ(C2) dΛ(C ′2)⊗ dΛ(C ′′2 )

dΛ(C1)⊗ dΛ(C3) dΛ(C ′1)dΛ(C ′′1 )dΛ(C ′3)dΛ(C ′′3 ).

dΛ(Σ(f2,g2))

dΛ(Σ(f,g)) dΛ(Σ(f ′,g′))⊗dΛ(Σ(f ′′,g′′))

dΛ(Σ(f1,g1))⊗dΛ(Σ(f3,g3))

(5) Let C be a perfect complex such that Hq(C)[0] is a perfect complex for all q. Then we

have a canonical isomorphism dΛ(C)
∼−→
⊗

q dΛ(Hq(C))(−1)q which is natural in quasi-

isomorphisms.

Proof. This is just a slightly extended version of proposition 2.1 in [BF01]. The key ingredients

of the proof are theorems 1 and 2 in [KM77] where the extension of a determinant functor

for a commutative Λ is considered. The claim about the duality functors follows from lemma

1.1.40 (3) together with the explicit description of the extension of dΛ in the following remark

1.1.43.
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We collect some cornerstones of the proof of proposition 1.1.42 which provide some intuition

about the extension of dΛ to the category of perfect complexes in the following remark, whose

content can mostly be found in [FK06] 1.2.[3, 8, 9] and the proof of theorem 1 in [KM77]:

Remark 1.1.43.

(1) For C an object of Cp(Λ) we have dΛ(C) =
⊗

q dΛ(Cq)(−1)q .

(2) Let Σ : 0→ C ′ → C → C ′′ → 0 be a short exact sequence of complexes in Cp(Λ). Denote

the degree-wise short exact sequences in PMod(Λ) by Σq : 0 → C
′q → Cq → C

′′q → 0.

Then dΛ(Σ) =
⊗

q dΛ(Σq)(−1)q .

(3) Let C be an acyclic complex in Cp(Λ) and Iq the image of the differential Cq → Cq+1.

Then we have short exact sequences Σq : 0→ Iq → Cq+1 → Iq+1 → 0 in PMod(Λ) for all

q. Starting at the non-zero Iq with highest superscript one sees that all Iq are projective

as the kernel of a surjective map between projective modules. They are finitely generated,

since they are quotients of finitely generated modules. So we can apply dΛ to the Iq’s. Up

to commutativity, the isomorphism ζC is given by

ζC : dΛ(C) =
⊗
q

dΛ(Cq+1)(−1)q
⊗
q dΛ(Σq)(−1)q

−−−−−−−−−−→
(
dΛ(Iq)dΛ(Iq+1)

)(−1)q
⊗
q µ

(−1)q

Iq−−−−−−→ 1.

(4) Let α : C → C ′ be a quasi-isomorphism in Cp(Λ). Then the mapping cone of C ′′ of α is

acyclic and we have an exact sequence Σ : 0→ C ′ → C ′′ → C[1]→ 0 given by the canonic

inclusion and projection. This yields a map ψ : dΛ(C ′)dΛ(C[1]) −−−−→
dΛ(Σ)

dΛ(C ′′) −−→
ζC′′

1.

Then dΛ(α) is given as ψ ⊗ iddΛ(C).

(5) In order to extend dΛ to perfect complexes, note that the category C(Λ) satisfies the

fourth Grothendieck axiom, AB4, of [Gro57] section 1.5. For such abelian categories

Böksted and Neeman prove in the dual of their proposition 2.12 in [BN93] that the functor

K(P ) ↪→ K(Λ) → D(Λ), where K(P ) is some subcategory of K(Λ), which contains

Kp(Λ) as full subcategory, is an equivalence of categories. Since Dp(Λ) is the essential

image of Kp(Λ) ↪→ K(P ) → D(Λ), we get an equivalence of categories Kp(Λ) → Dp(Λ).

Finally, we remark that by [KM77] Proposition 2 the determinant functor on (Cp(Λ), qis)

is insensitive to homotopy, so that it factors over Kp(Λ). Hence, we can define dΛ on

Dp(Λ) by choosing a quasi-inverse Dp(Λ)→ Kp(Λ). Any such choice will yield canonically

isomorphic determinant functors dΛ : Dp(Λ)→ V (Λ).

We conclude the section with a warning concerning the signs introduced by the commutativity

constraints.

Remark 1.1.44. In section 4.9 of [Del87] Deligne shows that for an object A of an exact cat-

egory E the commutativity constraint c(d(A), d(A)) corresponds to the symmetry isomorphism

d(A ⊕ A → A ⊕ A) and that ε(d(A)) corresponds to d(A
·(−1)−−−→ A) ∈ AutV (E)(A) = K1(E).

If E has a well-defined rank function, we get that ε(A) = (−1)rkA ∈ K1(E). This can be

extended to perfect complexes via the Euler-Poincaré characteristic. See also remark B.0.2

in [LVZ15] for more details. Note how this matches up with the commutativity constraint

V ⊗W = (−1)rkV ·rkWW ⊗ V of graded line bundles in example 1.1.39.
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1.2 p-adic Hodge theory

We collect some results from p-adic Hodge theory in this section. The main references are [FO18]

and [BC09].

1.2.1 Admissible representations

The theory of admissible representations can be found in [BC09] section I.5. Let F be a field

and G a group. Let B be an F -algebra which has an F -linear G-action. Assume that the ring

E := BG is a field. Finally, let V be an object in the category RepF (G) of finite dimensional

F -vector spaces with an F -linear action of G.

Definition 1.2.1. In the above setting B is called (F,G)-regular, if

(1) B is a domain,

(2) BG = Frac(B)G and

(3) each b ∈ B for which there is some σ ∈ G and f ∈ F with σ(b) = fb is a unit in B.

We define a functor DB : RepF (G)→ VecE with target in the category VecE of finite dimensional

E-vector spaces by V 7→ DB(V ) := (B⊗F V )G. This functor indeed produces finite dimensional

E-vector spaces as the next theorem states the injectivity of the map

αV : B ⊗E DB(V )→ B ⊗F V, b⊗
∑
i

bi ⊗ vi 7→
∑
i

bbi ⊗ vi.

Definition 1.2.2. An object of RepF (V ) is called B-admissible if dimE(DB(V )) = dimF V .

Theorem 1.2.3. We keep the above notation. In all but (1) we assume B to be (F,G)-regular.

(1) If B is a domain and E = Frac(B)G, then the map αV is injective and in particular,

dimE DB(V ) ≤ dimF V .

(2) V is B-admissible if and only if αV is an isomorphism.

(3) We denote by RepBF (G) the full subcategory of RepF (G) consisting of B-admissible repre-

sentations. It is closed under (sub)quotients, tensor products and duals. On RepBF (G) the

functor DB(−) is exact, faithful and compatible with tensor products and duals.

(4) Let L be a finite extension of F . Further, let V , V ′ be two objects of RepL(G), which are

B-admissible as F -representations.

(a) There is a natural isomorphism of E ⊗F L-modules

ν : DB(V ∗L)→ DB(V )∗E⊗F L ,
∑
i

bi ⊗ φi 7→

∑
j

b′j ⊗ vj 7→
∑
ij

bib
′
j ⊗ φi(vj)

 .

(b) Assume either that E/F is a Galois extension, L is separable over F and

Bσ := B⊗E∩L,σL is a domain for each F -linear embedding σ : E∩L ↪→ E or assume

that E = F . Then DB(V ) is a free E ⊗F L-module of rank dimL V . Moreover, we

have a natural E ⊗F L-isomorphism

DB(V )⊗E⊗FL DB(V ′)→ DB(V ⊗L V ′)(∑
i

bi ⊗ vi

)
⊗

∑
j

b′j ⊗ v′j

 7→∑
ij

bib
′
j ⊗ vi ⊗ v′j .

In particular, V ⊗L V ′ and V ∗L are B-admissible as F -representations.
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Proof. Parts (1) to (3) can be found in theorem 5.2.1 of [BC09]. We prove the last part.

4.(a) We have a B ⊗F L-homomorphism

B ⊗F HomL(V,L)→ HomB⊗FL(B ⊗F V,B ⊗F L)

b⊗ φ 7→ (b′ ⊗ v 7→ b′b⊗ φ(v)).

It is surjective: Choose an element ψ ∈ HomB⊗FL(B⊗F V,B⊗FL) and an L-base v1, . . . , vn
of V . The B ⊗F L-linear map ψ is defined by ψ(1 ⊗ vi) =

∑
j bij ⊗ lj . Then the element∑

i,j bij⊗ ljv∗i is a preimage of ψ. Since both sides have the same B⊗F L-rank dimL V , the

map is an isomorphism. It becomes G-equivariant, if we equip HomB⊗FL(B⊗F V,B⊗F L)

with the G-action ψ 7→ σ ◦ψ ◦σ−1, where σ acts trivially on the factor L. Restricting this

isomorphism to the G-invariants, we get an E ⊗F L-isomorphism

DB(V ∗L)
∼−→ HomB⊗FL(B ⊗F V,B ⊗F L)G.

By restricting the source of elements of HomB⊗FL(B ⊗F V,B ⊗F L)G to G-invariants, we

get an E ⊗F L-linear map

f : HomB⊗FL(B ⊗F V,B ⊗F L)G → HomE⊗FL(DB(V ), E ⊗F L).

We compose the constructed maps to get the map DB(V ∗L) → DB(V )∗E⊗F L from the

statement. To finish the proof that it is an isomorphism, we construct an inverse to f .

Since V is B-admissible as F -representation, any E-base d1, . . . , dm of DB(V ) is a B-base

of B ⊗F V . We define an inverse of f by sending φ to the B ⊗F L-linear map given on di
by φ(di). This map only depends on φ and not on the choice of a base. One can easily

check that it also is G-equivariant and that we have thus constructed the desired inverse

to f .

4.(b) The statement for the tensor products can be proven as in theorem 5.2.1 of [BC09] once

it has been established that DB(V ) is a free E ⊗F L-module. If E = F , this is clear. Let

us consider the case where E/F is Galois, L/F separable and Bσ is a domain for each

F -linear embedding σ : E ∩ L ↪→ E. The reasoning is modelled after the proof of VII §2

lemma 1 in [Ven17]. By the Galois theory lemma 1.2.4 below, we know that Aσ := E⊗σ L
is a field for each σ and that E⊗F L ∼=

∏
σ Aσ. So DB(V ) is a free E⊗F L-module of rank

dimL V if and only if each DB(V )⊗E⊗FL Aσ is an Aσ-vector space of dimension dimL V .

Consider the Aσ-vector space DBσ(V ) := (Bσ⊗LV )G. It is clearly isomorphic as Aσ-vector

space to DB(V ) ⊗E⊗FL Aσ. We have an E-isomorphism DB(V ) ∼= ⊕σDB(V ) ⊗E⊗FL Aσ.

Together with the B-admissibility of V as F -representation we get

dimF (V ) = dimE(DB(V ) =
∑
σ

dimE(DB(V ))⊗E⊗FL Aσ) =
∑
σ

dimE(DBσ(V ))

=
∑
σ

[L : E ∩ L] · dimAσ(DBσ(V )).

By assumption Bσ is a domain and by definition we have BG
σ = E ⊗E∩L,σ L = Aσ, which

is a field. Hence Frac(Bσ)G = BG
σ and we are allowed to apply part (1) of theorem 1.2.3

with B = Bσ, E = Aσ and F = L and get

dimAσ(DBσ(V )) ≤ dimL V.
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Adding these inequalities for the σ’s, of which there are [E ∩L : F ] many, and multiplying

with [L : E ∩ L], we get

dimF (V ) = [L : F ] · dimL V ≤
∑
σ

[L : E ∩ L] · dimAσ(DBσ(V )).

But from above, we know that equality holds. So equality must hold in the inequality for

each σ, which finishes the proof.

The following lemma is an easy result from Galois theory:

Lemma 1.2.4. Let F be a field with an algebraic closure F and let K/F be a Galois extension

and L/F a finite separable subextension inside F .

(1) For an F -homomorphism σ : K ∩ L ↪→ K let σ′ : L ↪→ F be an extension to L. Then, we

have an isomorphism

K ⊗K∩L,σ L→ Kσ′(L), k ⊗ l 7→ kσ′(l).

(2) The F -homomorphism

K ⊗F L→
∏
σ

K ⊗K∩L,σ L, k ⊗ l 7→ (k ⊗ l)σ,

where the product runs over all F -homomorphisms K ∩ L ↪→ K, is an isomorphism.

(3) The isomorphism above is Gal(K/F )-equivariant. Here, τ ∈ Gal(K/F ) sends (k ⊗ l)σ of∏
σK ⊗K∩L,σ L to (τ(k)⊗ l)τσ. In particular, if K contains L and we let τ ∈ Gal(K/F )

act on
∏
σK by τ((aσ)σ) = (τ(aτ−1σ))σ, the following diagram commutes:

K ⊗F L
∏
σK ⊗K∩L,σ L

∏
σK

K ⊗F L
∏
σK ⊗K∩L,σ L

∏
σK.

τ⊗id τ τ

Proof.

(1) This can be proven by elementary Galois theory. A prove using Galois descent can be

found in [BCH03] chapter V, §10, theorem 5.

(2) Since K is normal over F , any F -homomorphism K∩L→ F factors over K. In particular,

source and target of the morphism in question have the same K-dimension. Now, assume

that L is Galois and generated by some element α ∈ F whose minimal polynomial over

F is denoted f . Over K ∩ L the polynomial f factors as
∏
σ fσ with the product running

over Gal(K ∩ L,F ). The fσ are irreducible monic polynomials over K ∩ L of the same

degree and such that applying τ ∈ Gal(K ∩ L,F ) to the coefficients of fσ yields fτσ. Let

fe be the factor containing α. Because of (K ∩ L)[X]/(fτ )
∼−→
σ

(K ∩ L)[X]/(fστ ), we have

(K ∩ L)⊗F L ∼= (K ∩ L)⊗F F [X]/(f)

∼= (K ∩ L)[X]/(f)

∼=
∏

σ∈Gal(K∩L,F )

(K ∩ L)[X]/(fσ)

∏
σ σ
−1

−−−−−→
∼

∏
σ

(K ∩ L)[X]/(fe) ∼=
∏
σ

L.

Tensoring this overK∩L withK yields exactly the isomorphismK⊗FL→
∏
σK⊗K∩L,σL.

If L is not Galois over F , we consider the normal closure L′ of L in F . Then the diagram
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K ⊗F L
∏

σ:K∩L→K
K ⊗K∩L,σ L

K ⊗F L′
∏

σ′∈Gal(K∩L′,F )

K ⊗K∩L′,σ′ L′∼

commutes. The morphism on the right is given by

K ⊗K∩L,σ L ↪→ K ⊗K∩L,σ L′
∼−→

∏
σ′s.t.

σ′|K∩L=σ

K ⊗K∩L′,σ′ L′.

Its second map is an isomorphism by the above arguments and because L′/F is Galois.

We conclude that the upper morphism in the above square is injective and an isomorphism

for dimension reasons.

(3) The action of τ on
∏
σK⊗K∩L,σL is well defined. Let k ∈ K and l ∈ K∩L. Then (k⊗ l)σ

is mapped to (τ(k)⊗ l)τσ and (kσ(l)⊗ 1)σ is mapped to (τ(kσ(l))⊗ 1)τσ = (τ(k)⊗ l)τσ,

this proves that the action is well-defined and the map is equivariant.

1.2.2 Period rings

Period rings are originally due to Fontaine ([Fon94] Exp II and III). We use the more modern

textbooks [FO18] and [BC09] as main reference.

From now on, we fix a prime number p and some separable closure Qp of Qp . We want to apply

the mechanics of admissible representations to Fontaine’s period rings.

First, we fix some notation concerning the absolute Galois group of Qp . For a field K we denote

by GK the absolute Galois group Gal(Ksep,K).

Recall the local Kronecker-Weber theorem, which is a standard result of local class field theory

(see for instance [CF10] p.146).

Theorem 1.2.5 (Local Kronecker-Weber theorem). Every finite abelian extension K of Qp is

contained in some Qp(ζ) for ζ a root of unity in Qp.

In particular, the maximal abelian extension Qab
p of Qp is ∪n∈NQp(ζn).

We get the following corollary concerning the structure of Gal(Qab
p ,Qp) = GQp/[GQp , GQp ].

Corollary 1.2.6. The restriction homomorphism yields an isomorphism

Gal(Qab
p ,Qp) ∼= Gal(Qnr

p /Qp)×Gal(Qp,∞/Qp), σ 7→ (σ|Qnrp , σ|Qp,∞),

where Qp,∞ is the union of all Qp(ζpn) and Qnr
p the maximal unramified extension of Qp.

Proof. By the local Kronecker-Weber theorem, we have Qab
p = Qnr

p Qp,∞ since Qnr
p = ∪p-nQp(ζn).

The field Qnr
p is unramified over Qp and Qp,∞ is totally ramified, so they are linearly disjoint

and the Galois group splits as in the statement.

Definition 1.2.7. The cyclotomic character is the continuous homomorphism χcycl : GQp → Z×p
that maps σ to the element (χcycl(σ)n)n∈N ∈ Zp for which σ(ζpn) = ζ

χcycl(σ)n
pn . Clearly, it induces
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an isomorphism χcycl : Gal(Qp,∞,Qp)
∼−→ Z×p .

We write Zp(1) for the rank one Zp-module on which GQp acts via χcycl. If K/Qp is finite, Λ

is a ring containing Zp and T is a finitely generated projective Λ-linear GK-representation, we

write T (1) for the representation T ⊗Zp Zp(1) with diagonal action of GK .

Remark 1.2.8. Let K/Qp be finite, Λ a ring containing Zp and T a finitely generated projective

Λ-linear GK-representation. There is a GK-equivariant Λ-isomorphism

T (−1)∗ → T ∗(1), φ 7→ φ(−⊗Zp ξ
−1)⊗ ξ

where ξ is a base of Zp(1). We will often use this isomorphism implicitly.

Definition 1.2.9. We call an element σ ∈ GQp (arithmetic) Frobeniuslift, or just arithmetic

Frobenius by abuse of notation, if σ|Qnrp corresponds to the Frobenius homomorphism of Fp, i.e.

the map x 7→ xp, under Gal(Qnr
p /Qp) ∼= GFp. We denote an arithmetic Frobenius often by φ.

The inverse φ−1 of a arithmetic Frobenius is called geometric Frobenius and often denoted Fr.

Remark 1.2.10. The sequence 0 → I → GQp → GFp → 0 is exact. So an arithmetic (and

hence a geometric) Frobenius is only unique up to I. By corollary 1.2.6 and definition 1.2.7

an arithmetic (geometric) Frobenius is uniquely determined by its value under the cyclotomic

character as element in GabQp
.

Now we summarise the main properties of Fontaine’s period rings.

Proposition 1.2.11. There is a topological field BdR with a continuous action of GQp which

has the following properties:

(1) BdR is the field of fractions of a discrete valuation ring B+
dR, from which the GQp -action

is induced.

(2) There is a canonic GQp -equivariant embedding Zp(1) ↪→ B+
dR. The Zp-bases of Zp(1) map

to uniformisers of B+
dR. We will denote such a uniformiser, which is unique up to Z×p -

multiples, by t.

(3) There is a GQp -stable filtration on B+
dR given by tiB+

dR.

(4) The residue field of B+
dR is Cp.

(5) BGK
dR = K and B

G
K̂nr

dR = K̂nr for K a finite extension of Qp.

(6) BdR is (Qp , GK)- and (Qp , GK̂nr)-regular for any finite extension K of Qp.

Proof. The content of this proposition can be found in [BC09] propositions 4.4.6, 4.4.8., page

61, theorem 4.4.13 and example 5.1.3..

Remark 1.2.12. Note that the topology of BdR, that we consider, differes from the topology

as discretely valuated field, see [FO18] remark 5.14 for more details.

Definition 1.2.13. Let K be a finite extension of Qp. Then we denote by K0 the maximal

unramified subextension of K/Qp and by (K̂nr)0 the field Q̂nr
p (see page 50 of [BC09]).

Proposition 1.2.14. There is a GQp -stable subring Bcris of BdR with the following properties:

(1) Bcris contains the image of Zp(1), in particular the element t.

(2) BGK
cris = K0 and B

G
K̂nr

cris = Q̂nr
p for K a finite extension of Qp.
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(3) There is an injective ring endomorphism ϕ of Bcris, the Frobenius, which acts on Qnr
p as

the arithmetic Frobenius φ and on t by multiplication with p. It is GQp -equivariant.

(4) Bcris is (Qp , GK)- and (Qp , GK̂nr)-regular for any finite extension K of Qp.

Proof. This theorem is a summary of some of the statements in [BC09] definition 9.1.4, theorem

9.1.5., proposition 9.1.6, theorem 9.1.8 and the remarks prior to it.

Proposition 1.2.15. There is a GQp -stable subring Bst of BdR with the following properties:

(1) There is an element u of Bst such that Bst = Bcris[u].

(2) ϕ extends to Bst via ϕ(u) = pu and remains injective.

(3) There is a Bcris-linear, GQp -equivariant derivation N = − d
du , called the monodromy oper-

ator, for which the relation Nϕ = pϕN holds.

(4) BGK
st = K0 and B

G
K̂nr

st = Q̂nr
p for K a finite extension of Qp.

(5) Bst is (Qp , GK)- and (Qp , GK̂nr)-regular for any finite extension K of Qp.

Proof. Again we refer to [BC09] for the proof. It can be found in definition 9.2.3, remark 9.2.4,

theorem 9.2.10 and proposition 9.2.11.

Lemma 1.2.16. Let K be a finite extension of Qp. Then the maps K ⊗K0 Bcris → BdR and

K ⊗K0 Bst → BdR are injective.

Proof. This is proven in [BC09] theorem 9.1.5 and theorem 9.2.10.

Proposition 1.2.17. The sequence 0 → Qp → Bcris
(1−ϕ,1̄)−−−−−→ Bcris⊕BdR /B

+
dR → 0 is exact as

a sequence of GQp -modules.

Proof. Follows from [BK07] proposition 1.17. equation (1.17.2).

Definition 1.2.18. Let K be a finite extension of Qp or the completion of the maximal un-

ramified extension of a finite extension of Qp. We denote the category of finite dimensional

continuous Qp-linear representations of GK over Qp by RepQp
(GK). For L a finite extension

of Qp, we define a subcategory RepL(GK) of RepQp
(GK) by all those representations which are

L-vector spaces and carry an L-linear GK-action.

We call an object V of RepQp
(GK) de Rham ( semi-stable, crystalline) if it is BdR- (Bst-,

Bcris-) admissible. It is called potentially semi-stable, if it is semi-stable as GF -representation

for some finite extension F of K. We denote the category of such representations RepdR(GK)

(Repst(GK), Repcris(GK), Reppst(GK)) and the corresponding functors to the categories of finite

dimensional K- (K0-, K0-, Qnr
p -) vector spaces by DdR,K (Dst,K , Dcris,K , Dpst,K =

⋃
F/K
finite

Dst,F ).

Remark 1.2.19. We overloaded the notation RepF (G). In the following it will always stand

for the category of continuous representations. We omit the subscript K in D?,K if K = Qp .

Remark 1.2.20. Let ? be any of dR, st, cris or pst. Let L be a finite extension of Qp . We

always consider objects in RepL(GK) as Qp-vector spaces when we apply D?. Nevertheless, if

V is in RepL(GK) then D?(V ) will have the structure of a K ⊗Qp L (K0 ⊗Qp L, K0 ⊗Qp L or

Qnr
p ⊗Qp L)-module. This structure is well behaved if the conditions in theorem 1.2.3 (4)(b) are

satisfied, for instance if B is any of Bcris, Bst or BdR, the field F is Qp and G = GQp . By lemma

1.2.16 it is also satisfied if instead G is the absolute Galois group GK of a finite extension K of

L.
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Additional structure on D?(V )

The vector spaces D?(V ) for ? any of dR, st, cris or pst come with additional structure inherited

form the rings B?. We will discuss some of it in this subsection.

Definition 1.2.21. Using the GQp -stable filtration of BdR we define a filtration on DdR(V ) by

Di
dR(V ) = (tiBdR⊗Qp V )GQp . We call DdR(V )/D0

dR(V ) the tangent space of V and denote it by

t(V ). Similar definitions apply for DdR,K(V ).

Definition 1.2.22. Let V and V ′ be filtered vector spaces. Then the filtration on their tensor

product is given by Filk(V ⊗ V ′) :=
∑

i+j=k Fili(V )⊗ Filj(V ′). The filtration on the dual vector

space is set to be Fili(V ∗) := (Fil1−i(V ))⊥ = {ψ ∈ V ∗|Fil1−i(V ) ⊂ ker(ψ)}.

Definition 1.2.23. Let K be a field. The category FilK is the category with finite dimensional

filtered K-vector spaces as objects and K-linear homomorphisms that respect the filtration as

morphisms.

Proposition 1.2.24. The functor DdR,K : RepdR(GK) → FilK sends short exact sequences to

short exact sequences and is compatible with tensor products and duals. Moreover, DdR maps

RepL(GQp ) ∩RepdR(GQp ) to FilL and is compatible with short exact sequences, tensor products

and duals of filtered L-vector spaces.

Proof. The first part is proposition 6.3.3 in [BC09]. The part on L-linear de Rham represen-

tations follows immediately since the Di
dR(V ) are L-vector spaces.

Definition 1.2.25. A de Rham representation V has Hodge-Tate weight r if

Dr+1
dR (V ) ( Dr

dR(V ). The multiplicity of a Hodge-Tate weight r is dimQp D
r
dR(V )/Dr+1

dR (V ).

If V is also in RepL(GQp ), then we set hL(r)V := dimLD
r
dR(V )/Dr+1

dR (V ) and tH,L(V ) to be the

unique Hodge-Tate weight of
∧dimLDdR(V )
L DdR(V ). We often omit the subscript L.

By proposition 6.45 of [FO18], we have the following

Lemma 1.2.26. For an L-linear de Rham representation V we have tH(V ) =
∑

i∈Z i · hL(i)V .

Proposition 1.2.27. Let V be an object of RepL(GK). The morphisms ϕ,N : Bst → Bst

induce morphisms ϕ,N : Dst,K(V ) → Dst,K(V ) and ϕ,N : Dpst,K(V ) → Dpst,K(V ) and

ϕ : Bcris → Bcris induces ϕ : Dcris,K(V ) → Dcris,K(V ). The induced map N is K0 ⊗Qp L

(Qnr
p ⊗Qp L)-linear and the induced maps ϕ are φ ⊗ id-semi-linear K0 ⊗Qp L (Qnr

P ⊗Qp L)-

isomorphisms. The endomorphism N : Dst,K(V )→ Dst,K(V ) is nilpotent, i.e. Nk = 0 for some

k ∈ N. We have Dcris,K(V ) = Dst,K(V )N=0.

Proof. Since ϕ andN areGK-equivariant, they induce the corresponding morphisms onDst,K(V ),

Dpst,K(V ) and Dcris,K(V ). The nilpotency of N can be deduced from lemma 8.2.8 in [BC09].

The fact that Dcris,K(V ) = Dst,K(V )N=0 follows from BN=0
st = Bcris. Finally, ϕ is not only

injective but bijective because of [BC09] exercise 7.4.10.

Lemma 1.2.28. Let ξ be a basis of Zp(1) and V an object in RepL(GK).

(1) Let ? be any of dR, st, cris or pst. The assignment
∑

i bi⊗ vi⊗ ξ 7→
∑

i bit⊗ vi induces an

K⊗Qp L (K0⊗Qp L, K0⊗Qp L, Qnr
p ⊗Qp L)-linear isomorphism ϑ : D?,K(V (1))→ D?,K(V )

of (non-linear) GQp -representations.
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(2) ϑ sends Di
dR,K(V (1)) to Di+1

dR,K(V ).

(3) The morphisms N ◦ ϑ and ϑ ◦N : Dst,K(V (1))→ Dst,K(V ) agree. In addition, ϕ ◦ ϑ and

pϑ◦ϕ are the same as morphisms Dst,K(V (1))→ Dst,K(V ) or Dcris,K(V (1))→ Dcris,K(V ).

In particular, the diagram

Dst,K(V (1)) Dst,K(V )

Dst,K(V (1)) Dst,K(V )

ϕ

ϑ◦N

ϕ

ϑ◦N

commutes. Similar statements hold for Dpst,K .

(4) There is a short exact sequence of (K0 ⊗Qp L,ϕ,GK)-modules:

0→ Dcris,K(V (1))→ Dst,K(V (1))
N◦ϑ−−−→ Dst,K(V )→ Dst,K(V )/NDst,K(V )→ 0.

Proof. The content of the third part can be found in [FPR94] I. 2.1.8 or [Fon94] Exp VIII 2.2.5.

The action of GK on both t and ξ is by the cyclotomic character χcycl, which shows the existence

of ϑ and its GQp -equivariance. The shift in the filtration is clear. By proposition 1.2.14 (2), we

have ϕ(t) = pt and N(tbi) = tN(bi) since t lies in Bcris (1.2.15 (3)). This implies the relations

of ϑ with ϕ and N . The third part is due to the relation Nϕ = pϕN (1.2.15 (3)). The short

exact sequence follows immediately.

Corollary 1.2.29. Let V be in RepL(GQp ) ∩ RepdR(GQp ). Then the pairing

DdR(V )⊗L DdR(V ∗(1))→ DdR(L(1)) = L

is perfect and a homomorphism of filtered L-vector spaces, where L has the unique filtration jump

at −1. This induces a natural isomorphism ψdR,V : D0
dR(V ) → t(V ∗(1))∗ and an isomorphism

of short exact sequences

0 D0
dR(V ) DdR(V ) t(V ) 0

DdR(V (−1))

0 t(V ∗(1))∗ DdR(V ∗(1))∗ D0
dR(V ∗(1))∗ 0,

ψdR,V

ϑ

ψ∗
dR,V ∗(1)

ν

where ν : DdR(V ∗(1)∗) → DdR(V ∗(1))∗ is the compatibility of DdR with L-duals (see theorem

1.2.3 and remark 1.2.20).

Proof. The isomorphism ν : DdR(V ∗) → DdR(V )∗ of filtered L-vector spaces shows that the

pairing

DdR(V )⊗L DdR(V ∗)→ DdR(L) = L

is perfect (here the filtration jump on L is at zero). Since DdR is compatible with tensor products

in FilL by proposition 1.2.24 and V ⊗L V ∗ → L is a morphism of L-vector spaces, the above

pairing is a homomorphism of filtered L-vector spaces. Applying ϑ−1 to DdR(V ∗) and DdR(L)

shows that the pairing in the corollary is perfect and a homomorphism of filtered L-vector

spaces. Since the filtration on DdR(L(1)) jumps at −1 from L to 0, the space DdR,0(V ∗(1))
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annihilates DdR,0(V ). In other words DdR,0(V ∗(1)) maps into Fil1(DdR(V )∗) under the iso-

morphism DdR(V ∗(1)) ∼= DdR(V )∗ induced by the perfect pairing. But Fil1(DdR(V )∗) has the

same dimension as DdR,0(V ∗(1)) by the isomorphisms ϑ and ν. The pairing is perfect, so that

DdR,0(V ∗(1)) is precisely the annihilator of DdR,0(V ). We get the desired isomorphism

ψdR,V : DdR,0(V ) ∼= DdR(V ∗(1))∗/DdR,0(V ∗(1))∗ = t(V ∗(1))∗.

The naturality is clear. The isomorphism of short exact sequences follows by construction of

ψdR,V and the commutativity of

DdR(V ) DdR(V ∗)∗

DdR(V (−1)) = DdR(V ∗(1)∗) DdR(V ∗(1))∗.

ν∗

ϑ ϑ∗

ν

Relation between crystalline, semi-stable and de Rham representations

The relation of the period rings implies relations between crystalline, semi-stable and de Rham

representations. Before we state it, we use Galois descent and complete unramified descent to see

that being de Rham, semi-stable or crystalline is insensitive to (complete) unramified extensions

and being de Rham is also insensitive to finite extensions:

Proposition 1.2.30. Let K ′/K be an extension inside Cp/Qp, where K and K ′ are finite over

Qp or the completion of a maximal unramified extension of a finite extension of Qp (individually,

so that K could be finite but K ′ infinite over Qp). Moreover, let V be in RepQp
(GK).

(1) The map K ′ ⊗K DdR,K(V ) → DdR,K′(V ) is a GQp -equivariant isomorphism in FilK′. In

particular, V is de Rham as GK-representation if and only if it is de Rham as GK′-

representation.

(2) If K ′ = K̂nr or K ′/Qp is finite and unramified, the map K ′0 ⊗K0 Dst,K(V ) → Dst,K′(V )

is a K ′0-linear isomorphism of (ϕ,N,GQp )-modules. In particular, V is GK semi-stable if

and only if it is GK′-semi-stable. The same holds for the crystalline case.

(3) If K ′/K is finite and V is GK-semi-stable, then the map K ′0 ⊗K0 Dst,K(V ) → Dst,K′(V )

is an isomorphism of K ′0-linear (ϕ,N,GQp )-modules. The same holds for the crystalline

case.

Note that the GQp - and ϕ-actions are diagonally on the left hand sides of the isomorphisms.

Proof. The first two assertions are mostly propositions [BC09] 6.3.8. and [BC09] 9.3.1. with

additional attention paid to the Galois-actions. The finite part of the second assertion follows

by Galois descent. We prove the third assertion, parts of which can be found in [Füt18] remark

2.23. The map K ′0⊗K0 Dst,K(V )→ Dst,K′(V ) is injective as restriction of the map α in theorem

1.2.3. But by assumption, the left hand side has K ′0-dimension dimQp (V ), which is an upper

bound on the dimension of the right hand side by theorem 1.2.3, so it is an isomorphism and

visibly compatible with the additional structure. The statements for the crystalline case follow

by taking the kernel of N , which is K ′-linear, since K ′ ⊂ Bcris.

Proposition 1.2.31. Every crystalline representation is semi-stable. Every (potentially) semi-

stable representation is de Rham. Every de Rham representation is potentially semi-stable.
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Proof. All but the last part is clear by Bcris ⊂ Bst ⊂ BdR, proposition 1.2.30, theorem 1.2.3

and lemma 1.2.16. The last part is a theorem by Berger ([Ber02] theorem 0.7).

Corollary 1.2.32. Let V be in RepdR(GQp ). There is a Qnr
p -linear isomorphism of (ϕ,N,GQp )-

modules between Qnr
p ⊗F0 Dst,F (V ) and Dpst(V ) for some F finite over Qp. In particular, N on

Dpst(V ) is nilpotent.

Proof. Since V is de Rham, it is potentially semi-stable. Choose F so that V is GF -semi-stable

and apply proposition 1.2.30 part (3) and the fact that N is Qnr
p -linear and nilpotent on Dst,F (V )

by proposition 1.2.27.

Dpst(V) as Weil-Deligne representation

In this subsection, we will see that for a de Rham representation V the pair (Dpst(V ), N) is a

Weil-Deligne representation. We make this explicit here, since for Weil-Deligne representations

one includes a correction term in the ε-factor, which Fukaya and Kato missed in [FK06] as

Nakamura pointed out in [Nak17] remark 3.6.

A good reference for Weil-Deligne representations and their relation to ε-factors is Tate’s [Tat79].

Definition 1.2.33. The Weil group WQp is the preimage of Z under the surjection

GQp � Gal(Qnr
p ,Qp) = GFp

∼= Ẑ. We endow it with the topology that makes the following

sequence an exact sequence of topological groups

1→ I →WQp

v−→ Z→ 0,

where v is defined by σ|Qnrp = φv(σ) with φ an arithmetic Frobenius and I carries its subspace

topology from I ⊂ GQp . Similarly, we can define a Weil group WK for a finite extension K/Qp

as a subgroup of WQp with (WQp : WK) being the residue degree of K/Qp.

Definition 1.2.34. Let E be a field of characteristic 0. A Weil-Deligne representation of WK

over E is a pair (V,N), where V is a finite dimensional E-vector space V together with an E-

linear action of WK which is continuous with respect to the discrete topology on V . Moreover,

N is a nilpotent E-linear endomorphism of V such that gNg−1 = pv(g)N for all g in WQp .

Proposition 1.2.35. The functor Dpst,K sends de Rham representations of GK , for K/Qp

finite, to Weil-Deligne representations of WK over Qnr
p if one linearises the natural action of

WK by setting g(d) = gϕ−v(g)(d).

Proof. This is done in [Füt18] construction 3.22. We give the proof here for the convenience

of the reader. Since ϕ acts on Qnr
p ⊂ Bcris as the arithmetic Frobenius, the linearised action

is indeed Qnr
p -linear. Let V be a de Rham representation. Then by corollary 1.2.32, we have

Dpst,K(V ) = Qnr
p ⊗F0Dst,F (V ) for some F finite over K, which ensures the finite-dimensionality,

and that the monodromy operator is nilpotent. The open subgroup IK∩GK = IF = GFnr ⊂WK

acts trivially on Dpst,K(V ). As a result, the action of WK is continuous on the discrete module

Dpst,K(V ). The relation of N with elements of WK follows from the relation of N with ϕ and

the fact that N commutes with the non-linear WK-action.

Lemma 1.2.36. Let L and K be finite extension of Qp. Let V be an L-linear de Rham repre-

sentation of GK . Let A be Qnr
p ⊗Qp L. Then Dpst,K(V ) is an A-module and WK acts A-linearly

on Dpst(V ). Moreover, Dpst,K(V ) is free of rank dimL V as an A-module.
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Proof. Dpst,K(V ) is clearly an A-module. The WK-action is automatically L-linear and was

linearised to be also Qnr
p -linear (1.2.35). V is potentially semi-stable, so we can choose some

finite extension F/K which contains L such that V is GF -semi-stable. By remark 1.2.20,

the F0 ⊗Qp L-module Dst,F (V ) is free of rank dimL V . By corollary 1.2.32, we have

Dpst(V ) ∼= Qnr
p ⊗F0 Dst,F (V ), whence Dpst(V ) is a free A-module of rank dimL V .

Corollary 1.2.37. For each Qp-linear embedding σ : L ↪→ Qp we have a Weil-Deligne rep-

resentation
(
Qp ⊗A,σ Dpst,K(V ), N

)
of WK over Qp, where A = Qnr

p ⊗Qp L maps to Qp via

x⊗ y 7→ xσ(y). We will denote it by Dpst,K(V )σ.

Proof. The finite dimensionality of Qp ⊗A,σ Dpst,K(V ) is just lemma 1.2.36. The rest follows

from proposition 1.2.35.

Dst on de Rham representations

Let ? be any of dR, st or cris. Nothing prevents us from applying D?,K to an arbitrary repre-

sentations in RepQp
(GK). However, the various properties in theorem 1.2.3 hold a prior only

if the representation is B?-admissible. In the following we show that de Rham representations

still behave nicely with respect to Dst.

We start with a lemma which extends ideas from remark 2.23 and the proof of lemma 3.24 in

[Füt18]:

Lemma 1.2.38. Suppose V is a continuous Qp-linear representation of GK and K ′/K/Qp a

tower of finite extensions. Then we have

Dst,K′(V )IK ∼= K ′0 ⊗K0 Dst,K(V ) and Dcris,K′(V )IK ∼= K ′0 ⊗K0 Dst,K(V ).

In particular,

Dpst,K(V )IK ∼= Qnr
p ⊗K0 Dst,K(V ) and

(
Dpst,K(V )IK

)N=0 ∼= Qnr
p ⊗K0 Dcris,K(V ).

If we consider the linearised WK-action on the left hand sides of the Dpst,K statements, then

the f -power of the geometric Frobenius Frf acts on the right hand sides Qnr
p -linearly as ϕf with

f the residue degree of K/Qp.

Proof. We prove that for any tower of finite extensions K ′/K/Qp , the map

K ′0 ⊗K0 Dst,K(V )→ Dst,K′(V ), k ⊗
∑
i

bi ⊗ vi 7→
∑
i

kbi ⊗ vi

yields an isomorphism to Dst,K′(V )IK . Since IK acts trivially on K ′0 and Dst,K(V ), the map

lands in Dst,K(V )IK . It is also injective as an restriction of the injective map α in theorem 1.2.3.

To prove that it is an equality, we consider the following sequence of injections

Q̂nr
p ⊗K0 Dst,K(V ) = Q̂nr

p ⊗K′0 K
′
0 ⊗K0 Dst,K(V ) ↪→ Q̂nr

p ⊗K′0 Dst,K′(V )IK

=
(
Q̂nr
p ⊗K′0 (Bst⊗QpV )GK′

)IK
↪→ (Bst⊗QpV )IK = D

st,K̂nr(V )

∼= (K̂nr)0 ⊗K0 Dst,K(V ) = Q̂nr
p ⊗K0 Dst,K(V )

The first inclusion is the one from above tensored with the flat K ′0-module Q̂nr
p . The second

inclusion is again a restriction of the injective map α in theorem 1.2.3. The final isomorphism is
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complete unramified descent as in proposition 1.2.30. For dimension reasons, the injections must

be isomorphisms and in particular K ′0 ⊗K0 Dst,K(V ) ∼= Dst,K′(V )IK . Unpacking the definition

of Dpst,K(V ) yields

Dpst,K(V )IK =
⋃

K⊂K′⊂Qp

K′/Qp finite

Dst,K′(V )IK ∼=
⋃

K⊂K′⊂Qp

K′/Qp finite

K ′0 ⊗K0 Dst,K(V ) = Qnr
p ⊗K0 Dst,K(V ).

We can proceed entirely analogously with Dcris,K(V ) by writing Dcris,K(V ) = Dcris,K(V )N=0

and noting that all the maps above commute with N , so that the above statements transfer to

the kernel of N

Finally, the linearised WK-action on Dpst,K(V ) is given by the semi-linear action of WK corrected

by ϕ−v(σ) for σ ∈ WK . So, on Dst,K(V ) the element Frf of WK acts (linearly) under the

established isomorphism as ϕf since v(Fr) = −1 and the non-linear action of Frf is trivial on

Dst,K(V ).

Lemma 1.2.39.

(1) Let Σ : 0→ V1 → V2 → V3 → 0 be a short exact sequence in RepdR(GQp )∩RepL(GQp ) and

K a finite extension of Qp. Then the sequence 0→ Dpst(V1)→ Dpst(V2)→ Dpst(V3)→ 0

(0→ Dst,K(V1)→ Dst,K(V2)→ Dst,K(V3)→ 0) of A-(K0 ⊗Qp L-) modules is exact.

(2) Let V be an L-linear de Rham representation of GQp and K/Qp finite. Then Dst,K is

compatible with L-duals, more precisely

νK : Dst,K(V ∗L)→ Dst,K(V )
∗K0⊗Qp

L

∑
i

bi ⊗ φi 7→

∑
j

b′j ⊗ vj 7→
∑
ij

bib
′
jφi(vj) ∈ Dst(L) = L


is an isomorphism of K0 ⊗Qp L-modules.

By the same formula, Dpst(−) is compatible with duals, i.e. v : Dpst(V
∗L)

∼−→ Dpst(V )∗A is

an isomorphism of A-modules.

Finally, we have νQp ◦ ϕ = (ϕ−1)∗ ◦ νQp and νK ◦ N = (−N)∗ ◦ νK (compare to the sign

convention after definition 8.2.5 of [BC09]).

(3) Let V and V ′ be two L-linear de Rham representations of GK , with K/Qp finite. Then

the natural map Dpst,KV )⊗A Dpst,K(V ′)→ Dpst,K(V ⊗L V ′) is an A-linear isomorphism

of (ϕ,N,GK)-modules, i.e an isomorphism of Weil-Deligne representations of WK over

Qnr
p . On the left hand side ϕ and GK act diagonally and N via id⊗N +N ⊗ id.

Proof. The key to all these results is that de Rham representations are potentially semi-stable.

(1) This part can be found in VII §2 lemma 10 (i) of [Ven17] Choose a finite Galois extension

F/Qp large enough that V1, V2 and V3 are F -semi-stable. Hence, Dst,F is exact on Σ and

tensoring the resulting exact sequence of GQp/GF = Gal(F/Qp)-modules with Qnr
p over

F0 (see 1.2.32) yields the exactness of

0→ Dpst(V1)→ Dpst(V2)→ Dpst(V3)→ 0

with linearised WQp -action. Since the open subgroup IK ∩GF of IK acts trivially, we can

consider the sequence as a sequence of Qnr
p [IK/(IK ∩ GF )]-modules. As such it splits by
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Maschke’s theorem. As a result, taking IK-invariants is exact and yields together with

lemma 1.2.38 the exactness of the sequence

0→ Qnr
p ⊗K0 Dst,K(V1)→ Qnr

p ⊗K0 Dst,K(V2)→ Qnr
p ⊗K0 Dst,K(V3)→ 0.

This implies the claim as Qnr
p /K0 is faithfully flat.

(2) Let F be a finite extension of K such that V is F -semi-stable and F contains L. Then

the map νF : Dst,F (V ∗) → Dst,F (V )∗ given by the same formula as ν is an isomorphism

by part (4) of theorem 1.2.3 and remark 1.2.20.

For σ ∈ IK we have νF ◦ σ = σ−1 ◦ νF . To see this, we consider the pairing

Dst,F (V ∗)×Dst,F (V )→ F0⊗Qp L induced by νF . It sends (σ×σ)
(∑

i bi⊗φi,
∑

j b
′
j ⊗ vj

)
to
∑

ij σ(bib
′
j) ⊗ φi(vj) ∈ F0 ⊗Qp L. Let l1, . . . , lN be a Qp-base of L. Then there are

qijk ∈ Qp with φi(vj) =
∑

k qijklk. As a result, we get that each
∑

ij σ(bib
′
j)qijk is an

element of F0, on which IK acts trivially. Since the qijk are also invariant under IK , we

see that the pairing remains unchanged under precomposing with σ × σ.

As a result, we get the following commutative diagram

F0 ⊗K0 Dst,K(V ∗) F0 ⊗K0 Dst,K(V )∗

HomF0⊗QpL
(F0 ⊗K0 Dst,K(V ), F0 ⊗Qp L)

Dst,F (V ∗)IK (Dst,F (V )∗)IK .

idF0
⊗νK

(?)

νF |

The unlabelled arrows are the isomorphisms from lemma 1.2.38. For the right one, we

use that the IK action commutes with duals as seen above. The starred arrow is given by

f ⊗ φ 7→ (f ′ ⊗ d 7→ ff ′ ⊗ φ(d)) and is surjective since Dst,K(V ) has finite K0-dimension

so that we can construct preimages just as in the proof of part (4) of theorem 1.2.3. The

starred arrow thus becomes an isomorphism since both its source and target are F0-vector

spaces of dimension dimK0(Dst,K(V )
∗K0⊗Qp

L). The bottom arrow is an isomorphism as we

have seen that νF commutes with the action of IK . Since all other maps are isomorphisms,

the top arrow is one as well. The field extension F0/K0 is faithfully flat. The category of

K0 ⊗Qp L-modules is balanced and thus the functor idF0 ⊗K0− reflects isomorphisms. We

conclude that νK is an isomorphism. By a limiting process we obtain the result for Dpst.

For the commutativity of the monodromy operator with duals, we consider an element

x =
∑
bi ⊗ φi in Dst,K(V ∗) and an element y =

∑
b′j ⊗ vj from Dst,K(V ). We prove that

the elements νKN(x)(y) =
∑

i,j N(bi)b
′
jφi(vj) and (−N)∗νK(x)(y) =

∑
i,j −biN(b′j)φi(vj)

are the same. With lk and qijk as above, we have that the terms
∑

i,j qijkbib
′
j are in

K0 ⊂ Bcris = ker(N). Since N is a Bcris-derivation, we get

0 = N

∑
i,j

qijkbib
′
j

 =
∑
i,j

qijkN(bib
′
j) =

∑
i,j

qijk
(
biN(b′j) +N(bi)b

′
j

)
which proves the claim after rearranging. So we established the relation νKN = (−N)∗νK .

By choosing K large enough that V is GK-semi-stable we get the result for Dpst.

The claimed commutativity of ϕ with the duals can be proven entirely analogously to the
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relation of νF with σ ∈ IK above. The point is that ϕ acts as the identity on Qp ⊂ Bst

and hence trivially on the dualising space Dst(L) = L.

(3) Choose F/Qp finite such that F contains L and K and such that both V and V ′ are GF -

semi-stable. By remark 1.2.20 and part (4) of theorem 1.2.3, we have

Dst,F (V ⊗L V ′) ∼= Dst,F (V ) ⊗F0⊗QpL
Dst,F (V ′) as F0 ⊗Qp L-modules. By corollary 1.2.32

we get the desired isomorphism. The compatibility with ϕ and GK follows since both act

as ring homomorphisms on Bst and the compatibility with N , since N is a derivation on

Bst.

1.3 Continuous Galois cohomology

Definition 1.3.1. Let G be a profinite group and M a topological abelian group on which G acts

continuously. Then M is called a (topological) G-module. By a continuous action we mean that

each g ∈ G acts as a group automorphism of M and that the map G×M →M, (g,m) 7→ g(m)

is continuous.

Definition 1.3.2. Let M be a G-module. The complex of continuous (homogeneous) cochains

of G with coefficients in M is the complex C(G,M) given by

Ci(G,M) = {f : Gi+1 →M |f is continuous,

∀σ, σ0, . . . , σi ∈ G : f(σσ0, . . . , σσi) = σf(σ0, . . . , σi)}

and differentials di(f)(σ0, . . . σi) =
∑i

k=0(−1)if(σ0, . . . , σ̂k, . . . , σi).

The cohomology groups of this complex are called the continuous cohomology groups of G with

coefficients in M . We will denote them by H i(G,M). When M is a Λ-module for some ring

Λ and the G-action is Λ-linear, we often denote the complex C(G,M) by RΓ(G,M) when it is

viewed as an object in the derived category of Λ-modules D(Λ).

Remark 1.3.3. Since we only consider Galois cohomology of continuous group actions in this

work, we will usually omit the word “continuous”. For G = GK an absolute Galois group of a

field K, we often denote C(G,M) and H i(G,M) by C(K,M) and H i(K,M).

Remark 1.3.4. By [NSW13] 2.7.2 the functor C(G,−) is exact on short exact sequences

0 → M ′ → M → M ′′ → 0 of G-modules which allow a continuous section M ′′ → M , that

does not need to be a homomorphism. In partiuclar, such sequences induce long exact coho-

mology sequences. A continuous section M ′′ →M exists in most of the cases considered in this

work. We usually consider the cohomology of projective Λ-modules which get their topology

form the topological ring Λ. By the projectivity, each such sequence allows a Λ-linear section,

which is continuous. Alternatively, by [Ser07] Chapter I, §1 Proposition 1, the necessary section

exists if the modules in the sequence are profinite, which is also the case in most of this work.

See [Wit04] Lemma 5.3.1 for a detailed proof in this case.

A standard result for group cohomology is Shapiro’s lemma. To state it, we need the notion of

an induced representation.

Definition 1.3.5. Let H be an open subgroup of a profinite group G and M a topological abelian

group with linear topology, which is given by a fundamental system of open subgroups U , on which
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H acts continuously. We define the induced G-module IndGH(M) as Z[G]⊗Z[H]M together with

the topology induced by the isomorphism IndGH(M) ∼=
∏
ḡ∈G/H g⊗M , where the latter carries the

product topology. The G-action on IndGH(M) is given via left multiplication on the first factor.

Moreover, we define the coinduced G-module CoindGH(M) as

CoindGH(M) = {f : G→M |f is continuous and ∀h ∈ H, g ∈ G : f(hg) = h(f(g))}.

An element g′ of G acts on an element f of CoindGH(M) via (g′f)(g) = f(gg′). We give

CoindGH(M) the compact-open topology, which is given by the subbase consisting of the sets

S(K,U). Here, K is a compact subset of G, U is an open subset of M and S(K,U) is defined

as the set of all elements of CoindGH(M) which map K into U .

Remark 1.3.6. IndGH(M) is indeed a topological G-module. Without loss of generality it suffices

to consider open subsets of IndGH(M) of the form U =
∑n

i=1 gi ⊗ Ui where Ui are open subsets

of M and g1, . . . , gn from a H-left-traversal in G. Let g′ be in G and x =
∑

i gi ⊗ mi in M

such that g′(x) is in U . Let p be the permutation of {1, . . . , n} for which there are hi in H with

g′gi = gp(i)hi. Then hi(mi) lies in Up(i). By continuity of the H-action on M , there is an open

subgroup N of H, which is after shrinking also normal in G, and open subsets U ′i containing mi

such that Nhi(U
′
i) ⊂ Up(i). Now, we have

Ng′

(∑
i

gi ⊗ U ′i

)
=
∑
i

Ng′gi ⊗ U ′i =
∑
i

gp(i) ⊗Hhi(U ′i) ⊂
∑
i

gp(i) ⊗ Up(i) = U.

Hence, the action of G on IndGH(M) is continuous.

The case of CoindGH(M) can be deduced from the lemma below which shows that induction and

coinduction are isomorphic in our case.

Lemma 1.3.7. Let H, G and M be as above. We have an isomorphism of topological G-modules

ρ : IndGH(M)→ CoindGH(M),
∑

ḡ∈H\G

g−1 ⊗mg 7→ (g 7→ mg, H − linearly)

where the g’s form a right-transversal of H in G.

Proof. First, we observe that any H-linear map from G to M is continuous: Let f be such

a map, g be in G and U an element of U . Since H acts continuously on M , there is an

open subgroup N of H such that N(f(g)) ⊂ f(g) + U . By the H-linearity of f we obtain

f(Ng) ⊂ f(g) + U and Ng is an open neighbourhood of g in G since N is open in the open

subgroup H.

Since H is open in the profinite group G, it is of finite index. Therefore, the obvious inverse

ρ−1 : CoindGH(M) → IndGH(M), f 7→
∑

ḡ∈H\G g
−1 ⊗ f(g) is well defined. In this situation, the

above morphism is known to be an isomorphism of G-modules (see for instance [Sha] Proposition

1.5.4). We extend his proof and show that the isomorphism is also a homeomorphism. Firstly,

ρ is open. Let U be open in IndGH(M). Without loss of generality, we can assume that it has

the form
∑

ḡ∈H\G g
−1 ⊗ Ug with Ug open in M . Then its image under ρ is ∩ḡ∈H\GS({g}, Ug)

which is open as a finite intersection of open sets. Secondly, ρ is also continuous. Since G is

profinite, it is Hausdorff. Thus, by [Jac52] lemma 2.1, the sets S(K,m+U) with U ∈ U and m

an element of M form a subbase of the compact-open topology on CoindGH(M). We choose some
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m in M , an open subgroup U in U and K a compact subset of G. Since H acts continuously on

M , we find another element U ′ of U and an open subgroup N of H such that N(U ′) ⊂ U . The

open sets Nk for k in K cover K. By compactness, there is a finite subcover Nk1, . . . Nkn. Let

hi be the element of H such that hiki a member of the chosen right-traversal of H in G. Let

f be an element of S(K,m + U). Consider the set Sf := ∩ni=1S
(
{hiki}, f(hiki) + hi(U

′)
)
. The

map f clearly lies in the open set Sf . Moreover, ρ−1(Sf ) is
∑n

i=1(hiki)
−1 ⊗

(
f(hiki) + hi(U

′)
)

and hence open. Furthermore, Sf is a subset of S(K,m+ U): Let f ′ be in Sf and k in K with

k = nki for n in N ⊂ H. Then by the H-linearity of f ′ and f , by the value of f ′ on hiki and of

f on k and the choice of N and U ′, we get

f ′(k) = nh−1
i f ′(hiki) ∈ nh−1

i (f(hiki) + hi(U
′)) = f(k) + n(U ′) ⊂ m+ U + U = m+ U

and f ′ belongs to S(K,m + U). To sum up, we saw that Sf is an open neighbourhood of f in

S(K,U) with open preimage under ρ. Hence, ρ is continuous.

Proposition 1.3.8 (Shapiro’s lemma). Let H, G and M be as above. Then there is a quasi-

isomorphism Sh : C(G,CoindGH(M)) → C(H,M) which is natural in M . If Σ is a short exact

sequence with a section as in remark 1.3.4, Sh induces an isomorphism between the long exact

cohomology sequences to Σ and CoindGH(Σ).

Proof. A slightly more general version of Shapiros lemma is proven in [BW00] IX Lemma

2.2 (2). Since we assume that H is open in G the space G/H is discrete and thus there is a

topological section to the projection G→ G/H. So the condition in [BW00] IX Lemma 2.2 (2)

is satisfied.

The two main steps of the proof are the following: The first step is the Frobenius reciprocity.

The map CoindGH(M)→M,f 7→ f(1) induces a natural (topological) isomorphism

Ci+1(G,CoindGH(M))→ {f : Gi+1 →M |f is continuous and H-linear} =: HomH(Gi+1,M)

([CW74] Lemma 2). The second step is that the restriction from Gi+1 to H i+1 induces a quasi-

isomorphism HomH(G•+1,M) → C•(H,M). Both of these steps are natural in M , which

induces the naturality of the quasi-isomorphism in question. Let Σ be a sequence with a con-

tinuous section as in remark 1.3.4. Since CoindGH(M) is topologically the same as
∏
H\GM by

lemma 1.3.7, the section of Σ thus induces a section of CoindGH(Σ). So both Σ and CoindGH(Σ)

induce long cohomology sequences. By the natruality of Sh, it only remains to prove that Sh

is compatible with the connecting homomorphisms. This can be done similarly as in [NSW13]

1.5.2 since Sh commutes with the differentials in C(G,CoindGH(M)) and C(H,M).

1.3.1 Λ-action under Shapiro

In this subsection, we investigate the situation in which we apply Shapiro’s lemma to a module

with additional structure. More precisely, let G be a profinite group with open normal subgroup

H. Furthermore, let L be a finite extension of Qp with ring of integers OL. Let M be an OL-

module with OL-linear, continuous H-action and let Λ be the group ring OL[G/H]. We denote

the Λ-module Λ⊗OLM with G-action given by g′(g⊗m) = gg′
−1⊗g′(m) by Λ\⊗OLM . Then we

have two isomorphisms of topological G-modules ψ : Λ⊗OLM → IndGH(M), ḡ⊗m 7→ g−1⊗g(m)

and ρ : IndGH(M) → CoindGH(M) from lemma 1.3.7. By Shapiro’s lemma (1.3.8) the following

map is a quasi-isomorphism
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Sh : C•(G,Λ⊗OL M)
∼−→
ψ∗

C•(G, IndGH(M))
∼−→
ρ∗

C•(G,CoindGH(M))

∼−−−−−−−−→(
f 7→f(−)(1)

) HomH(G•+1,M)
(H↪→G)∗−−−−−→
q−iso

C•(H,M).

Since the Λ- and G-operations commute on Λ\ ⊗OL M and Λ acts continuously on it, we have

a Λ-action on Ci(G,Λ ⊗OL M) by (ḡf)(g0, . . . , gi) = ḡf(g0, . . . , gi). By transport of structure

along the above quasi-isomorphism we get the following Λ-actions on:

Ci(G, IndGH(M)) : g′(g ⊗m) =gg′−1 ⊗ g′(m)

Ci(G,CoindGH(M)) : (g′f)(−)(g) =g′f(−)(g′−1g)

HomH(Gi+1,M) : (g′f)(g0, . . . , gi) =g′f(g′−1g0, . . . , g
′−1gi)

Ci(H,M) : (g′f)(h0, . . . , hi) =g′f(g′−1h0, . . . , g
′−1hi) if f is in im((H ↪→ G)∗).

The Λ-action commutes with the differentials and thus induces a Λ-structure on the cohomology

groups H i(G,Λ⊗OL M) ∼= H i(H,M).

Let χ : G/H → O×L be a character. Then the morphism

ϑ : Λ⊗OL M → Λ⊗OL M(χ), ḡ ⊗m→ χ(ḡ)−1ḡ ⊗m

is an isomorphism of topological G-modules and id : M →M(χ) is an isomorphism of topological

H-modules, but the vertical arrows in the following commutative diagram of abelian groups do

not preserve the Λ-action, since the twist in the lower row is not accounted for in the upper row:

Ci(G,Λ⊗OL M) Ci(H,M)

Ci(G,Λ⊗OL M(χ)) Ci(H,M(χ)).

Sh

ϑ∗ id

Sh

Instead, one has to pull out the twist, to obtain a commutative diagram of Λ-modules:

Ci(G,Λ⊗OL M)(χ) Ci(H,M)(χ)

Ci(G,Λ⊗OL M(χ)) Ci(H,M(χ)).

Sh(χ)

f⊗eχ 7→ϑ◦fϑ̃:= f⊗eχ 7→f

Sh

Here Λ operates diagonally on the modules of the upper row and eχ is a basis of OL(χ).

1.3.2 Adic rings and Galois cohomology

An important result by Fukaya and Kato is that continuous cohomology behaves well with Λ-

modules, if Λ is an adic ring. More precisely, they prove in [FK06] Proposition 1.6.5 a more

general version of proposition 1.3.12 below. To state it, we introduce the notion of an adic ring,

which resembles a ring that is complete with respect to the p-adic topology, after definition 1.4.1

in [FK06]:
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Definition 1.3.9. A (not necessarily commutative) ring Λ is called adic, if there is a two-sided

ideal a of Λ such that Λ is complete in the a-adic topology and the orders of the quotients Λ/an

are finite p-powers for all n ≥ 1. In this thesis modules over adic rings will always carry the

topology that is induced by the topology of the ring.

Example 1.3.10. Let L be a finite extension of Qp with ring of intergers OL, uniformiser π

and let G be a finite group. Then the group ring Λ := OL[G] is an adic ring. In fact, let a be

the two-sided ideal πΛ. Then Λ/an = OL/πn[G], which is of order pf(L/Qp)n|G|. Since OL is

π-adically complete, Λ is complete with respect to the a-adic topology. This is the main example

for an adic ring in this work. For a more general class of adic rings see [FK06] 1.4.2.

Lemma 1.3.11.

(1) Let J be the Jacobson radical of a ring Λ. Then Λ is an adic ring if and only if it is

complete in the J-adic topology and the orders of the quotients Λ/JnΛ are finite p-powers.

(2) If a is an ideal as in definition 1.3.9, then the a-adic and the J-adic topologies agree.

(3) An adic ring is semi-local.

Proof. The lemma is proven in [FK06] Lemma 1.4.4 and 1.4.5. We elaborate a bit on the proof.

Let Λ be adic with respect to the ideal a. By [FK06] 1.4.3 (2) we have that if a is a two-sided

ideal such that Λ is a-adically complete, then a ⊂ J , this implies the correct orders for Λ/Jn

and that the a-adic topology is finer than the J-adic one. Since the ring Λ/a is finite, it is left

artinian. By [Lam01] Theorem 4.12 we get that J(Λ/a) is nilpotent, i.e. Jn ⊂ a for some n ≥ 1.

So, both topologies are the same and in particular, Λ is J-adically complete.

Proposition 1.3.12. Let G be a profinite group. Consider the following two conditions on G:

(i) For every finite, discrete abelian group X of p-power order with a continuous G-action,

the cohomology groups H i(G,X) are finite for all i.

(ii) For every finite, discrete abelian group X of p-power order with a continuous G-action,

the cohomology groups H i(G,X) are zero for i large enough.

Let Λ be an adic ring with Jacobson radical J and T a finitely generated projective Λ-module

with a Λ-linear continuous action of G.

(1) If condition (i) holds, then we have H i(G,T) = limnH
i(G,T /Jn T) for all i ≥ 0.

(2) If conditions (i) and (ii) hold, then RΓ(G,T) is a perfect complex over Λ.

(3) Assume that conditions (i) and (ii) hold. Let Λ′ be another adic ring and Y a finitely

generated projective Λ′-module on which Λ acts continuously from the right so that the

Λ′ and Λ structures commute. The action of G on T turns Y ⊗Λ T into a topological

Λ′-linear G-module and the natural map y⊗ f 7→
(
(g0, . . . , gi) 7→ y⊗ f(g0 . . . , gi)

)
induces

a quasi-isomorphism

ω : Y ⊗LΛ C(G,T)
q−iso−−−→ C(G, Y ⊗Λ T).

Proof. The proof can be found in [FK06] 1.6.6 - 1.6.9. Here, we will only elaborate on the

topological G-module structure of Y ⊗Λ T. As usual for modules over an adic ring, the topology

of Y ⊗Λ T is induced by that of Λ′. Let J ′ be the Jacobson radical of Λ′. Then the submodules

(J ′nY )⊗Λ T form a system of open neighbourhoods of zero.

We show that the action of G on Y ⊗Λ T is continuous. Let g be an element of G. Further, let

t1, . . . , tn be generators of T as Λ-module, let m′ be some natural number and x =
∑n

i yi⊗ti some
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element of Y ⊗ΛT. Since Λ acts continuously on Y , there is an m ≥ 1 such that yiλ lies in J ′m
′
Y

for each yi and λ in Jm. As G acts continuously on T, there is an open subgroup H of G such

that each Hg(ti) lies in g(ti)+Jm T. Now, let g′ and x′ be such that g′(x′) ∈ g(x)+J ′m
′
Y ⊗ΛT.

Then (Hg′, x′ + J ′m
′
Y ⊗Λ T) is an open neighbourhood of (g′, x′) and we have

Hg′(x′ + J ′m
′
Y ⊗Λ T) = Hg′(x′) + J ′m

′
Y ⊗Λ Hg

′(T) ⊂ H(g(x)) + J ′m
′
Y ⊗Λ T

=

n∑
i=1

yi ⊗Hg(ti) + J ′m
′
Y ⊗Λ T ⊂ g(x) +

n∑
i=1

yi ⊗ Jm T+J ′m
′
Y ⊗Λ T

⊂ g(x) + J ′m
′
Y ⊗Λ T .

Similar arguments show that the map ω is well-defined. It is clear that ω(y⊗ f) is G -linear. It

is also continuous. Let m′ ≥ 1. As before, we find m ≥ 1 so that yλ lies in y + J ′m
′
Y for all λ

in Jm. Let (g0, . . . , gi) be in Gi+1. Since G acts continuously on T, we find an open subgroup

H such that H(f(g0, . . . , gi)) ⊂ f(g0, . . . , gi) + Jm T. Let (g′0, . . . , g
′
i) be in the preimage of

y⊗ f(g0, . . . , gi) + J ′m
′ ⊗Λ T under ω(y⊗ f). Then (Hg′0, . . . ,Hg

′
i) is an open neighbourhood of

(g′0, . . . , g
′
i) in Gi+1 such that

ω(y ⊗ f)(Hg′0, . . . ,Hg
′
i) = Hω(y ⊗ f)(g′0, . . . , g

′
i) ⊂ H

(
y ⊗ f(g0, . . . , gi) + J ′m

′
Y ⊗Λ T

)
=y ⊗H(f(g0, . . . , gi)) + J ′m

′
Y ⊗Λ H(T) ⊂ y ⊗ f(g0, . . . , gi) + y ⊗ Jm T+J ′m

′
Y ⊗Λ T

⊂y ⊗ f(g0, . . . , gi) + J ′m
′
Y ⊗Λ T .

Remark 1.3.13. For the purposes of this work, we will only apply 1.3.12 when G is the absolute

Galois group of a finite extension of Qp . In this case the conditions (i) and (ii) are fulfilled ([Ser07]

II §5.1 proposition 14 and II §5.3 proposition 15).

Lemma 1.3.14. Let Λ be a topological ring. Let 0 → T ′
f−→ T

g−→ T ′′ → 0 be a short exact

sequence of projective Λ-modules with Λ-linear continuous action of a profinite group G. Then we

have an exact sequence of complexes of Λ-modules 0→ C(G,T ′)
f∗−→ C(G,T )

g∗−→ C(G,T ′′)→ 0.

In particular, there is a long exact cohomology sequence.

Proof. In [FK06] 1.6.10 Fukaya and Kato show the existence of a section T ′′ → T as in 1.3.4.

1.3.3 Local Tate Duality

Let Λ be an adic ring and T a finitely generated, projective Λ-module with a continuous Λ-

linear action of GK for some finite extension K/Qp . We endow the dual module Λ°-module

T∗ = HomΛ(T,Λ) with the usual GK-action: An element σ of GK acts on f ∈ T ∗ by

σ : f 7→ f ◦ σ−1.

Fukaya and Kato state in [FK06] 1.6.12 (2) the following version of local Tate duality, which

[Sha09] proves:

Theorem 1.3.15. The cup product

C(K,T)⊗ C(K,T∗(1))→ C(K,Λ(1))

induces an isomorphism ψ(K,T) : RΓ(K,T)→ RHomΛ°
(RΓ(K,T∗(1)),Λ°)[−2] in Dp(Λ).
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Remark 1.3.16. It is easy to see that the isomorphism ψ is natural in T. Let f : T → T′

be a homomorphism of finitely generated Λ-modules, which is equivariant with respect to the

continuous Λ-linear GK-actions on T and T′. Then the diagram

RΓ(K,T) RHomΛ°

(
RΓ(K,T∗(1)),Λ°

)
[−2]

RΓ(K,T′) RHomΛ°

(
RΓ(K,T′∗(1)),Λ°

)
[−2]

RΓ(K,f)

ψ(K,T)

RHomΛ°
(RΓ(K,f∗(1)))[−2]

ψ(K,T′)

commutes, since both ways from the upper left to the lower right corner are given by the map

t 7→ (φ 7→ φ(f ◦t)) where t is some element of RΓi(K,T) and φ some element of RΓ2−i(K,T′∗(1)).

The following lemmata show that the local Tate duality is also compatible with base change.

We first establish that duals commute with tensor products by making lemma [LVZ15] 4.6.8.

more explicit:

Lemma 1.3.17. Let Λ be a ring, T a finitely generated projective Λ°-module. Then T∗∗ ∼= T.

Let further Λ′ be another ring and Y a finitely generated projective Λ′-module with a commuting

Λ-action from the right. Then there is an isomorphism of Λ′-modules:

ν : Y ⊗Λ HomΛ°
(T,Λ°)→ HomΛ′°(Y

∗ ⊗Λ°
T,Λ′°)

y ⊗ f 7→ (ϕ⊗ t 7→ ϕ(y f(t)))

which is natural in both Y and T. If a group G acts Λ-linearly on T, then this isomorphism is

also G-equivariant, if we let G act trivially on Y .

Combining the first two statements yields that duals commute with tensor products.

Proof. The fact that duals are self-inverse is clear on finitely generated free modules and hence

on finitely generated projective modules, since they are direct summands of free modules and

the direct sum of two homomorphisms is an isomorphism only if both are isomorphisms.

For the second part the most work has to be done to show that the map is well-defined. We

omit these tedious computations. The map is an isomorphism if T is finitely generated free and

by the same argument as above this implies it to be an isomorphism in the projective case, too.

The equivariance and the naturality are immediate.

Lemma 1.3.18. Let Λ, Λ′, Y and T be as above, with Λ and Λ′ being adic rings, the right-action

of Λ on Y being continuous and G = GK for some finite extension K of Qp acting continuously

and Λ-linear on T. Then the local Tate duality commutes with base change in the following way:

Y ⊗Λ RΓ(K,T) Y ⊗Λ RHomΛ°
(RΓ(K,T∗(1)),Λ°)[−2]

RHomΛ′°(Y
∗ ⊗Λ°

RΓ(K,T∗(1)),Λ′°)[−2]

RHomΛ′°(RΓ(K,Y ∗ ⊗Λ°
T∗(1)),Λ′°)[−2]

RΓ(K,Y ⊗Λ T) RHomΛ′°(RΓ(K, (Y ⊗Λ T)∗(1)),Λ′°)[−2].

idY ⊗Λψ(K,T)

ω

ν

ω

ν

ψ(K,Y⊗ΛT)
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All involved maps are isomorphisms in the derived category.

Proof. This follows by unpacking the definitions of the involved maps. The local Tate duality,

ω and ν are isomorphisms in the derived category by theorem 1.3.15, proposition 1.3.12 and

lemma 1.3.17, respectively.

Local Tate duality is best known in the case where instead of being an adic ring, Λ is a finite

extension of Qp (for instance Theorem 1.4.1 in [Rub14]). We can obtain this version via base

change (compare [FK06] 1.6.13):

Theorem 1.3.19. Let L be a finite extension of Qp and V a finite dimensional L-vector space

with a continuous L-linear GK-action where K is another finite extension of Qp. Then the

cup-product

C(K,V )⊗ C(K,V ∗(1))→ C(K,L(1))

induces a quasi-isomorphism

ψ(K,V ) : RΓ(K,V )→ RHomL(RΓ(K,V ∗(1)), L)[−2].

By slightly extending the base change result from above, we can relate this version of the local

Tate duality with the one for adic rings in theorem 1.3.15: Let Λ, T, GK be as in theorem 1.3.15.

Further, let L a finite extension of Qp and V a finite dimensional L-vector space on which Λ

acts continuously and L-linearly from the right. Then, we have the commuting diagram of

L-homomorphisms

V ⊗Λ RΓ(K,T) V ⊗Λ RHomΛ°
(RΓ(K,T ∗(1)),Λ°)[−2]

RΓ(K,V ⊗Λ T) RHomL(RΓ(K, (V ⊗Λ T)∗(1)), L)[−2].

idV ⊗ψ(K,T)

ψ(K,V⊗ΛT)

The GK-action on V ⊗ΛT is given by letting GK act trivially on V . The vertical maps are given

similarly as in the above lemma 1.3.18. Again, the commutativity follows from unpacking the

definitions. We will show that the vertical maps are isomorphisms in the derived category. Let

OL be the ring of integers in L. Then there is a finitely generated OL-submodule T of V such

that L⊗OL T = V and which is invariant under the Λ-action, i.e. TΛ ⊂ T . To see this, let T ′ be

any spanning OL-submodule of V , generated by t1, . . . , tn. Then T ′ is an open neighbourhood

of zero in V . Since Λ acts continuously, there is an open ideal ai of Λ such that tiai ⊂ T ′. Then,

the intersection ∩iai is an open ideal of Λ which stabilises T ′ and contains Jn for some n ∈ N
and J the Jacobson radical of Λ. Since Λ is an adic ring the quotient ring Λ/Jn is finite, so that

the Λ-invariant OL-module T =
∑

λ̄∈Λ/Jn T
′λ is finitely generated and still spanning.

OL is an adic ring. We can split V ⊗Λ− up as L⊗OLT⊗Λ−. By proposition 1.3.12 the canonical

map T ⊗Λ RΓ(K,T) → RΓ(K,T ⊗ T) is a quasi-isomorphism. By a slight generalisation of

proposition 2.7.11 in [NSW13], the map L ⊗OL RΓ(K,T ⊗Λ T) → RΓ(K,L ⊗OL T ⊗Λ T) is a

quasi-isomorphism, too. So the left vertical map is a quasi-isomorphism. Similar arguments

apply to the right map. Here, it just remains to note that for any finitely generated OL-module

S, the canonical map L ⊗OL HomOL(S,OL) → HomL(L ⊗OL S,L) has an inverse given by

choosing the greatest denominator for images of the finite number of generators of S under an

element of HomL(L⊗OL S,L). So the right map is also a quasi-isomorphism.
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Remark 1.3.20. The local Tate duality in theorem 1.3.19 is natural in the same way as de-

scribed in 1.3.16.

Remark 1.3.21. We have to be cautious about signs when dealing with local Tate duality. Both

ψ(K,V ) and ψ(K,V ∗(1))∗[−2] are isomorphisms RΓ(K,V )→ RΓ(K,V ∗(1))∗[−2]. While both

of them are induced by the cup product C(K,V )⊗LC(K,V ∗(1))→ C(K,L(1)), they differ. The

cup product is only skew commutative, i.e. if x is in Cp(K,V ) and y is in Cq(K,V ∗(1)), then we

only have x∪ y = (−1)pqy∪x ([NSW13] proposition 1.4.4). The local Tate duality is non-trivial

in degrees zero, one and two. In degrees zero and two the skew commutativity does not give

rise to a sign. In degree one, however, we get a sign, so that ψ1(K,V ) = −ψ1(K,V ∗(1))∗[−2]

as maps H1(K,V ) ∼= H1(K,V ∗(1))∗.

1.3.4 Finite parts of Galois cohomology

Let us recall the finite parts of Galois cohomology as introduced in [BK07] §3. We fix a finite

extension L of Qp and a finite dimensional L-vector space V with continuous L-linearGQp -action.

Definition 1.3.22. We define the finite parts of the Galois cohomology of V as follows:

H0
f (Qp , V ) := H0(Qp , V )

H1
f (Qp , V ) := ker

(
H1(Qp , V )→ H1(Qp , Bcris ⊗Qp V )

)
H i
f (Qp , V ) := 0 for i 6= 0, 1,

where the action of GQp on Bcris ⊗Qp V is diagonally.

We can define a subcomplex Cf (Qp , V ) of C(Qp , V ) with cohomology H•f as in 2.4.2 of [FK06]

by setting

C0
f (Qp , V ) := C0(Qp , V )

C1
f (Qp , V ) := ker

(
ker

(
C1(Qp , V )

d1

−→ C2(Qp , V )

)
→ H1(Qp , V )/H1

f (Qp , V )

)
Cif (Qp , V ) := 0 for i 6= 0, 1.

We denote the image of Cf (Qp , V ) in the derived category of L-vector spaces by RΓf (Qp , V ).

We can construct a more explicit complex with the same cohomology as done on page 612 of

[BB05a]:

Lemma 1.3.23. The complex

C ′f (Qp , V ) :=

[
Dcris(V )

(1−ϕ,1̄)−−−−−→ Dcris(V )⊕ t(V )

]
which is concentrated in degrees 0 and 1 is quasi-isomorphic to Cf (Qp , V ).

Proof. Consider the short exact sequence of GQp -modules from lemma 1.2.17

0→ Qp → Bcris
(1−ϕ,1̄)−−−−−→ Bcris ⊕BdR/B

0
dR → 0.
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We can tensor this sequence over Qp with V and obtain an exact sequence of L-linear, continuous

GQp -representations

0→ V → Bcris ⊗Qp V → Bcris ⊗Qp V ⊕BdR/B
0
dR ⊗Qp V → 0.

The beginning of the associated long exact cohomology sequence is

0→ V GQp → Dcris(V )
(1−ϕ,1̄)−−−−−→ Dcris(V )⊕ t(V )→ H1(Qp , V )→ H1(Qp , Bcris ⊗Qp V ). (1.1)

So, the cohomology of C ′f (Qp , V ) is precisely the finite parts of the Galois cohomology of V .

For complexes of vector spaces it is equivalent to have the same cohomology groups or to be

quasi-isomorphic, since each short exact sequence of vector spaces splits and vector spaces over

a fixed field form an abelian category. In particular, a complex of vector spaces admits a

quasi-isomorphism to the complex of cohomology groups with zero derivatives and vice versa.

Therefore, the long exact cohomology sequence above yields a canonical quasi-isomorphism

Cf (Qp , V )
q−iso−−−→ C ′f (Qp , V ).

Remark 1.3.24. The arguments at the end of the proof of 1.3.23 show that C(Qp , V ) and

Cf (Qp , V ) are perfect complexes.

Remark 1.3.25. The map t(V ) → H1
f (Qp , V ) is sometimes called exponential map of Bloch

Kato (see [BK07] definition 3.10).

Bloch and Kato showed that the finite parts of Galois cohomology behave nicely under the local

Tate duality (see [BK07] proposition 3.8; they only considered V to be a Qp-vector space, but

their arguments immediately carry over to V being a L-vector space.)

Proposition 1.3.26. Assume that V is a de Rham representation. Then in the perfect pairing

H1(Qp , V )⊗H1(Qp , V
∗(1))→ H2(Qp , L(1)) ∼= L

the finite parts H1
f (Qp , V ) and H1

f (Qp , V
∗(1)) are exact annihilators of each other. In particular,

we get a quasi-isomorphism

ψf (Qp , V ) : Cf (Qp , V )→ HomL

(
C(Qp , V

∗(1))/Cf (Qp , V
∗(1)), L

)
[−2].

We sometimes denote RΓ(Qp , V
∗(1))/RΓf (Qp , V

∗(1)) by RΓ/f (Qp , V
∗(1)).
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Chapter 2

ε-isomorphisms

2.1 Local constants

In this section, we collect some results on local constants as defined by Deligne in [Del73] §4 and

§5.

Let E be a field of characteristic 0, which contains the pn-th roots of unity for all n ∈ N. Let D

be a finite dimensional E-vector space endowed with the discrete topology and with a continuous

E-linear WK-action, where K is a finite extension of Qp . The local constants also depend on a

non-trivial homomorphism ψ : K → E× with open kernel and a Haar measure µ on K. We will

always choose µ such that OK has measure 1 and omit it in the notation. With these choices,

we have the following theorem:

Theorem 2.1.1. Let ma be the multiplication by a. For each D as above there is an element

ε(D,ψ) of E× such that

(1) If 0 → D1 → D2 → D3 → 0 is a short exact sequence of continuous WK-representations

over E, then

ε(D2, ψ) = ε(D1, ψ)ε(D3, ψ).

(2) For σ in IK ⊂WK we have ε(D,ψ ◦mχcycl(σ)) = detE(σ|D)ε(D,ψ).

(3) Let ω be the one-dimensional WK-representation over E which is given by the map

WK � W ab
K

rec−1
K−−−→
∼

K×
‖·‖K−−−→ E×. Here, we adopt the convention that a geometric Frobe-

nius Fr maps to p under rec−1
Qp

and hence to p−1 under ω (see [Del73] 2.3 and [Tat79]

1.4.1). Then we have ε(D,ψ)ε(D∗ ⊗E ω, ψ ◦m−1) = 1.

(4) Let L be a finite extension of K. There is a constant λ(L/K,ψ) ∈ E such that for all

WL-representations D over E we have ε(IndWK
WL

(D), ψ) = λ(L/K,ψ)dimE Dε(D,ψ◦TrL/K).

(5) Let D′ be an unramified WK-representation over E. Then

ε(D ⊗E D′, ψ) = detE(Frf |D′)a(D)+dimE(D)n(ψ)ε(D,ψ)dimE(D′),

where f is the residue degree of K/Qp, the number n(ψ) is the largest integer such that

π−nK OK is in the kernel of ψ and a(D) is the Artin conductor of D.

(6) Let τ be a ring automorphism of E and Dτ the E-linear WK-representation E⊗τD. Then

τ(ε(D,ψ)) = ε(Dτ , τ ◦ ψ).

Proof. The existence of the local factors is theorem 4.1 in [Del73]. Its proof shows claim 6.

The other claims claim follow directly from [Del73] 5.2, 5.4 and 5.7.1..

Remark 2.1.2. IfK is Qp , we will only work with ψ’s whose kernel is Zp. Such a homomorphism

is determined by the values ψ(p−n), which are all primitive pn-th roots of unity, i.e. ψ corresponds
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to a Zp-basis of limn µ(pn) = Zp(1). So instead of ψ, we choose a basis ξ of Zp(1), which we

write additively so that property (2), (3) and (6) read in this case

(2) For σ in I ⊂WQp we have ε(D,χcycl(σ)ξ) = detE(σ|D)ε(D, ξ).

(3) We have ε(D, ξ)ε(D∗ ⊗E ω,−ξ) = 1.

(6) Let τ be a ring automorphism of E and Dτ the E-linear WQp -representation E⊗τD. Then

τ(ε(D, ξ)) = ε(Dτ , τ(ξ)).

2.2 ε-isomorphisms of de Rham representations

In this section, we will construct ε-isomorphisms associated to de Rham representations, which

are related to Deligne’s ε-factors from the previous section, and prove their key properties. We

will elaborate the approach in [FK06] section 3.3 following chapter VII of [Ven17]. In particular,

we will include Nakamura’s correction to Fukaya’s and Kato’s approach suggested in remark 3.6

in [Nak17] which ensures the multiplicativity of the ε-isomorphisms.

Let us fix some notation. In this chapter, L will be a finite extension of Qp , we denote by Qnr
p

the maximal unramified extension of Qp and by Znrp its ring of integers. Further, we denote the

completion of Qnr
p by Q̂nr

p and its valuation ring by Ẑnrp . Then we put L̃ := Q̂nr
p ⊗Qp L. Finally,

let V be an L-linear de Rham representation of GQp and ξ a base of Zp(1).

Lemma 2.2.1. Taking the determinant yields a map

detL(−|V ) : GabQp
= rGal(Qab

p ,Qp) = GQp/[GQp , GQp ]→ L×.

Proof. The map detL(−|V ) : GQp → L× = K1(L) factors over GQp/[GQp , GQp ] since K1(L) is

abelian. Let T be a spanning, finitely generated OL-lattice in V , which is GQp -stable. This exists

by similar arguments to those after theorem 1.3.19. Then detOL(σ|T ) ∈ O×L = limn(OL/πnLOL)×.

Suppose detOL(σ|T ) 6= 1. Then there is some n such that detOL/πnLOL(σ|T/πL.T ) 6= 1. By

continuity, we have some open normal subgroup Un of GQp that acts trivially on the finite

module T/πnLT . Hence, each element of the open set gUn does not have determinant 1 and

hence detOL(−|T ) and thus detL(−|V ) have closed kernels, so that they factor over GabQp
.

The aim of the section is to prove the following proposition:

Proposition 2.2.2. For each L-linear de Rham representation V of GQp , there is an isomor-

phism

εL,ξ(V ) : 1
L̃
→
(
dL(RΓ(Qp , V )) · dL(V )

)
L̃

in the category V (L̃) which satisfies the following properties:

Multiplicativity:

Let Σ : 0 → V1 → V2 → V3 → 0 be a short exact sequence of L-linear de Rham represen-

tations of GQp , then the ε-isomorphisms are multiplicative in the following way:(
dL(C(Qp ,Σ))dL(Σ)

)
L̃
◦ εL,ξ(V2) = εL,ξ(V1) · εL,ξ(V3).

Here, dL(C(Qp ,Σ)) is given by the sequence C(Qp ,Σ), which is exact by the arguments in

remark 1.3.4.
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Change of ξ:

Let σ ∈ I(Qab
p /Qp) ⊂ GabQp

. Then εL,χcycl(σ)ξ(V ) = detL(σ|V )εL,ξ(V ). Here, the ele-

ment detL(σ|V ) of K1(L) acts on the ε-isomorphism is as in corollary 1.1.37 (3). Since

Gal(Qp,∞/Qp) ⊂ GabQp
and χcycl : Gal(Qp,∞/Qp) ∼= Z×p , we have covered all possible

choices of ξ.

Frobenius invariance:

Let φ ∈ GQp be a Frobeniuslift with χcycl(φ) = 1. Denote by ϕp := φ|Ẑnrp : Ẑnrp → Ẑnrp
the restriction of φ : BdR → BdR. The ring homomorphism ϕp ⊗ idL : L̃ → L̃ induces a

base change homomorphism (ϕp ⊗ idL)∗ : K1(L̃) → K1(L̃) (see lemma 1.1.10). We put

K1(L̃)V = {x ∈ K1(L̃)|(ϕp ⊗ id)∗(x) = detL(φ|V )−1x}. Then the ε-isomorphism εL,ξ(V )

belongs to V (L)
(
1, dL(RΓ(Qp , L)dL(V )

) K1(L)
× K1(L̃)V .

Duality:

εL,ξ(V ) ·εL,−ξ(V ∗(1))∗ ·dL(ψ(Qp , V ))
L̃

−1
= (−1)dimLH

0(Qp ,V )dL

(
V (−1)

·ξ−→ V
)
L̃

after ap-

propriate trivialisations.

2.2.1 Construction of εL,ξ(V )

We will construct εL,ξ(V ) as the product of a rational number ΓL(V ) and two isomorphisms

θ(V ) :1L → dL(RΓ(Qp , V )) · dL(DdR(V ))

εdRL,ξ(V ) :1
L̃
→
(
dL(DdR(V ))−1 · dL(V )

)
L̃

using the trivialisation dL(DdR(V )) · dL(DdR(V ))−1 ∼−→ 1L.

Let us start with the definition of ΓL(V ). In 1.2.25, we defined h(r) = dimL gr
r(DdR(V )) and

we put

Γ∗(r) =

{
(r − 1)! for r ≥ 1

(−1)r(−r)!−1 for r ≤ 0.

Then we set ΓL(V ) :=
∏
r∈Z Γ∗(r)−h(−r).

Next, we will construct the morphism θ(V ). In lemma 1.3.23 we established a quasi-isomorphism

Cf (Qp , V )
q−iso−−−→

[
Dcris(V )

(id−ϕ,īd)−−−−−−→ Dcris(V )⊕ t(V )

]
= C ′f (Qp , V ).

We can trivialise

dL(C ′f (Qp , V )) = dL(Dcris(V )) · dL(Dcris(V )⊕ t(V ))−1

= dL(Dcris(V )) · dL(Dcris(V ))−1 · dL(t(V ))−1 µ·id−−→ dL(t(V ))−1

which induces a morphism

η(V ) : 1L → dL(RΓf (Qp , V ))dL(C ′f (Qp , V ))−1 → dL(RΓf (Qp , V ))dL(t(V )).

Applying the same arguments to V ∗(1) gives us η(V ∗(1)). We want to multiply η(V ) and

η(V ∗(1)) to get θ(V ). To do this, we consider the exact sequence

ΣRΓ,V : 0→ Cf (Qp , V )→ C(Qp , V ))→ C(Qp , V )/Cf (Qp , V )→ 0.
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Together with the local Tate duality for finite parts (proposition 1.3.26) it induces an isomor-

phism

dL(RΓf (Qp , V
∗(1)))∗ · dL(RΓf (Qp , V ))

dL(ψf (Qp ,V ∗(1)))∗·id
−−−−−−−−−−−−−→ dL

(
RΓ(Qp , V )/RΓf (Qp , V )

)
· dL(RΓf (Qp , V ))

dL(ΣRΓ,V )
−−−−−−−→ dL(RΓ(Qp , V )).

We can deal with the factor t(V ∗(1))∗ in a similar way. By corollary 1.2.29 we have an isomor-

phism ψdR,V : D0
dR(V )

∼−→ t(V ∗(1))∗. So the exact sequence

ΣdR,V : 0→ D0
dR(V )→ DdR(V )→ t(V )→ 0

yields an isomorphism

dL(t(V ∗(1))∗ · dL(t(V ))
dL(ψdR,V )·id
−−−−−−−−→ dL(D0

dR(V )) · dL(t(V ))
dL(ΣdR,V )
−−−−−−→ dL(DdR(V )).

We combine the above morphisms to define θ(V ):

Definition 2.2.3. θ(V ) is defined as the morphism

1
η(V ∗(1))∗·η(V )−−−−−−−−−→ dL(RΓf (Qp , V

∗(1)))∗ · dL(t(V ∗(1)))∗ · dL(RΓf (Qp , V )) · dL(t(V ))

dL(ψf (Qp ,V ∗(1)))∗·dL(ψdR,V )·id
−−−−−−−−−−−−−−−−−−−−→ dL (RΓ(Qp , V )/RΓf (Qp , V )) dL(D0

dR(V ))dL(RΓf (Qp , V ))dL(t(V ))

dL(ΣRΓ,V )·dL(ΣdR,V )
−−−−−−−−−−−−−−→ dL(RΓ(Qp , V ))dL(DdR(V )).

Remark 2.2.4. Another way of defining θ(V ), which is popular in the litarture (see [Nak17]

before lemma 3.4, footnote 23 in [Ven05b] or (2.2) in [BB05a]), is via a long exact sequence.

We recall this definition briefly and convince ourselves, that it in fact yields the same mor-

phism θ(V ). We simplify our notation by omitting the coefficients from the various cohomology

groups and the local Tate dualities when they are understood to be Qp and write, for instance,

H0(V ) = H0(Qp , V ) and ψ1
f (V ) = ψf (Qp , V ). We have the exact sequence (1.1):

0→ H0(V )→ Dcris(V )→ Dcris(V )⊕ t(V )
expV−−−→ H1

f (V )→ 0 (2.1)

and the dual of that sequence for V ∗(1):

0→ H1
f (V ∗(1))∗ → Dcris(V

∗(1))∗ ⊕ t(V ∗(1))∗ → Dcris(V
∗(1))∗ → H0(V ∗(1))∗ → 0. (2.2)

We merge both of them via the short exact sequence

0→ H1
f (V )

i−→ H1(V )
ψ1
f (V ∗(1))∗◦p
−−−−−−−−→ H1

f (Qp , V
∗(1))∗ → 0

where p : H1(V ) � H1(V )/H1
f (V ) and obtain a long exact sequence

Σl,V : 0→ H0(V )→ Dcris(V )→ Dcris(V )⊕ t(V )→ H1(V ) (2.3)

→ Dcris(V
∗(1))∗ ⊕ t(V ∗(1))∗ → Dcris(V

∗(1))∗ → H0(V ∗(1))∗ → 0.

This sequence induces a morphism in the determinant category

dL(Dcris(V ))dL(Dcris(V ))−1dL(Dcris(V
∗(1))∗)dL(Dcris(V

∗(1))∗)−1

→ dL(H0(V ))dL(H1(V ))−1dL(H0(V ∗(1))∗)dL(t(V ))dL(t(V ∗(1)∗).
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One can construct it by breaking the long exact sequence up into short ones, apply the de-

terminant functor to them and multiply the resulting isomorphisms with alternating exponent.

We obtain a morphism between the same objects as θ(V ) if we trivialise dL(Dcris(V )) and

dL(Dcris(V
∗(1))∗) and use the local Tate duality ψ0(V ∗(1))∗ : H0(V ∗(1))∗ ∼= H2(V ), the du-

ality ψ−1
dR,V : t(V ∗(1))∗ ∼= D0

dR(V ) and the short exact sequence ΣdR,V . Finally, since all

the appearing cohomology groups have finite L-dimension, we have a canonical isomorphism⊗
i∈Z dL(H i(V )) ∼= dL(RΓ(V )) (see proposition 1.1.42 (5), compare also [BB05b] Proposition

3.1).

The resulting isomorphism 1 → dL(RΓ(V ))dL(DdR(V )) is indeed θ(V ). The isomorphism

1 → dL(H0(V ))dL(H1
f (V ))−1dL(t(V )) induced by the sequence (2.1) is up to the canonical

identification dL(RΓf (V ))) ∼= dL(H0(V ))dL(H1
f (V ))−1 the same as η(V ). Similarly for the dual

sequence (2.2). The sequence that we used to merge (2.1) and (2.2) contains ψ1
f (V ∗(1))∗ and

we used ψ0(V ∗(1))∗ as well, which corresponds to the application of ψf (V ∗(1))∗ in the first def-

inition of θ(V ). By [BB05b] theorem 3.3, the canonical identifications between RΓf (V ), RΓ(V ),

RΓf (V ∗(1))∗ and their respective cohomology groups are compatible with the exact sequence

0→ RΓf (V )→ RΓ(V )
ψf (V ∗(1))∗◦p
−−−−−−−−→ RΓf (V ∗(1))∗ → 0

and the induced long exact cohomology sequence. This shows that both definitions of θ(V )

agree.

It remains to construct εdR
L,ξ(V ). This will be the part related to Deligne’s local ε-factors. We

recall that for a L-linear de Rham representation V and σ : L ↪→ Qp , we have the Weil-Deligne

representation Dpst(V )σ = Qp ⊗A,σ Dpst(V ) of WQp over Qp (see 1.2.37).

Definition 2.2.5. For each σ : L ↪→ Qp and ξ a basis of Zp(1), we define a factor

εL(Dpst(V ), ξ)σ = ε(Dpst(V )σ, ξ) · detQp

(
−Fr

∣∣∣(Dpst(V )σ)I /
(
Dpst(V )σ)I

)N=0
)
,

in Qp
×

, where Fr is any geometric Frobenius and collect all of these ε-factors into one element

εL(Dpst(V ), ξ) ∈ (Qp ⊗Qp L)× ∼=
∏
σ

Qp
×

x⊗ y 7→ (xσ(y))σ.

Remark 2.2.6. Note that this definition is the one given on page 35 of [Nak17] and different

from the one in [FK06] 3.3.4. Only with this definition, the ε-isomorphisms for de Rahm

representations will be multiplicative in general. Compare also remark 3.6 in [Nak17], where

this problem is identified. A more conceptual reason than the fact that multiplicativity should

hold is that Dpst(V ) is a Weil-Deligne representation and for those it is common to include the

correction factor (see for instance [Roh94] §11 “delta-factor” or 4.1.6 of [Tat79] and in slightly

different form 8.12 in [Del73]).

Lemma 2.2.7. The element detQp

(
−Fr

∣∣Dpst(V )Iσ/(Dpst(V )Iσ)N=0
)
σ

of
∏
σ Qp

×
is the same as

1⊗detL(−ϕ|Dst(V )/Dcris(V )) ∈ Qp⊗Qp L under the isomorphism
∏
σ Qp

∼= Qp⊗Qp L in lemma

1.2.4.
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Proof. The I-action commutes with N on Dpst. Together with lemma 1.2.38 this yields

Dpst(V )Iσ/(Dpstσ(V )I)N=0 =
(
Dpst(V )I/(Dpst(V )I)N=0

)
σ
∼= Qp ⊗A,σ Qnr

p ⊗Qp Dst(V )/Dcris(V ).

So we get

detQp
(−Fr|Dpst(V )Iσ/(Dpst(V )Iσ)N=0) = detQp

(
−Fr

∣∣Qp ⊗A,σ Qnr
p ⊗Qp Dst(V )/Dcris(V )

)
= σ(detL(−Fr|Dst(V )/Dcris(V ))).

The last equality stems from the fact that tensoring along a ring homomorphism changes a

determinant by that ring homomorphism. But the element (σ(detL(−Fr|Dst(V )/Dcris(V ))))σ
in
∏
σ Qp

×
corresponds to the element 1⊗detL(−Fr|Dst(V )/Dcris(V )) in (Qp ⊗Qp L)×. Finally,

by lemma 1.2.38 the linearised action of Fr on Dst(V ) and Dcris(V ) is the same as ϕ.

So far, we only have defined a factor, but we want an isomorphism

εdR
L,ξ(V ) : 1

L̃
→
(
dL(DdR(V ))−1 · dL(V )

)
L̃
.

We relate DdR(V ) and V via the canonical isomorphism for de Rham representations.

Definition 2.2.8. For an L-linear de Rham representation V of GQp , the canonical isomorphism

(denoted α in theorem 1.2.3)

can : BdR⊗QpL⊗L DdR(V ) BdR⊗Qp DdR(V ) BdR⊗QpV BdR⊗QpL⊗L V

b⊗ l ⊗
∑

i bi ⊗ vi
∑

i bbi ⊗ l ⊗ vi

∼= ∼ ∼=

is an isomorphism of BdR⊗QpL-modules. Thus, it induces a morphism

can : dL(DdR(V ))BdR⊗QpL
→ dL(V )BdR⊗QpL

in the determinant category V (BdR⊗QpL).

Definition 2.2.9. Let t be the uniformiser of B+
dR corresponding to the chosen base ξ. Then

we define εdR
L,ξ(V ) ∈ V (BdR⊗QpL)

(
1,
(
dL(DdR(V ))−1 · dL(V )

)
BdR⊗QpL

)
as the element

t−tH(V )εL(Dpst(V ), ξ) · can

multiplied with the identity of dL(DdR(V ))−1
BdR⊗QpL

and pre-composed with µdL(DdR(V ). Here,

t ∈ B×dR and εL(Dpst(V ), ξ) ∈ (Qp ⊗Qp L)× act as elements of (BdR⊗QpL)× = K1(BdR⊗QpL)

(see 1.1.8) on can.

Remark 2.2.10. Let S := V (L)
(
dL(DdR(V )), dL(V )

)
. By lemma 1.1.25, we know that

S
K1(L)
× K1(BdR⊗QpL) ∼= V (BdR⊗QpL)

(
dL(DdR(V ))BdR⊗QpL

, dL(V )BdR⊗QpL

)
,

where (f, α) is sent to α · fBdR⊗QpL
.

Now, we have defined all the ingredients for εL,ξ(V ). But εdR
L,ξ(V ) only lies in

V (BdR⊗QpL)
(
dL(DdR(V )))BdR⊗QpL

, (dL(V ))BdR⊗QpL

)
. However, we want εL,ξ(V ) to live in

the determinant category of L̃. This will be ensured by the next proposition.
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Proposition 2.2.11. Using the inclusion Q̂nr
p ⊂ BdR we have that t−tH(V )εL(Dpst(V ), ξ) · can

lies in S
K1(L)
× K1(L̃) ⊂ S

K1(L)
× K1(BdR⊗QpL). In other words, εdR

L,ξ(V ) is a morphism in

V (L̃)
(
1, dL(DdR(V )−1 · dL(V )

L̃

)
.

Proof. We have that K1(BdR⊗QpL) = (BdR⊗QpL)× and K1(L̃) = L̃× by example 1.1.7 and

lemma 1.1.8. Consider the following action of GQp on

S
K1(L)
× K1(BdR⊗QpL) = S

K1(L)
× (BdR⊗QpL)× : σ((x, y)) = (x, (σ ⊗ id)(y)).

Recall that B
GQnrp
dR = Q̂nr

p (1.2.11 (5)) and hence (BdR⊗QpL)
GQnrp = L̃. So, it suffices to prove

that εdR
L,ξ(V ) is GQnrp -invariant.

Claim 1: τ(can) = detL(τ |V )−1 · can for any τ ∈ GQp .

Let f : DdR(V ) → V be an L-isomorphism, which exists since V is de Rham and hence both

sides have the same L-dimension. Under the isomorphism in 2.2.10 can corresponds to (dL(f), α)

for some α ∈ K1(BdR⊗QpL). The image of the BdR⊗QpL-linear isomorphism

g := α⊗ f : (BdR⊗QpL)⊗L DdR(V )→ (BdR⊗QpL)⊗L V, 1⊗ d 7→ α⊗ f(d)

under the determinant functor also corresponds to (dL(f), α). This is because the determinant of

multiplication by α is just α and the action of K1(BdR⊗QpL) on (dL(f), 1) is described in lemma

1.1.24. Hence, the image of can ◦g−1 under dBdR⊗QpL
is the identity of dBdR⊗QpL

(BdR⊗QpV ).

In other words, this BdR⊗QpL-isomorphism has determinant 1 in K1(BdR⊗QpL). But then the

determinant of the BdR⊗QpL-isomorphism (τ ⊗ id ◦ can ◦τ−1 ⊗ id) ◦ (τ ⊗ id ◦g ◦ τ−1 ⊗ id)−1

is one as well by lemma 1.1.11. Here, τ acts just on BdR. But that means that the two

BdR⊗QpL-isomorphisms τ⊗ id ◦ can ◦τ−1⊗ id and τ⊗ id ◦g◦τ−1⊗ id have the same image under

the determinant functor dBdR⊗QpL
. This is not changed by post-composing the BdR⊗QpL-

isomorphism id⊗τ , where τ acts on V . But since can is equivariant with respect to the action

of GQp as τ ⊗ id on the left and diagonally on the right, we have that τ ⊗τ ◦can ◦τ−1⊗ id = can.

Hence, the determinants of can and τ ⊗ τ ◦ g ◦ τ−1 ⊗ id are the same. We compute the latter.

The action of τ on V adds the factor detL(τ |V ). The remaining map τ ⊗ id ◦g ◦ τ−1⊗ id is given

by

(BdR⊗QpL)⊗L DdR(V )→ (BdR⊗QpL)⊗L V, b⊗ d 7→ bτ(α)⊗ f(d).

So its determinant is (dL(f), τ(α)), which is just τ(can).

Claim 2: Let τ ∈ GQp and τ ′ ∈ GQnrp = I such that χcycl(τ) = χcycl(τ
′), then

(τ ⊗ 1)εL(Dpst(V ), ξ) = detA(τ ′|Dpst(V )τ )εL(Dpst(V )τ , ξ).

Here τ ⊗ 1 acts on Qp ⊗Qp L and Dpst(V )τ := A⊗A,τ⊗1 Dpst(V ), where

τ ⊗ 1 = τ |Qnrp ⊗ 1 : A = Qnr
p ⊗Qp L→ Qnr

p ⊗Qp L = A.

In particular, if τ already lies in I, such that its restriction to Qnr
p is trivial, we get that

(τ ⊗ 1)εL(Dpst(V ), ξ) = detA(τ |Dpst(V ))εL(Dpst(V ), ξ).
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In order to prove this claim, we recall the superscript notation from theorem 2.1.1 (6) according

to which for a Qp-linear WQp -representation D the representation Qp⊗τ D is denoted Dτ . Now,

let σ : L ↪→ Qp be a Qp-linear embedding. As above, such an embedding yields an embedding

A = Qnr
p ⊗Qp

L ↪→ Qp by acting on L. We observe that the following diagram commutes

A Qp x⊗ y xτ−1σ(y)

A Qp τ(x)⊗ y τ(x)σ(y).

τ−1σ

τ⊗id τ

σ

As a result, we get the relation

(Dpst(V )τ−1σ)τ = Qp ⊗τ,Qp
Qp ⊗τ−1σ,A Dpst(V ) ∼= Qp ⊗σ,A A⊗τ⊗1,A Dpst(V ) = (Dpst(V )τ )σ

between the two superscript notations and the subscript notation from corollary 1.2.37. First,

we take care of the ε-factors in the definition of εL(Dpst(V ), ξ). By the equivariance statement

in lemma 1.2.4 (3) we get the first equality in

(τ ⊗ 1)ε(Dpst(V )σ, ξ) = τ
(
ε(Dpst(V )τ−1σ, ξ)

)
= ε
(
(Dpst(V )τ−1σ)τ , τ(ξ)

)
= ε
(
(Dpst(V )τ )σ, τ(ξ)

)
= ε
(
(Dpst(V )τ )σ, χcycl(τ

′)ξ
)

= σ
(
detA(τ ′|Dpst(V )τ )

)
ε
(
(Dpst(V )τ )σ, ξ

)
.

From the first to the second line, we used property (6) of theorem 2.1.1, from the second to

the third the relation of the two super-/subscript notations and from the third to the fourth

line the fact that τ and τ ′ act in the same way on Zp(1). The final equality sign stems from

part (2) of theorem 2.1.1. The factors σ
(
detA(τ ′|Dpst(V )τ )

)
∈ Qp for all σ yield the element

detA(τ ′|Dpst(V )τ ) ∈ A ⊂ Qp ⊗Qp L as claimed.

Second, we consider the correction factor. By lemma 2.2.7, we can consider the correction factor

as an element of L inside Qp ⊗Qp L. Therefore, (τ ⊗ id) is trivial on the correction factor.

This finishes the proof of claim 2.

Claim 3: detA(τ |Dpst(V )) = χcycl(τ)tH(V )detL(τ |V ) for all τ ∈ I.

Multiplication with detA(τ |Dpst(V )) (or detL(τ |V )) is the operation of τ on the maximal ex-

terior product
∧
A Dpst(V ) ∼= Dpst(

∧
L V ) (or

∧
L V ), see the compatibility of Dst,K with tensor

products and quotients for semi-stable GK-representations in theorem 1.2.3. tH(V ) is the Hodge-

Tate weight of
∧
L DdR(V ) ∼= DdR(

∧
L V ) (filtrations align due to proposition 1.2.24). So, we

can assume that V is of L-dimension one. We now argue similarly as in [FO18] 7.16 and 7.17.

Since GQp acts L-linearly on V , the action comes from a character η : GQp → L×. Each Di
dR(V )

is an L-vector space. Since V is de Rham and one-dimensional, we have that

D
tH(V )
dR (V )/D

tH(V )+1
dR (V ) ∼= (Cp(tH(V ))⊗Qp V )GQp ∼= (Cp ⊗Qp V (tH(V )))GQp

has L-dimension 1. In other words V (tH(V )) is Cp-admissible as Qp-representation. But by

[FO18] proposition 3.56, this means that I acts discretely on V (tH(V )), i.e.
(
χ
tH(V )
cycl · η

)
(I) is
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finite. Therefore, we can write η = χ
−tH(V )
cycl · χnr · χ, where χ factors over some finite extension

E/Qp and χnr is unramified. Hence, GEnr acts trivially on V (tH(V )). The map

ϑ−tH(V ) : Bst⊗QpV
∼−→ Bst⊗QpV (tH(V )), b⊗ v 7→ xt−tH(V ) ⊗ v ⊗ ξtH(V )

is GQp -equivariant by lemma 1.2.28. For a finite extension K/E, Galois over Qp this yields a

Gal(Knr,Qp)-equivariant isomorphism:

(Bst⊗QpV )GKnr ∼=
(

Bst⊗QpV (tH(V ))
)GKnr = BGKnr

st ⊗Qp V (tH(V )) = Q̂nr
p ⊗Qp V (tH(V )),

where we have used 1.2.15 (4) at the last and the fact that GKnr acts trivially on V (tH(V )) at

the second to last equality sign.

Using that E is finite over Qp , that χ is trivial on GE and writing V (tH(V )) = L(χχnr), we

conclude that there is a GQp -isomorphism

Dpst(V ) =
⋃

Qp⊂K⊂Qp ,
K/Qp finite

(Bst⊗QpV )GK =
⋃

E⊂K⊂Qp ,
K/Qp finite

Galois

(Bst⊗QpV )GK

=
⋃

E⊂K⊂Qp ,
K/Qp finite

Galois

(
(Bst⊗QpV )GKnr

)Gal(Knr,K)
=

⋃
E⊂K⊂Qp ,
K/Qp finite

Galois

(
Q̂nr
p ⊗Qp L(χnrχ)

)Gal(Knr,K)

∼=
⋃

E⊂K⊂Qp ,
K/Qp finite

Galois

(
Q̂nr
p ⊗Qp L(χnr)

)Gal(Knr,K)
(χ).

This description of Dpst(V ) shows that τ ∈ I = GQnrp acts on Dpst(V ) via the character χ. On

V such a τ acts via χχ
−tH(V )
cycl . This establishes the claimed formula.

Combining the three claims, we see that an element τ ∈ GQnrp acts on εL(Dpst(V ), ξ) can by

multiplication with χcycl(τ)tH(V ). The factor t−tH(V ) in the definition of εdR
L,ξ(V ) corrects this,

so that εdR
L,ξ(V ) is fixed by GQnrp and thus exists already in the determinant category over L̃.

2.2.2 Properties of ε-isomorphisms of de Rham representations

Let us now verify the properties stated for εL,ξ(L) in proposition 2.2.2. The first two properties

follow without much work from the proof of proposition 2.2.11.

Proposition 2.2.12 (Change of ξ). Let τ ∈ I(Qab
p /Qp). Then εL,χcycl(τ)ξ(V ) = detL(τ |V )εL,ξ(V ).

Proof. The only part of εL,ξ(V ) that depends on ξ is the choice of t and the local factors

ε(Dpst(V )σ, ξ) for each σ : L ↪→ Qp . By theorem 2.1.1 (2), we have

ε(Dpst(V )σ, χcycl(τ)ξ) = detQp
(τ |Dpst(V )σ)ε(Dpst(V )σ, ξ).

We can write detQp
(τ |Dpst(V )σ) = σ(detA(τ |Dpst(V ))), where σ stands for the map

Qnr
p ⊗Qp L → Qp , x ⊗ y 7→ xσ(y). Hence, as element of

∏
σ Qp

∼= Qp ⊗Qp L, we have

detQp
(τ |Dpst(V )σ)σ = detA(τ |Dpst(V ). Together with the factor from t−tH(V ), we have

εL,χcycl(τ)(V ) = χcycl(τ)−tH(V ) · detA(τ |Dpst(V )) · εL,ξ(V ).

The appearing factor is nothing but detL(τ |V ) by claim 3 in the proof of proposition 2.2.11.
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Lemma 2.2.13. Let φ be a Frobeniuslift and V an L-linear de Rham representation. Then

there is an isomorphism of A-linear WQp -representations between Dpst(V )φ = A⊗φ⊗id,ADpst(V )

and Dpst(V ). In particular, one has (Dpst(V )φ)I ∼= Dpst(V )I and in addition(
(Dpst(V )φ)I

)N=0 ∼= (Dpst(V )I)N=0.

Proof. The isomorphism Dpst(V )φ
∼−→ Dpst(V ) is given by

Dpst(V )φ = A⊗φ⊗id,A Dpst(V ) ∼= Qnr
p ⊗φ,Qnrp Dpst(V )→ Dpst(V )

q ⊗ d 7→ qϕ(d).

This is clearly Qnr
p -linear and since ϕ is L-linear, it is an A-homomorphism. The last map sends

φ(q) ⊗ d and 1 ⊗ qd to φ(q)ϕ(d) and ϕ(qd) respectively. As ϕ is φ-semi-linear, these elements

are equal and the map well-defined. It is a bijection because ϕ is one on each Dst,K(V ). The

map clearly commutes with application of ϕ and also with the naive WQp -action since ϕ does.

Hence, it commutes with the linearised action of WQp . Finally, the relation Nϕ = pϕN yields

the commutativity of the following diagram

Dpst(V )φ Dpst(V )

Dpst(V )φ Dpst(V ).

∼

N p−1N

∼

Multiplication with p is an isomorphism on Dpst(V ), so we get
(
(Dpst(V )φ)I

)N=0
= (Dpst(V )I)N=0.

Proposition 2.2.14 (Frobenius invariance). Let φ ∈ GQp be a Frobeniuslift with χcycl(φ) = 1.

Denote by ϕp := φ|Ẑnrp : Ẑnrp → Ẑnrp the restriction of φ : BdR → BdR. The ring homomorphism

ϕp ⊗ idL : L̃ → L̃ induces a base change homomorphism (ϕp ⊗ idL)∗ : K1(L̃) → K1(L̃) (see

lemma 1.1.10). We put K1(L̃)V = {x ∈ K1(L̃)|(ϕp ⊗ id)∗(x) = detL(φ|V )−1x}. Then the

ε-isomorphism εL,ξ(V ) belongs to V (L)
(
1, dL(RΓ(Qp , L)dL(V )

) K1(L)
× K1(L̃)V .

Proof. The factor ΓL(V ) is a rational number and hence not influenced by (ϕp ⊗ id)∗. The

isomorphism θ(V ) is defined in the determinant category over L, so that after base change

to L̃ its contribution to K1(L̃) is an element of K1(L) on which (ϕp ⊗ id)∗ is also trivial.

So it remains to prove that εdR
L,ξ(V ) lies in V (L)

(
1, dL(DdR(V ))−1dL(V )

) K1(L)
× K1(L̃)V . In

other words, using the action defined in the proof of proposition 2.2.11, we have to show that

φ(εdR
L,ξ(V )) = detL(φ|V )−1εdR

L,ξ(V ). By claim 1 of the proof of proposition 2.2.11, we have

φ(can) = detL(φ|V )−1 can. By claim 2, we have (φ ⊗ id)εL(Dpst(V ), ξ) = εL(Dpst(V )φ, ξ) since

χcycl(φ) = 1. The A-linear WQp -isomorphism Dpst(V )φ ∼= Dpst(V ) in lemma 2.2.13 ensures

that the factors ε(Dpst(V )φ, ξ)σ and ε(Dpst(V ), ξ)σ agree for every embedding L ↪→ Qp , as

local constants are insensitive to isomorphic representations (2.1.1 (1)). Since the isomorphism

respects the kernel of the monodromy operator, we get that the correction factor is also the

same for Dpst(V ) and Dpst(V )φ. Finally, since χcycl(φ) = 1, φ is trivial on t.

We have to work a little harder for the multiplicativity and the duality. The next lemma remedies

the missing exactness of Dcris on short exact sequences of de Rham representations.
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Lemma 2.2.15. Let 0→ V1 → V2 → V3 → 0 be a short exact sequence of de Rham representa-

tions. Then we have an exact sequence

0 Dcris(V1) Dcris(V2) Dcris(V3) Dcris(V
∗

1 (1))∗ Dcris(V
∗

2 (1))∗ Dcris(V
∗

3 (1))∗ 0,δ

denoted Σcris,of L-vector spaces (all duals are L-duals). Moreover, the diagram

Dcris(V3) Dcris(V
∗

1 (1))∗

Dcris(V3) Dcris(V
∗

1 (1))∗

ϕ

δ

(ϕ−1)∗

δ

commutes.

Proof. Since all the Vi’s are de Rham the first part of lemma 1.2.39 ensures the exactness of

the rows of the following diagram of L-vector spaces:

0 Dst(V1) Dst(V2) Dst(V3) 0

0 Dst(V1(−1)) Dst(V2(−1)) Dst(V3(−1)) 0.

N N N

The vertical maps really are ϑ ◦ N = N ◦ ϑ, which is ϕ-equivariant by lemma 1.2.28 (3). The

fourth part of that lemma lets us extend this diagram vertically by the exact sequences

0→ Dcris(Vi)→ Dst(Vi)→ Dst(Vi(−1))→ Dst(Vi(−1))/N Dst(Vi(−1))→ 0. (?)

By the snake lemma, we get an exact sequence

0 Dcris(V1) Dcris(V2) Dcris(V3)

Dst(V1(−1))/N Dst(V2(−1))/N Dst(V3(−1))/N 0
δ′

The functor HomL(−, L) is left exact, so that

HomL

(
Dst(Vi(−1))/N Dst(Vi(−1), L)

) ∼= HomL(Dst(Vi(−1)), L)N
∗=0 = (Dst(Vi(−1))∗)N

∗=0.

Now, we use part (2) of lemma 1.2.39 to pull in the dual and conclude that

(Dst(Vi(−1))∗)N
∗=0 ∼= Dst(Vi(−1)∗)N=0 = Dcris(V

∗
i (1)). Dualising all of this, we get a natu-

ral isomorphism δ′′Vi : Dst(Vi(−1))/N Dst(Vi(−1)) → Dcris(V
∗
i (1))∗. We apply it to the lower

part of the result of the snake lemma to obtain the desired exact sequence. We put δ = δ′′V1
◦ δ′.

Lastly, we investigate the action of ϕ. The sequences (?) for i = 1, 2, 3 are compatible with

ϕ. Hence, δ′ commutes with ϕ. According to part (2) of lemma 1.2.39, pulling the dual into

Dst(−) as in δ′′V1
does not only transpose but also inverts ϕ. Hence, we get the desired relation

(ϕ−1)∗ ◦ δ = δ ◦ ϕ.

Corollary 2.2.16. The morphism θ(V ) · detL(−ϕ|V ∗(1))−1 is multiplicative in short exact se-

quences of L-linear de Rham representations. That is to say that for Σ : 0→ V1 → V2 → V3 → 0

a short exact sequence of L-linear de Rham representations and for the induced exact se-

quences ΣC : 0 → C(Qp , V1) → C(Qp , V2) → C(Qp , V3) → 0 (lemma 1.3.14) as well as

ΣdR : 0→ DdR(V1)→ DdR(V2)→ DdR(V3)→ 0, we have

dL(ΣC)dL(ΣdR) ◦ θ(V2) · detL(−ϕ|V ∗2 (1)) = θ(V1)θ(V3)detL(−ϕ|V ∗1 (1))detL(−ϕ|V ∗3 (1)).
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Proof. Since the Vi’s are de Rham, applying the functor DdR is an exact functor to the category

of filtered Qp-vector spaces (1.2.24). Hence, proceeding from ΣdR to the associated graded rings

is exact as well and we get that Σt : 0 → t(V1) → t(V2) → t(V3) → 0 is exact. Since Kummer

(L-) duals of de Rham representations are de Rham (1.2.3 (4) and 1.2.28), we also get the

exactness of the sequence Σ′t : 0→ t(V ∗1 (1))∗ → t(V ∗2 (1))∗ → t(V ∗3 (1))∗ → 0. Adding these exact

sequences to two copies of the exact sequence Σcris in lemma 2.2.15, we get by the compatibility

of the latter with ϕ an exact sequence of complexes Σ̃:

0 C ′f (Qp , V1) C ′f (Qp , V2) C ′f (Qp , V3)

C̃f (Qp , V
∗

1 (1))∗[1] C̃f (Qp , V
∗

2 (1))∗[1] C̃f (Qp , V
∗

3 (1))∗[1] 0,

with C̃f (Qp , V ) being the complex

[
Dcris(V )

(1−ϕ−1,1̄)−−−−−−→ Dcris(V )⊕ t(V )

]
concentrated in degree

0 and 1. The complexes C̃f (Qp , V
∗(1))∗ and C ′f (Qp , V

∗(1))∗ are isomorphic via the complex

homomorphism (−ϕ∗, id). The images of C̃f (Qp , V
∗(1))∗ and C ′f (Qp , V

∗(1)))∗ are the same

under dL. The isomorphism dL((−ϕ∗, id)) is hence an automorphism of this object and as such

the element detL(−ϕ|Dcris(V
∗(1))) ∈ K1(L) = L×. If we denote by Σ′ the sequence Σ̃ with the

C̃f (Qp , V
∗(1))∗ replaced by C ′f (Qp , V

∗(1)))∗, we get that

dL(Σ̃) = dL(Σ′)
∏

i=1,2,3

detL(−ϕ|Dcris(V
∗
i (1)))(−1)i .

Here, we associated morphisms in the determinant category to the exact sequences Σ̃ and Σ′ by

breaking up the exact sequence into short exact sequences, multiplying the images of those short

exact sequences in the determinant category and trivialising the auxiliary kernels and cokernels.

Moreover, we multiply with (inverses) of identities to ensure that both dL(Σ̃) and dL(Σ′) are

morphisms

dL(C ′f (Qp , V2)) · dL(C ′f (Qp , V
∗

2 (1))∗)→ (�)

dL(C ′f (Qp , V1)) · dL(C ′f (Qp , V
∗

1 (1))∗) · dL(C ′f (Qp , V3)) · dL(C ′f (Qp , V
∗

3 (1))∗),

where we have also used that dL(C[1]) = dL(C)−1. Together with the natural quasi isomorphism

Cf (Qp , V )
q−iso−−−→ C ′f (Qp , V ) from lemma 1.3.23, we get from dL(Σ′) a morphism

f :dL(Cf (Qp , V2)) · dL(Cf (Qp , V
∗

2 (1))∗)→
dL(Cf (Qp , V1)) · dL(Cf (Qp , V

∗
1 (1))∗) · dL(Cf (Qp , V3)) · dL(Cf (Qp , V

∗
3 (1))∗).

Now that we have related dL(Σ̃) with the finite parts of Galois cohomology, we turn our at-

tention to its relation with η(V ). The morphism dL(Σ̃) (as written as in (�)) is nothing but

dL(Σcris)dL(Σt)
−1dL(Σcris)

−1dL(Σ′t)
−1 by part (2) of remark 1.1.43. So after multiplying it with

dL(Σt) and dL(Σ′t) it is just an instance of a morphism in V (L) multiplied with its inverse.

Hence, dL(Σ̃)dL(Σt)dL(Σ′t) is compatible with trivialising the Dcris’s and the tangent spaces t

(compare part (3) of 1.1.20). The morphisms η(V ) and η(V ∗(1))∗ are just these trivialisations

composed with the quasi-isomorphisms from lemma 1.3.23, which are incorporated in f . As a
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result, we get that

f · dL(Σt)dL(Σ′t) ◦ η(V2)η(V ∗2 (1))∗detL(−ϕ|Dcris(V
∗

2 (1))−1

=η(V1)η(V ∗1 (1))∗detL(−ϕ|Dcris(V
∗

1 (1))−1 · η(V3)η(V ∗3 (1))∗detL(−ϕ|Dcris(V
∗

3 (1)))−1.

We have the commutative nine term diagram

D0
dR(Σ) : ΣdR : Σt :

ΣdR,V1 : D0
dR(V1) DdR(V1) t(V1)

ΣdR,V2 : D0
dR(V2) DdR(V2) t(V2)

ΣdR,V3 : D0
dR(V3) DdR(V3) t(V3),

which has short exact rows and columns. By part (4) of proposition 1.1.42, determinant functors

behave well with respect to such diagrams and we get that

dL(ΣdR,V1) · dL(ΣdR,V3) ◦ dL(ΣdR) = dL(D0
dR(Σ)) · dL(Σt) ◦ dL(ΣdR,V2)

and hence by the naturality of ψdR,V : D0
dR(V )→ t(V ∗(1))∗, we get that

dL(Σ′t) ◦ dL(ψdR,V2) = dL(ψdR,V1) · dL(ψdR,V3) ◦ dL(D0
dR(Σ)).

This shows that the part of θ(V ) that relates to dL(Σt)dL(Σ′t) is just dL(ΣdR).

A similar argument does not quite work for the Galois cohomology, since the functors Cf (Qp ,−)

are not right-exact, so that there is no proper nine term diagram, just the following diagram

with exact rows and columns (we omitted “Qp” for better readability):

ΣC :

0 0

Σ1 : 0 Cf (V1) C(V1) Cf (V ∗1 (1))∗[−2] 0

Σ2 : 0 Cf (V2) C(V2) Cf (V ∗2 (1))∗[−2] 0

Σ3 : 0 Cf (V3) C(V3) Cf (V ∗3 (1))∗[−2] 0

0 0 .

It remains to prove that f is compatible with the morphisms obtained from ΣC and the Σi’s.

In other words, the commutativity of
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dL(C(V2)) dL(C(V1)) · dL(C(V3))

dL(Cf (V2)) · dL(Cf (V ∗2 (1))∗)
dL(Cf (V1)) · dL(Cf (V ∗1 (1))∗)

·dL(Cf (V3)) · dL(Cf (V ∗3 (1))∗)

dL(C ′f (V2)) · dL(C ′f (V ∗2 (1))∗)
dL(C ′f (V1)) · dL(C ′f (V ∗1 (1))∗)

·dL(C ′f (V3)) · dL(C ′f (V ∗3 (1))∗)
,

dL(ΣC)

dL(Σ2)
dL(Σ1)·dL(Σ3)

f

where the unlabelled arrows come from the quasi-isomorphisms in 1.3.23, remains to be proven.

Remark 2.2.17. We strongly believe that the above diagram is commutative and we will

assume this in the following. We suspect that the commutativity might be established by a

large diagram obtained from breaking Σ̃ up in short exact sequences and using the associativity

property of the determinant functor. Alternatively, one could use the canonical identification of

the determinant of a complex with the determinants of its cohomology and then break up the

long exact cohomology sequences and use the associativity of the determinant functor. This is

possible in our case by the results of chapter 3 in [BB05b] since the category of finite dimensional

L-vector spaces is not only exact but abelian.

Instead of relying on the associativity of the determinant functor, one could use its value on

quasi-isomorphism. By remark 1.1.43 (5), we can assume that dL(Cf (V )) = dL(C ′f (V )) without

loss of generality. Then by the horseshoe lemma applied to the short exact sequences Σi, we can

construct a projective resolution of C(Vi) that is level wise the same as C ′f (Vi)⊕C ′f (V ∗i (1))∗ and

assume again without loss of generality that dL(Cf (Vi)) = dL(C ′f (Vi))·dL(C ′f (V ∗i (1))∗). Applying

the horseshoe lemma to ΣC , we get a projective resolution of C(V2) that is levelwise the same

as the complex C ′f (V1) ⊕ C ′f (V ∗1 (1))∗ ⊕ C ′f (V3) ⊕ C ′f (V ∗3 (1))∗. The two projective resolutions

of C(V2) are quasi-isomorphic. The question now is whether the determinant functor applied

to this quasi-isomorphism is precisely f . Finally, we would like to point the reader’s attention

to the anticommutativity of the connecting homomorphism of the long cohomomolgy sequences

described in proposition 1.3.4 of [NSW13], which might result in sign issues.

Proposition 2.2.18 (Multiplicativity). Let Σ : 0 → V1 → V2 → V3 → 0 be a short exact

sequence of L-linear de Rham representations of GQp , then the ε-isomorphisms are multiplicative:

(dL(C(Qp ,Σ))dL(Σ))
L̃
◦ εL,ξ(V2) = εL,ξ(V1) · εL,ξ(V3).

Proof.

Claim 1: ΓL(V2) = ΓL(V1)ΓL(V3).

Since Σ is a short exact sequence of L-linear de Rham representations, the functor DdR(−) maps

it to a short exact sequence of filtered L-modules, ΣdR. Putting h(r)i = dimL gr
r DdR(Vi), we

thus get h(r)2 = h(r)1 + h(r)3. Since ΓL(Vi) =
∏
r∈Z Γ∗(r)−h(−r)i the claim follows.

Claim 2: t−tH(V ) is multiplicative in V .

Since h(r) is additive in short exact sequences of de Rham representations, so is
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tH(V ) =
∑

r∈Z rh(r)V . As a result, we get that t−tH(V ) is multiplicative in V .

Claim 3: εL(V, ξ) · detL(−ϕ|Dcris(V
∗(1))) is multiplicative in V .

Since the Vi are de Rham and hence potentially semi-stable the sequence

0→ Dpst(V1)→ Dpst(V2)→ Dpst(V3)→ 0

is exact as sequence of linearised WQp -representations (see lemma 1.2.39 part (1)). So the

multiplicativity of the local constants (2.1.1 (1)) implies the multiplicativity of ε(Dpst(V )σ, ξ).

Furthermore, the sequence

0→ Dst(V1)→ Dst(V2)→ Dst(V3)→ 0

is exact by part (1) of lemma 1.2.39. This shows that detL(−ϕ|Dst(V )) is multiplicative.

Finally, the exact sequence in lemma 2.2.15 yields the multiplicativity of the term

detL(−ϕ|Dcris(V ))detL(−ϕ|Dcris(V
∗(1)). The claim follows since

εL(Dpst(V ), ξ) = (ε(Dpst(V )σ, ξ))σdetL(−ϕ|Dst(V )/Dcris(V )).

Claim 4: can is multiplicative.

We have the following isomorphism of short exact sequences of BdR-vector spaces:

0 BdR⊗Qp DdR(V1) BdR⊗Qp DdR(V2) BdR⊗Qp DdR(V3) 0

0 BdR⊗QpV1 BdR⊗QpV2 BdR⊗QpV3 0.

can1 can2 can3

Since the determinant functor is natural in isomorphisms of short exact sequences, we obtain

dL(Σ)BdR⊗QpL
◦ can2 = can1 · can3 ◦dL(ΣdR)BdR⊗QpL

.

Claim 5: εdR
L,ξ(V ) · detL(−ϕ|V ∗(1)) is multiplicative in V .

Consider the diagram

dL(DdR(V2))dL(DdR(V2))−1 dL(V2)dL(DdR(V2))−1

1
dL(V1)dL(V3)

dL(DdR(V2))−1

dL(DdR(V1))dL(DdR(V3))

dL(DdR(V1))−1dL(DdR(V3))−1

dL(V1)dL(V3)

dL(DdR(V1))−1dL(DdR(V3))−1.

dL(ΣdR)·dL(ΣdR)−1

can2 · id2−1

(can1 can3 ◦dL(ΣdR)·id2−1

dL(Σ)·id2−1

dL(Σ)·dL(ΣdR)−1

µ2−1

µ1−1µ3−1 iddL(V1)dL(V3) ·dL(ΣdR)−1

can1 can3 id1−1·3−1

Any subscript of the form i−1 is a shorthand for dL(DdR(Vi))
−1. Moreover, we left out the

necessary base changes to V (BdR⊗QpL) for better readability. The left triangle is commutative

by the definition of inverses of morphisms (see remark 1.1.20 (3)). The right triangle commutes

obviously and the upper triangle by claim 4. The inner square commutes since “− · −” is a

functor and is thus compatible with composition.
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Next, we multiply the top and bottom arrow with the terms in claims 2 and 3, the top one

with the term associated to V2, the bottom one with the product of the terms associated to V1

and V3. These terms are the same by the multiplicativity established in claims 2 and 3. The

resulting diagram will actually live in V (L̃) by proposition 2.2.11 and is precisely the claim.

Claim 6: θ(V )detL(−ϕ|Dcris(V
∗(1))−1 is multiplicative in V .

This is just corollary 2.2.16.

Multiplying the results of claims 1, 5 and 6 yields the statement of the proposition since dL(ΣdR)

and detL(−ϕ|Dcris(V
∗(1)) cancel with their respective inverses.

Remark 2.2.19. As Nakamura points out in his remark 3.6 of [Nak17], the correction factor

detL(ϕ|Dst(V )/Dcris(V )) is necessary for the proof of the multiplicativity of ε-isomorphisms

of de Rham representations. Fütterer comments on page 66 of [Füt18] that the correction

factor vanishes for one-dimensional L-linear de Rham representations since in this case be-

ing semi-stable and crystalline coincide. To illustrate its importance, we sketch a situation in

which the correction factor matters. Let L be Qp . Colmez and Fontaine [CF00] proved a cat-

egory equivalence between the category of semi-stable (crystalline) representations and certain

“linear”-algebra categories via the functor Dst (Dcris). In the light of this equivalence, proposi-

tion 8.3.8 in [BC09] implies for each λ ∈ Z×p the existence of a two-dimensional, semi-stable but

non-crystalline representation V with a one-dimensional semi-stable and hence crystalline sub-

representation V ′. The quotient V ′′ is again one-dimensional, semi-stable and thus crystalline.

So the correction terms for V ′ and V ′′ are trivial, while Dst(V )/Dcris(V ) is one-dimensional

and the Frobenius ϕ acts as multiplication by pλ. Hence, without the correction terms the

ε-isomorphisms would not be multiplicative in the exact sequence 0→ V ′ → V → V ′′ → 0 of de

Rham representations.

Proposition 2.2.20 (Duality). Let V be an L-linear de Rham representation of GQp . Then the

morphism

dL(V (−1))
L̃

µ−→
(
dL
(
RΓ(Qp , V

∗(1))
)∗
dL
(
V ∗(1)

)∗(
dL(RΓ(Qp , V

∗(1)))∗
)−1
)
L̃

εL,ξ(V )·εL,−ξ(V ∗(1))∗·dL(ψ(Qp ,V ))
L̃

−1

−−−−−−−−−−−−−−−−−−−−−−−−−→
(
dL(RΓ(Qp , V )dL(V )dL(RΓ(Qp , V ))−1

)
L̃

µ−→ dL(V )
L̃

is the same as the morphism dL(V (−1)
·ξ−→ V )

L̃
up to the sign (−1)dimLH

0(Qp ,V ∗(1)).

Proof.

Claim 1: h(−r)V ∗(1) = h(−(1− r))V .

By proposition 1.2.24 the morphism ν : DdR(V ∗) → DdR(V )∗ is an isomorphism of filtered

L-vector spaces. So, dimLD
r
dR(V ∗) = dimL(Fil1−r DdR(V ))⊥ = dimL DdR(V )− dimLD

1−r
dR (V ).

This implies h(r)V ∗ = h(−r)V . The isomorphism ϑ−1 : DdR(V ∗) ∼= DdR(V ∗(1)) shifts the filtra-

tion down by one (1.2.28), which yields h(r)V ∗ = h(r−1)V ∗(1). Together, we obtain the relation

h(−r)V ∗(1) = h(−r + 1)V ∗ = h(−(1− r))V .
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Claim 2: ΓL(V ) · ΓL(V ∗(1)) = (−1)tH(V )+dimL t(V ).

By definition, we have

Γ∗(r)Γ∗(1− r) =

{
(−1)r−1, for r ≥ 1

(−1)r, for r ≤ 0.

Again by definition, we have ΓL(V ) =
∏
r∈Z Γ∗(r)−h(−r)V . Using claim 1, we also get

ΓL(V ∗(1)) =
∏
r∈Z

Γ∗(r)−h(−r)V ∗(1) =
∏
r∈Z

Γ∗(1− r)−h(−r)V .

So, raising Γ∗(r)Γ∗(1 − r) the power −h(−r)V and multiplying these expressions for all r ∈ Z
results in

ΓL(V )ΓL(V ∗(1)) = (−1)
∑
r −rh(−r)V +

∑
r≥1 h(−r)V .

The claim follows from the identities
∑

r∈Z−rh(−r)V = tH(V ) and
∑

r≥1 h(−r)V = dimL t(V ).

Claim 3: tH(V ∗(1)) = −dimL V − tH(V ).

This is an easy calculation using claim 1 and the fact that V is de Rham:

tH(V ∗(1)) =
∑
r∈Z
−rh(−r)V ∗(1) =

∑
r∈Z
−(1− r)h(−(1− r))V ∗(1) =

∑
r∈Z
−(1− r)h(−r)V

= −
∑
r∈Z

h(−r)V −
∑
r∈Z
−rh(−r)V = −dimL V − tH(V ).

Claim 4: ε(Dpst(V )σ, ξ) · ε(Dpst(V
∗(1))σ,−ξ) = 1 for all σ : L ↪→ Qp .

We want to use the duality statement for local factors, ε(D, ξ)ε(D∗⊗Qp
ω,−ξ) = 1, from theorem

2.1.1 (3). There, instead of a Tate twist, a twist by the one-dimensional Qp-representation ω

appears. So, we need to show that for all σ : L ↪→ Qp theWQp -representation Qp⊗A,σDpst(V
∗(1))

is isomorphic to (Qp ⊗A,σ Dpst(V ))∗⊗Qp
ω. Since Dpst is compatible with duals by lemma 1.2.39

(2), we only need to consider the twists. For notational convenience, let ω also denote the

rank one A-representation of WQp defined by the same character as the original ω, whose image

lies in Q×. It suffices to show that Dpst(V (−1)) and Dpst(V ) ⊗A ω are isomorphic as WQp -

representations over A. Let e be a basis of ω. Then

ϑ−1 ⊗ e : Dpst(V (−1))→ Dpst(V )⊗ ω,
∑
i

bi ⊗ vi ⊗ ξ−1 7→
∑
i

bit
−1 ⊗ vi ⊗ e

is clearly an isomorphism of A-modules. By lemma 1.2.28, we know that ϑ respects the naive

WQp -action and satisfies p−1ϕ−1 ◦ ϑ−1 = ϑ−1 ◦ ϕ−1. Let τ be in WQp . With the linearised

WQp -action the power of p coming from ω(τ) and the one coming from the interchanging of ϕ

and ϑ cancels: Indeed, we have:

ϑ−1 ⊗ e ◦ τ ◦ ϕ−v(τ) = ω(τ)τ ◦ ϑ−1 ⊗ e ◦ ϕ−v(τ)

= pv(τ)τ ◦ p−v(τ)ϕ−v(τ) ◦ ϑ⊗ e = τ ◦ ϕ−v(τ) ◦ ϑ⊗ e.

So ϑ−1 ⊗ e is equivariant with respect to the linearised WQp -action, which proves the claim.

Claim 5: detL
(
− ϕ

∣∣Dst(V )/Dcris(V )
)
· detL

(
− ϕ

∣∣Dst(V
∗(1))/Dcris(V

∗(1))
)

= 1.

Recall the exact sequence from lemma 1.2.39 part (4):

0→ Dcris(V
∗(1))→ Dst(V

∗(1))
N−→ Dst(V

∗)→ Dst(V
∗)/N Dst(V

∗)→ 0,
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where the middle arrow is given by the ϕ-equivariant map N ◦ ϑ = ϑ ◦N . The multiplicativity

of the determinant in the above exact sequence shows

detL
(
− ϕ

∣∣Dst(V
∗(1))/Dcris(V

∗(1))
)

= detL
(
− ϕ

∣∣Dst(V
∗)
)
· detL

(
− ϕ

∣∣Dst(V
∗)/N Dst(V

∗)
)−1

.

By lemma 1.2.39 (2), we have that (−N)∗ ◦ ν = ν ◦ N . Thus, ν induces an isomorphism

δ′′ : Dst(V
∗)/N Dst(V

∗) → Dcris(V )∗ as in the proof of lemma 2.2.15. Further, the relation

ν ◦ ϕ = (ϕ−1)∗ ◦ ν implies the same on the quotient δ′′. As a result of these relations, we get

detL(−ϕ|Dst(V
∗)) = detL((−ϕ−1)∗|Dst(V )∗) = detL(−ϕ|Dst(V ))−1 and

detL(−ϕ|Dst(V
∗)/N Dst(V

∗)) = detL((−ϕ−1)∗|Dcris(V )∗) = detL(−ϕ|Dcris(V ))−1.

This proves claim 5. Together with claim 4, we have:

Claim 6: εL(Dpst(V ), ξ) · εL(Dpst(V
∗(1)),−ξ) = 1.

Claim 7: εdR
L,ξ(V ) · εdR

L,−ξ(V
∗(1))∗ · dL(ϑ)

L̃
= (−1)tH(V ∗(1))dL(V (−1)

·ξ−→ V )
L̃

.

The commutativity of the diagram

BdR⊗Qp DdR(V (−1)) BdR⊗QpV (−1)

BdR⊗Qp DdR(V ) BdR⊗QpV

idBdR
⊗ϑ−1

canV (−1)

·(t−1⊗ξ)
canV

is clear. After applying dBdR⊗QpL
, the map on the right hand side becomes

dBdR⊗QpL

(
BdR⊗QpV

·(t−1⊗1)−−−−−→ BdR⊗QpV

)
◦ dBdR⊗QpL

(
BdR⊗QpV (−1)

·(1⊗ξ)−−−−→ BdR⊗QpV

)
=detBdR⊗QpL

(t−1 ⊗ 1|BdR⊗QpV ) · dL(V (−1)
·ξ−→ V )BdR⊗QpL

=t− dimL V · dL(V (−1)
·ξ−→ V )BdR⊗QpL

.

The diagram

BdR⊗Qp DdR(V (−1)) BdR⊗QpV (−1)

BdR⊗Qp DdR(V ∗(1))∗ BdR⊗QpV
∗(1)∗

(BdR⊗Qp DdR(V ∗(1)))∗BdR ⊗L (BdR⊗QpV
∗(1))∗BdR ⊗L

canV (−1)

can∗
V ∗(1)

also commutes. We glue the two diagrams together along canV (−1) and apply the determinant

functor dBdR⊗QpL
. Then we multiply with signed powers of t and local factors and obtain the

commutative diagram

dL(DdR(V ∗(1)))∗
L̃

dL(V (−1))
L̃

dL(DdR(V ))
L̃

dL(V )
L̃
.

dL(ϑ)
L̃

(−1)tH (V ∗(1)) (−t)−tH (V ∗(1))εL(Dpst(V ∗(1),−ξ) canV ∗(1))∗

dL(·ξ)
L̃

t−tH (V )εL(Dpst(V ),ξ) canV
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The appearing powers of t cancel by claim 3 the factor t− dimL V coming from the determinant

of ·(t−1 ⊗ ξ). Using claim 6 we see that the εL-factors cancel. Finally, we use remark 1.1.27 (2)

to write the composition as a product and obtain

εdR
L,ξ(V ) · εdR

L,−ξ(V
∗(1))∗ · dL(ϑ)

L̃
= (−1)tH(V ∗(1))dL(·ξ)

L̃
.

Claim 8: θ(V ∗(1))∗·dL(ψ(Qp , V ))
−1·dL(ϑ)

−1·θ(V ) = (−1)dimLH
1
f (V ∗(1)) ∈ L× = AutV (L)(1).

In the notation of the definition of θ(V ) (2.2.3), we have

θ(V ) = dL(ΣRΓ,V ) · dL(ΣdR,V ) ◦ dL(ψf (Qp , V ∗(1)))∗ · dL(ψdR,V ) ◦ η(V ∗(1))∗ · η(V ) and

θ(V ∗(1)) = dL(ΣRΓ,V ∗(1)) · dL(ΣdR,V ∗(1)) ◦ dL(ψf (Qp , V ))∗ · dL(ψdR,V ∗(1)) ◦ η(V )∗ · η(V ∗(1)).

To relate θ(V ) and θ(V ∗(1)), we use the isomorphism of short exact sequences from corollary

1.2.29

ΣdR,V : 0 D0
dR(V ) DdR(V ) t(V ) 0

DdR(V (−1))

Σ∗dR,V ∗(1) : 0 t(V ∗(1))∗ DdR(V ∗(1))∗ D0
dR(V ∗(1))∗ 0.

ψdR,V

ϑ

ψ∗
dR,V ∗(1)

ν

Omitting ν and the isomorphism (−)∗(1) ∼= (−)(−1)∗ (1.2.8), we get that

dL(Σ∗dR,V ∗(1)) ◦ dL(ϑ) = dL(ψdR,V )dL(ψdR,V ∗(1))
∗ ◦ dL(ΣdR,V ).

Next, we treat the corresponding short exact Galois cohomology sequence. The skew commuta-

tivity of the cup product (see remark 1.3.21) shows that ψi(Qp , V ) = (−1)iψi(Qp , V
∗(1))∗[−2]

for i = 0, 1 or 2. This implies dL(ψ(Qp , V )) = (−1)dimLH
1(Qp ,V )dL(ψ(Qp , V

∗(1))∗). The Tate

duality on the finite parts of Galois cohomology are given by restriction of the usual Tate duality.

In other words, the diagrams

RΓf (Qp , V ) RΓ(Qp , V )

RΓ/f (Qp , V
∗(1))∗[−2] RΓ(Qp , V

∗(1))∗[−2]

ψf (Qp ,V ) ψ(Qp ,V )

and

RΓ(Qp , V ) RΓ/f (Qp , V )

RΓ(Qp , V
∗(1))∗[−2] RΓf (Qp , V

∗(1))∗[−2]

ψ(Qp ,V ∗(1))∗[−2] ψf (Qp ,V ∗(1))∗[−2]

commute. Using the above relation between ψ(Qp , V ) and ψ(Qp , V
∗(1))∗[−2], we get an iso-

morphism of short exact sequences

ΣRΓ,V : 0 RΓf (Qp , V ) RΓ(Qp , V ) RΓ/f (Qp , V ) 0

Σ∗RΓ,V ∗(1)[−2] : 0 RΓ/f (Qp , V
∗(1))∗[−2] RΓ(Qp , V

∗(1))∗[−2] RΓf (Qp , V
∗(1))∗[−2] 0

ψf (Qp ,V ) ψ(Qp ,V ) [(−1)iψif (Qp ,V ∗(1))∗[−2]]

59



which induces

dL(Σ∗RΓ,V ∗(1)) ◦ dL(ψ(Qp , V ))

=(−1)dimLH
1
f (Qp ,V ∗(1))dL(ψf (Qp , V )) · dL(ψf (Qp , V

∗(1))∗) ◦ dL(ΣRΓ,V )

and similarly if one uses ψ(Qp , V
∗(1))∗[−2] instead of ψ(Qp , V )

dL(Σ∗RΓ,V ∗(1)) ◦ dL(ψ(Qp , V
∗(1))∗)

=(−1)dimLH
1
f (Qp ,V )dL(ψf (Qp , V )) · dL(ψf (Qp , V

∗(1))∗) ◦ dL(ΣRΓ,V ).

Before putting everything together, we recall that for a short exact sequence Σ, we have

dL(Σ∗) = dL(Σ)∗ up to commutativity (see lemma 1.1.35 (2)). Now, we can compute

dL(ψ(Qp , V )) · dL(ϑ) ◦ θ(V )

=dL(ψ(Qp , V )) · dL(ϑ)

◦ dL(ΣRΓ,V ) · dL(ΣdR,V ) ◦ dL(ψf (Qp , V ∗(1)))∗ · dL(ψdR,V ) ◦ η(V ∗(1))∗ · η(V )

=± dL(Σ∗RΓ,V ∗(1)) · dL(Σ∗dR,V ∗(1)) ◦ dL(ψf (Qp , V )) · dL(ψdR,V ∗(1))
∗ ◦ η(V ∗(1))∗ · η(V )

=± dL(ΣRΓ,V ∗(1))
∗ · dL(ΣdR,V ∗(1))

∗ ◦ dL(ψf (Qp , V )) · dL(ψdR,V ∗(1))
∗ ◦ η(V ∗(1))∗ · η(V ).

Here and in the following “±′′ stands for (−1)dimLH
1
f (Qp ,V ∗(1)). Thus

θ(V ∗(1))∗ ◦ dL(ψ(Qp , V )) · dL(ϑ) ◦ θ(V )

=± η(V ) · η(V ∗(1))∗ ◦ dL(ψf (Qp , V )) · dL(ψdR,V ∗(1))∗ ◦ dL(ΣRΓ,V ∗(1))∗ · dL(ΣdR,V ∗(1))∗◦
dL(ΣRΓ,V ∗(1))

∗ · dL(ΣdR,V ∗(1))
∗ ◦ dL(ψf (Qp , V )) · dL(ψdR,V ∗(1))

∗ ◦ η(V ∗(1))∗ · η(V )

=(−1)dimLH
1
f (Qp ,V ∗(1)).

Put X := dL(RΓ(Qp , V )) ·dL(DdR(V )) ·dL(RΓ(Qp , V
∗(1))∗) ·dL(DdR(V ∗(1))∗). Again, we write

the above identity as a product of three morphisms rather than a composition (see remark 1.1.27

(2)). The element (−1)dimLH
1
f (V ∗(1)) in K1(L) ⊂ K1(L̃) = AutV (L)(1) is the same as the map

µX ◦ θ(V ) · dL(ψ(Qp , V )) · dL(ϑ) · θ(V ∗(1))∗ · idX−1 ◦µX :

1→ 1 · dL(RΓ(Qp , V )) · dL(DdR(V )) · dL(RΓ(Qp , V
∗(1))∗) · dL(DdR(V ∗(1))∗) ·X−1

→ dL(RΓ(Qp , V )) · dL(DdR(V )) · dL(RΓ(Qp , V
∗(1))∗) · dL(DdR(V ∗(1))∗) · 1 ·X−1

→ 1.

As a last step, we replace dL(ψ(Qp , V )) · dL(ϑ) by dL(ψ(Qp , V ))
−1 · dL(ϑ)

−1
. By the definition

of inverses of morphisms, we have

µdL(RΓ(Qp ,V )) = µdL(RΓ(Qp ,V ∗(1)))∗ ◦ dL(ψ(Qp , V )) · dL(ψ(Qp , V )−1 and

µdL(DdR(V )) = µdL(DdR(V (−1))) ◦ dL(ϑ) · dL(ϑ)−1.

Rearranging yields

µdL(RΓ(Qp ,V )) ◦ id ·dL(ψ(Qp , V )−1 = µdL(RΓ(Qp ,V ∗(1)))∗ ◦ dL(ψ(Qp , V )) · id and

µdL(DdR(V )) ◦ iddL(DdR(V )) ·dL(ϑ)
−1

= µdL(DdR(V ∗(1))∗) ◦ dL(ϑ) · iddL(DdR(V (−1)))−1 .
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We amend the trivialisations accordingly and obtain that (−1)dimLH
1
f (Qp ,V ∗(1)) in AutV (L)(1) is

the same as

µdL(RΓ(Qp ,V ))·dL(DdR(V )) ◦ θ(V ) · θ(V ∗(1))∗ · dL(ψ(Qp , V ))
−1 · dL(ϑ)

−1

◦ µdL(RΓ(Qp ,V ∗(1)))∗·dL(DdR(V (−1))).

Claim 9: εL,ξ(V ) · εL,−ξ(V ∗(1))∗ · dL(ψ(Qp , V ))
L̃

−1
= (−1)dimLH

0(V ∗(1)).

We multiply the identities in claims 2, 7 and 8, trivialise dL(ϑ) and get

εL,ξ(V ) · εL,−ξ(V ∗(1))∗dL(ψ(Qp , V ))
−1

L̃ = (−1)tH(V )+dimL t(V )+tH(V ∗(1))+dimLH
1
f (V ∗(1))dL(·ξ)

L̃
.

By claim 3 and the identities dimLH
1
f (V ∗(1)) = dimLH

0(V ∗(1)) + dimL t(V
∗(1)) and

dimL V = dimL t(V ) + dimL t(V
∗(1)), the sign is (−1)dimLH

0(V ∗(1)).

Remark 2.2.21. The last part of the proof of claim 8 above explains the relation between the

duality formulation in proposition 3.3.8 [FK06], where dL(ψ(Qp , V )) appears, and ours with

dL(ψ(Qp , V ))−1. We differed from the formulation in [FK06], since our version of the duality is

easier to write down explicitly as morphism, which will be useful in the equivariant version in

conjecture 2.3.5 (6).

Remark 2.2.22.

(1) The duality in proposition 3.3.8 of [FK06] differs from our proposition 2.2.20 by the sign

(−1)dimLH
0(V ∗(1)), which does not vanish in general (consider for instance L(−1)∗ as V ).

The difference stems from the relation between ψ(Qp , V ) and ψ(Qp , V
∗(1))∗[−2]. Fukaya

and Kato claim the relations

dL(ψ(Qp , V )) = (−1)dimLD
0
dR(V )dL(ψf (Qp , V )) · dL(ψf (Qp , V

∗(1)))∗ and

dL(ψ(Qp , V )) = (−1)dimL V · dL(ψ(Qp , V
∗(1))∗

instead of our relations

dL(ψ(Qp , V )) = (−1)dimLH
1
f (Qp ,V ∗(1))dL(ψf (Qp , V )) · dL(ψf (Qp , V

∗(1)))∗ and

dL(ψ(Qp , V )) = (−1)dimLH
1(Qp ,V ) · dL(ψ(Qp , V

∗(1))∗

Since we have dimLH
1
f (Qp , V

∗(1)) = dimLH
0(Qp , V

∗(1)) + dimL t(V
∗(1)) and

dimLD
0
dR(V ) = dimL t(V

∗(1)), this results in the sign difference.

(2) Fukaya and Kato assert a self-duality for their duality statement. Our version is self-dual

as well, if one uses our relation between ψ(Qp , V ) and ψ(Qp , V
∗(1))∗: Interchanging V

and V ∗(1) and taking the L-dual introduces the sign (−1)tH(V ∗(1))+tH(V )+dimLH
1(Qp ,V ) on

the left-hand side and (−1)dimLH
0(Qp ,V ∗(1))+dimLH

0(Qp ,V ) on the right-hand side. Using

claim 3, the local Tate duality and Tate’s local Euler-Poincaré characteristic formular

dimL V =
∑2

i=0(−1)i dimLH
i(Qp , V ), ([NSW13] theorem 7.3.1 plus limiting process), one

sees that both signs agree.

(3) Nakamura reproduces the proof of the proposition 3.3.8 [FK06] in lemma 3.7 (2) of [Nak17],

gets by without the extra sign and hence supports the result of Fukaya and Kato. He argues

with the more explicit definition of θ(V ) via the long exact sequence. Unfortunately, we

cannot follow his reasoning and our own attempts of using the explicit definition of θ(V )
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(see remark 2.2.4) back the duality result with extra sign factor: Nakamura considers the

following commutative diagram, in which the upper row appears in the long exact sequence

(2.3) for V and the lower row belongs to the dual of the long exact sequence (2.3) for V ∗(1).

We present it in our notation (omitting the “Qp” in all cohomology related expressions)

and fill in some arrows to the best of our knowledge, so that checking commutativity is

easier:

t(V ) H1(V ) t(V ∗(1))∗

H1
f (V ) H1

f (V ∗(1))∗

H1
f (V ) H1

f (V ∗(1))∗

t(V ) H1(V ∗(1))∗ t(V ∗(1))∗.

− expV

− expV

ψ1(V ∗(1))∗

ψ1
f (V ∗(1))∗◦p

(−1)

p∗◦ψ1
f (V )expV

exp∗
V ∗(1)

i∗

Here, i (p) stands for an inclusion (projection) of the form H1
f (V ) ↪→ H1(V )

(H1(V ) � H1
/f (V )). Nakamura seems to claim that the diagram explains, why a fac-

tor of (−1)dimL t(V ) appears. However, in our opinion this diagram rather explains a factor

of (−1)dimLH
1
f (V ), which matches our results since here ψ1(V ∗(1))∗ is used instead of ψ1(V )

which we use. The corresponding diagram in our situation would be

Dcris(V )⊕ t(V ) H1(V ) Dcris(V
∗(1))∗ ⊕ t(V ∗(1))∗

H1
f (V ) H1

f (V ∗(1))∗

H1
f (V ) H1

f (V ∗(1))∗

Dcris(V )⊕ t(V ) H1(V ∗(1))∗ Dcris(V
∗(1))∗ ⊕ t(V ∗(1))∗

expV

expV

ψ1(V )

ψ1
f (V ∗(1))∗◦p

(−1)

i

exp∗
V ∗(1)

(−1)

p∗◦ψ1
f (V )

exp∗
V ∗(1)expV

exp∗
V ∗(1)

◦i∗

i∗

where again, the upper row is part of the long exact sequence Σl,V (see (2.3)) for V

and the lower one is part of the dual of the corresponding sequence for V ∗(1). One sees

that (the dual of) the short exact sequence merging (the duals of) the sequences (2.1)

and (2.2) are isomorphic via the isomorphism (idH1
f (V ), ψ

1(V ), (−1)), this yields the sign

(−1)dimLH
1
f (V ∗(1)) in the comparison of θ(V ) and θ(V ∗(1)). Alternatively, one could con-

sider the induced morphism between Σl,V and Σ∗l,V ∗(1), which is given by

(id, id, id, ψ1(V ), (−1), (−1), (−1)). The induced sign is again

(−1)dimLDcris(V
∗(1))+dimL t(V

∗(1))+dimLDcris(V
∗(1))+dimLH

0(V ∗(1)) = (−1)dimLH
1
f (V ∗(1)).
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2.3 Equivariant ε-isomorphisms

In this section we will state the equivariant ε-isomorphism conjecture of Fukaya and Kato ([FK06]

3.4.3).

Definition 2.3.1. For an adic ring Λ, we denote by Λ̃ the ring limn

(
Ẑnrp ⊗Zp Λ/J(Λ)n

)
, where

J(Λ) is the Jacobson radical of Λ.

Let Λ be an adic ring and T a finitely generated projective Λ-module with a continuous Λ-linear

GQp -action. The topology of T is induced by Λ.

The following proposition is a first indicator for the possible existence of equivariant ε-isomorphisms.

Proposition 2.3.2. The classes of RΓ(Qp ,T) and T add to zero in K0(Λ). So there is an

isomorphism 1→ dΛ(RΓ(Qp ,T))dΛ(T).

Proof. We consider the perfect complex RΓ(Qp ,T) as an element of K0(Λ) via the isomorphism

K0(Λ) ∼= π0(V (Λ)) or equivalently by replacing it with a strictly perfect complex which admits

a quasi-isomorphism to RΓ(Qp ,T). The proposition is proven in 3.1.3 of [FK06]. The argument

is to use 1.3.12 and that Λ is adic to reduce to the case of Λ being a finite field. Then the

first claim is the local Euler-Poincaré characteristic formula ([Ser07] II 5.7 theorem 5.). The

existence of the isomorphism is due to K0(Λ) ∼= π0(V (Λ)) (lemma 1.1.37 (2))

The equivariant ε-isomorphism conjecture states that isomorphisms such as in proposition 2.3.2

exist in a compatible way and with some additional properties for different pairs (Λ,T) . In

order to state the conjecture precisely, we need to introduce some more notation.

Lemma 2.3.3. The map [T,−] : GQp → K1(Λ), σ 7→ [T, σ] factors over GabQp
.

Proof. The proof is a more general version of the proof of lemma 2.2.1. The map

GQp → K1(Λ), σ 7→ [T, σ] factors over GQp/[GQp , GQp ] since K1(Λ) is commutative. Moreover,

for an adic ring Λ, we have by Proposition 1.5.1 of [FK06] that K1(Λ) ∼= limnK1(Λ/J(Λ)n).

Thus, [T, σ] = 1 if and only if [T /JnT, σ] = 1 for all n ≥ 1. Let σ ∈ GQp such that [T, σ] 6= 1.

Then there is some n ≥ 1 such that [T /Jn T, σ] 6= 1. Since T /Jn T is finitely generated over

the finite ring Λ/Jn (Λ is adic), it is a finite module. Since GQp acts continuously on T, we

find an open subgroup N of GQp that operates trivially on T /Jn T. Hence, the open set Nσ

is not in the kernel of the above map. So the kernel is closed and hence it induces a map

[T,−] : GabQp
= Gal(Qab

p ,Qp) = GQp/[GQp , GQp ]→ K1(Λ).

Remark 2.3.4. Let Λ act continuously from the right on some finite dimensional L-vector

space V for L/Qp finite. The map [T,−] : GabQp
→ K1(Λ) corresponds after base change to the

determinant detL(−|V ⊗Λ T) : GabQp
→ L× = K1(L) from lemma 2.2.1.

Conjecture 2.3.5 (Equivariant ε-isomorphism conjecture). There is a unique way of assigning

an isomorphism

εΛ,ξ(T) : 1→
(
dΛ(RΓ(Qp ,T))dΛ(T)

)
Λ̃

in V (Λ̃) to every triple (Λ,T, ξ) with Λ and T as above and ξ a basis of Zp(1) such that the

following properties hold:
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Multiplicativity:

For fixed Λ and ξ let Σ : 0→ T′ → T→ T′′ → 0 be a short exact sequence of finitely gener-

ated projective Λ-modules with continuous GQp -actions. Recall that in this case we have the

isomorphism dΛ(C(Qp ,Σ)) from lemma 1.3.14. Then the ε-isomorphism is multiplicative

in the following way:(
dΛ(C(Qp ,Σ))dΛ(Σ)

)
Λ̃
◦ εΛ,ξ(T) = εΛ,ξ(T′)εΛ,ξ(T′′).

Base change:

Let Λ′ be another adic ring and Y a finitely generated projective Λ′-module with com-

muting continuous Λ-right-action. Let T′ be Y ⊗Λ T. Then the ε-isomorphism for the

triple (Λ′,T′, ξ) is given by εΛ′,ξ(T′) = Y ⊗Λ εΛ,ξ(T). Strictly speaking, the right hand

side should read (Λ̃′ ⊗Λ′ Y )⊗
Λ̃
εΛ,ξ(T) and needs to be post-composed by the natural map

dΛ(ω) : dΛ(Y ⊗ΛRΓ(Qp ,T))→ dΛ(RΓ(Qp , Y ⊗Λ T)) from proposition 1.3.12 both of which

we will often omit.

Change of ξ:

Let σ ∈ I(Qab
p /Qp) ⊂ GabQp

. Then we have εΛ,χcycl(σ)ξ(T) = [T, σ]εΛ,ξ(T). The action of

[T, σ] ∈ K1(Λ) on the ε-isomorphism is as in corollary 1.1.37 (3)

Frobenius invariance:

Let φ ∈ GQp be a Frobeniuslift with χcycl(φ) = 1. Denote by ϕp := φ|Ẑnrp : Ẑnrp → Ẑnrp
the restriction of φ : BdR → BdR. The ring homomorphism ϕp ⊗ idΛ : Λ̃ → Λ̃ induces a

base change homomorphism (ϕp ⊗ idΛ)∗ : K1(Λ̃) → K1(Λ̃) (see lemma 1.1.10). We put

K1(Λ̃)T = {x ∈ K1(Λ̃)|(ϕp⊗ id)∗(x) = [T, φ]−1x}. Then the ε-isomorphism εΛ,ξ(T) belongs

to V (Λ)
(
1, dΛ(RΓ(Qp ,T)dΛ(T)

) K1(Λ)
× K1(Λ̃)T.

Specialisation:

Suppose we have (Λ,T, ξ) = (OL, T, ξ) such that V = L ⊗OL T is an L-linear de Rham

representation. Then, base changing to L̃ yields the ε-isomorphism of the de Rham rep-

resentation V (see proposition 2.2.2): L ⊗OL εOL,ξ(T ) = εL,ξ(L ⊗OL T ). More precisely

the correct base change is L̃⊗ÕL εOL,ξ(T ) = εL,ξ(L⊗OL T ) post-composed with map from

dL
(
L⊗OL RΓ(Qp , T )

ω−→ RΓ(Qp , L⊗OL T
)
.

Duality:

εΛ,ξ(T)εΛ°,−ξ(T∗(1))∗dΛ(ψ(Qp ,T))
−1

= dΛ(T(−1)
·ξ−→ T) up to appropriate trivialisations

and a sign, see remark 2.3.7 below.

Remark 2.3.6. Combining the base change and the specialisation property yields the following

specialisation property. Let L be a finite extension of Qp and α : Λ → Mn(L) a continuous

ring homomorphism such that Ln ⊗α,Λ T is an L-linear de Rham representation of GQp . Then

Ln ⊗α,Λ εΛ,ξ(T) = εL,ξ(L
n ⊗α,Λ T).

To be precise the left hand side should be post-composed by the determinant of the quasi-

isomorphism Ln ⊗α,Λ RΓ(Qp ,T)) → RΓ(Qp , L
n ⊗α,Λ T), which can be constructed by splitting

Ln ⊗α,Λ − up as L ⊗OL OnL ⊗α,Λ − as after theorem 1.3.19 and using proposition 1.3.12 and

proposition 2.7.11 of [NSW13].

Remark 2.3.7. The correct ”sign” in the duality statement of conjecture 2.3.5 that makes

the equivariant version compatible with the duality in 2.2.2, would be [H0(Qp ,T),−1]. Indeed,

if α : Λ → Mn(L) is as in remark 2.3.6 we have Ln ⊗α,Λ H0(Qp ,T) ∼= H0(Qp , L
n ⊗α,Λ T) and
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hence [H0(Qp ,T),−1] would be mapped to (−1)dimLH
0(Ln⊗α,ΛT) under the map

K1(Λ)
Ln⊗α,Λ−−−−−−−→ K1(L) = L×. The Λ-module H0(Qp ,T) is finitely generated since by proposi-

tion 1.3.12, RΓ(Qp ,T) is a perfect complex. However, we do not see why it should be projective.

Therefore, [H0(Qp ,T),−1] might not define an element of K1(Λ).

We have not found a way to describe an element x of K1(Λ), depending on T, such that for all

α as in remark 2.3.6, we have (Ln ⊗α,Λ −)(x) = (−1)dimLH
0(Qp ,Ln⊗α,ΛT) for a general adic ring

Λ. In the light of lemma 5.1.12 in [Wit08] the isomorphism K1(Λ) ∼= limnK1(Λ/Jn) will not be

helpful to define x. While Λ/J is semisimple, so that Λ/J ⊗Λ H
0(Qp ,T) ∼= H0(Qp ,Λ/J ⊗Λ T)

is a projective Λ/J-module, the exact sequence

0→ K1(Λ, J)→ K1(Λ)→ K1(Λ/J)→ 0

only defines x up to K1(Λ, J). The most promising approach is to work with projective resolu-

tions, which was suggested to us by Prof. Venjakob. We need Λ to have finite global dimension.

Therefore, we assume that Λ is OJGK, where O is the ring of integers of a finite extension of Qp

and G a profinte group that satsifies the condition in 1.4.2 of [FK06], so that Λ is an adic ring,

and of finite cohomological p-dimension. Then the global dimension of Λ is finite by [Bru66]

theorem 4.1 (see also [Ven02] theorem 3.26 for more information on the case where G is a com-

pact p-adic Lie group without p-torsion1). Let P • → H0(Qp ,T) be a projective resolution of

finite length, such that all P i are finitely generated. Such a resolution exists since H0(Qp ,T)

is finitely generated. Then we define x to be the element
∏
i∈N0

[P i,−1] in K1(Λ). This is

well-defined, i.e. independent of the choice of P •, by the last part of the proof of the resolution

theorem 3.1.14 in [Ros94]. Since Ln⊗α,Λ− is right-exact and P • consists of projective modules,

Ln⊗α,ΛP • → Ln⊗α,ΛH0(Qp ,T) = H0(Qp , L
n⊗α,ΛT) is an exact sequence of finitely generated

L-vector spaces. The identity (Ln ⊗α,Λ −)(x) = (−1)dimLH
0(Qp ,Ln⊗α,ΛT) is now clear by the

additivity of the dimension in exact sequences of finite dimensional vector spaces.

1We are thankful to Oliver Thomas who pointed us to [Ven02].
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Chapter 3

ε-isomorphisms and twists

In this section, we explore how the equivariant ε-isomorphism changes when the Galois repre-

sentation T is twisted.

3.1 Problem setting

We will consider ε-isomorphisms for special triples (Λ,T, ξ). Let L be a finite extension of Qp

with ring of integers OL. Let F/M/Qp be a tower of finite extensions. F is Galois over K with

group G = Gal(F,K). Let T be a finitely generated projective OL-module (hence a free OL-

module) with continuous, OL-linear GK-action. Let χ : GK → O×L be a continuous character,

which factors over G = GK/GF . We denote the twist T ⊗OL OL(χ) by T (χ). Let Λ be the

group ring OL[G]. In this case Λ̃ is Ẑnrp ⊗Zp Λ since Λ a profinite, finitely generated Zp-module,

so that we have −⊗̂ZpΛ = − ⊗Zp Λ by proposition 5.5.3 (d) of [RZ00]. We define Λ\ ⊗OL T to

be the GK-representation with underlying module structure Λ ⊗OL T and Galois action given

by σ(ḡ ⊗ t) = gσ−1 ⊗ σ(t). Note that the Λ-left-action and the Galois action commute. We set

T(T ) := Ind
Qp

K (Λ\ ⊗OL T ). Let ξ be a fixed basis of Zp(1).

Our aim is to show that if an ε-isomorphism for the triple (Λ,T(T ), ξ) exists then there is

also an ε-isomorphism for the triple (Λ,T(T (χ)), ξ). The uniqueness in conjecture 2.3.5 is only

claimed for a system of ε-isomorphism for all possible triples (Λ,T, ξ) that satisfies all the listed

properties, several of which concern the relationship of ε-isomorphisms for different triples. At

the same time proposition 2.3.2 shows that a mere isomorphism between the correct objects in

the determinant category always exists. Therefore, we have to be precise by what we mean with

the existence of an ε-isomorphism. In particular, we will clearly state which properties of the

untwisted ε-isomorphism are needed to ensure the corresponding property of the ε-isomorphism

in the twisted situation. Another strategy to circumvent this issue is that we use the same

construction to get from an isomorphism

εΛ,ξ(T(T )) : 1→
(
dΛ(RΓ(Qp ,T(T ))dΛ(T(T ))

)
Λ̃

to an isomorphism

εΛ,ξ(T(T (χ))) : 1→
(
dΛ(RΓ(Qp ,T(T (χ)))dΛ(T(T (χ)))

)
Λ̃

for all choices of T and ξ. For this fixed candidate εΛ,ξ(T(T (χ))), we will check each property

of an ε-isomorphism assuming that εΛ,ξ(T(T )) satisfies this property.
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3.2 Twist as a base change

The key ingredient for constructing the ε-isomorphism in the twisted situation is to shift the

twist from the OL-module T to a base change from the ring Λ to itself. Then the latter induces

a twist functor V (Λ)→ V (Λ). The idea for such a twist functor can be found in [LVZ15] p27 f

and in [BV16] p33 ff.

Construction of the twist functor There is a continuous OL-algebra homomorphism Twχ :

Λ→ Λ which is given on ḡ ∈ G by ḡ 7→ χ(ḡ)−1ḡ. The continuity can be easily deduced from the

fact that Twχ is OL-linear and the πL-adic and the J(Λ)-adic topology on Λ agree (see 1.3.10

and 1.3.11). This homomorphism induces a functor Tw∗χ := Λ⊗Twχ,Λ− = Λ⊗Twχ Λ⊗Λ− from

the category of Λ-modules to itself. The Λ-left-module Λ⊗Twχ Λ is free of rank 1 via the map

Λ⊗Twχ Λ→ Λ, g′ ⊗ ḡ = g′χ(ḡ)−1ḡ ⊗ 1 = 1⊗ χ(g′)g′ḡ 7→ g′χ−1(g)ḡ

(it also is a free Λ-right-module of rank 1 via g′ ⊗ ḡ 7→ χ(g′)g′ḡ) and the left and right actions

of Λ commute. We can apply lemma 1.1.40 and proposition 1.1.42 (3) to see that Tw∗χ induces

compatible (up to isomorphism) functors Λ ⊗Twχ − : (Dp(Λ), is) → (Dp(Λ), is) and Tw∗χ :

V (Λ) → V (Λ). Note that Tw∗χ : V (Λ) → V (Λ) is a monoidal functor which commutes with dΛ

up to isomorphism of determinant functors and that we do not need the derived tensor product,

since we tensor with a free module.

We can lift this construction to Λ̃. As above, Ẑnrp ⊗Zp Λ ⊗Twχ,Λ Λ is free of rank 1 as Λ̃-left-

or -right-module. So the exact functor
(
Ẑnrp ⊗Zp Λ⊗Twχ,Λ Λ

)
⊗

Λ̃
− : PMod(Λ̃) → PMod(Λ̃)

induces a functor Tw∗χ : V (Λ̃)→ V (Λ̃) with similar properties. Using lemma 1.1.35 part (3) we

see that the following diagram commutes up to isomorphism of monoidal functors:

V (Λ) V (Λ)

V (Λ̃) V (Λ̃).

Tw∗χ

Λ̃⊗Λ− Λ̃⊗Λ−
Tw∗χ

The next lemma shows how base change of Λ along Twχ translates to the normal notion of

twisting.

Lemma 3.2.1.

(1) Let M be a Λ-module. Then the OL-linear map

ρ : Tw∗χ(M)→M ⊗OL OL(χ), ḡ ⊗m 7→ χ(g)ḡm⊗ eχ,

where eχ denotes a basis of OL(χ) on which Λ acts through χ, is a natural isomorphism

of topological Λ-modules.

(2) Let N be an OL-linear GK-module. The OL-linear map

ρ′ : Tw∗χ(Λ\ ⊗OL N)→ Λ\ ⊗OL N(χ), g′ ⊗ g ⊗ n 7→ g′χ(g)−1g ⊗ n⊗ eχ

is a natural isomorphism of topological (Λ, GK)-modules. Here, GK acts on OL(χ) via χ

and Λ only be left-multiplication on Λ\ ⊗OL N(χ).
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(3) Let N be as above. Then the map

Tw∗χ(T(N))→ T(N(χ)), g′ ⊗ σ ⊗ ḡ ⊗ n 7→ σ ⊗ g′χ(g)−1g ⊗ n⊗ eχ

is a natural isomorphism of topological (Λ, GQp )-modules.

Proof.

(1) The map is well defined since g⊗m = 1⊗χ(g)gm both map to χ(g)ḡm⊗ eχ. The inverse

of the map is given by m⊗ eχ 7→ 1⊗m. ρ is Λ-linear since

ρ(g(1⊗m)) = ρ(g ⊗m) = χ(g)gm⊗ eχ = gm⊗ χ(g)eχ = g(m⊗ eχ) = gρ(1⊗m).

Since the topology on both modules is induced by Λ and ρ as well as ρ−1 are Λ-linear,

they are both continuous.

(2) The map is well-defined since g′⊗g⊗n = g′χ(g)−1g⊗1⊗n both map to g′χ(g)−1g⊗n⊗eχ.

The inverse map is given by g ⊗ n ⊗ eχ 7→ g ⊗ 1 ⊗ n. The map is clearly Λ-linear. For

σ ∈ GK we have

σ(ρ′(g′ ⊗ g ⊗ n)) = σ(g′χ(g)−1g ⊗ n⊗ eχ) = g′χ(g)−1gσ−1 ⊗ σ(n)⊗ χ(σ)eχ

= g′χ(gσ−1)−1gσ−1 ⊗ σ(n)⊗ eχ = ρ′(g′ ⊗ gσ−1 ⊗ σ(n))

= ρ′(σ(g′ ⊗ g ⊗ n)).

The continuity is again due to the Λ-linearity.

(3) Since the Λ- and the GK-action commute on Λ\ ⊗N , the isomorphism in (3) comes from

the one in (2) after tensoring with Z[GQp ]⊗Z[GK ] −. The topology of the induction is the

product topology and hence continuity is again clear.

Applying the above lemma to our setting yields:

Corollary 3.2.2.

(1) There is a natural Λ-isomorphism φ0(T ) : Tw∗χRΓ(Qp ,T(T ))→ RΓ(Qp ,T)(χ).

(2) There is a natural isomorphism φ2(T ) : Tw∗χ(T(T )) → T(T (χ)) of topological (Λ, GQp )-

modules.

(3) The four different ways to pull out the twist make the following diagram commute:

Tw∗χ(RΓ(Qp ,T(T ))) RΓ(Qp , Tw
∗
χ(T(T )))

RΓ(Qp ,T(T ))(χ) RΓ(Qp ,T(T (χ))),

ω

φ0(T ) φ2(T )∗

ϑ̃

where ω is the natural quasi-isomorphism from proposition 1.3.12 (3) and ϑ̃ is the quasi-

isomorphism that comes from Shapiro’s lemma at the end of subsection 1.3.1. We call the

natural morphism from the upper left to lower right corner φ1(T ).

Proof. The first two assertions are just (1) and (3) of lemma 3.2.1. The third one follows from

unpacking the definitions.
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Lemma 3.2.3. The twist functor commutes with the K1(Λ)-torseur structure in the following

way: Let α be an element of K1(Λ) and f : A → B a morphism in V (Λ). Then

Tw∗χ(αf) = Tw∗χ(α)Tw∗χ(φ), where Tw∗χ : K1(Λ) → K1(Λ) is the base change homomorphism

along the map Twχ : Λ→ Λ from lemma 1.1.10 sending [P, σ] to [Tw∗χ(P ), Tw∗χ(σ)]. The same

holds for the twist functor Tw∗χ : V (Λ̃)→ V (Λ̃).

Proof. Let α = [P, σ]. By lemma 1.1.35 (4) and lemma 1.1.24, αf is given by

A→ dΛ(P )dΛ(P )−1A
dΛ(σ)·id ·f−−−−−−→ dΛ(P )dΛ(P )−1B → B.

The twist functor Tw∗χ commutes with dΛ and since it is a monoidal functor, it also commutes

with taking inverses (−)−1 (lemma 1.1.30). Therefore, we get that Tw∗χ(αf) is

Tw∗χ(A)→ dΛ(Tw∗χ(P ))dΛ(Tw∗χ(P ))−1Tw∗χ(A)

dΛ(Tw∗χ(σ)) idTw∗χ(f)
−−−−−−−−−−−−−−→ dΛ(Tw∗χ(P ))dΛ(Tw∗χ(P ))−1Tw∗χ(B)→ Tw∗χ(B).

Employing the lemmata 1.1.35 and 1.1.24 once more, we see that this is just [Tw∗χ(P ), Tw∗χ(σ)]Tw∗χ(f).

3.3 ε-isomorphism of the twisted representation

We can now define the candidate for an ε-isomorphism for T(T (χ)) given εΛ,ξ(T(T )).

Definition 3.3.1. Let Λ, χ and T be as in the problem setting in section (3.1). Given an

isomorphism εΛ,ξ(T(T )) : 1
Λ̃
→
(
dΛ(RΓ(Qp ,T(T )))dΛ(T(T ))

)
Λ̃

, we define

εΛ,ξ(T(T (χ))) : 1
Λ̃
→
(
dΛ(RΓ(Qp ,T(T (χ))))dΛ(T(T (χ)))

)
Λ̃

as the map

1
dΛ(uχ)

Λ̃−−−−−→ Tw*
χ(1)

Tw∗χ(εΛ,ξ(T(T )))
−−−−−−−−−−→ Tw*

χ

(
dΛ(RΓ(Qp ,T(T )))dΛ(T(T ))

)
Λ̃

= Tw*
χ

(
dΛ(RΓ(Qp ,T(T )))

)
Λ̃
· Tw*

χ

(
dΛ(T(T ))

)
Λ̃(

dΛ(φ1(T ))·dΛ(φ2(T ))
)

Λ̃−−−−−−−−−−−−−−−→ (dΛ(RΓ(Qp ,T(T (χ))))dΛ(T(T (χ)))
)

Λ̃
,

where uχ : 0
∼−→ Λ⊗Twχ 0.

Remark 3.3.2. For the duality statement, we consider the twist homomorphism as a ring

homomorphism Tw : Λ°→ Λ°, ḡ 7→ χ(ḡ)−1ḡ and define a twist functor Tw*
χ as the base change

Λ°⊗Tw*
χ
−. Given an isomorphism

εΛ°,ξ

(
T(T )∗(1)

)
: 1

Λ̃°

→
(
dΛ°

(
RΓ(Qp ,T(T )∗(1))

)
dΛ°

(
T(T )∗(1)

))
Λ̃°

,

we can define

εΛ°,ξ

(
T(T (χ))∗(1)

)
: 1

Λ̃°

→
(
dΛ°

(
RΓ(Qp ,T(T (χ))∗(1))

)
dΛ°

(
T(T (χ))∗(1)

))
Λ̃°
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as before using the isomorphism

φ′2 : Λ°⊗Twχ T(T )∗
ν−→ (Λ⊗Twχ T(T ))∗

φ2(T )∗−1

−−−−−−→ T(T (χ))∗

with ν as in lemma 1.3.17 instead of φ2(T ) and instead of φ1(T ) the isomorphism

φ′1(T ) : Λ°⊗Twχ RΓ(Qp ,T(T )∗(1))
ω−→ RΓ(Qp ,Λ°⊗Twχ T(T )∗(1))

φ′2∗−−→ RΓ(Qp ,T(T (χ))∗(1)).

The morphism ω is from proposition 1.3.12. Consider Λ as a (Λ,Λ)-module, where the right

action is via Twχ. Then Λ∗ is just Λ° with the usual left-action of Λ° and a right-action of Λ°

via Twχ. This explains that the isomorphism ν in the definition of φ′2 is well-defined.

In order to ease notation, we have omitted all natural isomorphisms that arise from compos-

ing monoidal functors in the determinant category (1.1.35 (3)) or those connected to monoidal

functors. We will continue doing this in the following. Also, the isomorphisms attached to units

and inverses in the determinant category will be left out. Since units are unique up to unique

isomorphism in a Picard category, we will sometimes also omit the isomorphism of units dΛ(uχ) .

εΛ,ξ(T(T (χ))) satisfies each of the properties of an equivariant ε-isomorphism that εΛ,ξ(T(T ))

satisfies.We will verify this in the following. Since we consider ε-isomorphism for a fixed adic

ring Λ, we will consider the specialisation property from remark 2.3.6.

Proposition 3.3.3 (Specialisation). Suppose that for each finite extension L′ of Qp and each

continuous ring homomorphism α : Λ → Mn(L′), such that L′n ⊗α,Λ T(T ) is an L′-linear de

Rham representation of GQp , we have L′n⊗α,Λ εΛ,ξ(T(T )) = εL′,ξ(L
′n⊗α,ΛT(T )). Then for each

choice L′ and α, such that L′n⊗α,Λ T(T (χ)) is an L′-linear de Rham representation of GQp , we

also have L′n ⊗α,Λ εΛ,ξ(T) = εL′,ξ(L
′n ⊗α,Λ T).

Proof. Let L′ be a finite extension of Qp and let Λ act continuously on L′n from the right,

via a continuous ring homomorphism α : Λ → Mn(L′), such that the L′-linear continuous

GQp -representation L′n ⊗α T(T (χ)) is de Rham. Then we have an (L′, GQp )-isomorphism

L′n ⊗α T(T (χ))
idL′n ⊗φ2(T )−1

−−−−−−−−−−→
∼

L′n ⊗α Tw*
χ(T(T )) = L′n ⊗α◦Twχ T(T )

so that the specialisation of T(T ) via the continuous ring homomorphism Λ
Twχ−−−→ Λ

α−→ Mn(L′)

is also de Rham. Hence, we can use the specialisation property of εΛ,ξ(T(T )) along α ◦Twχ and

get that d
L̃′

(ω) ◦ L′n ⊗α◦Twχ εΛ,ξ(T(T )) = εL′,ξ(L
′n ⊗α◦Twχ T(T )). As a result, we deduce

d
L̃′

(ω) ◦ L′n ⊗α εΛ,ξ(T(T (χ)))

=d
L̃′

(ω) ◦ L′n ⊗α
(

(dΛ(φ1)dΛ(φ2))
Λ̃
◦ Tw*

χ(εΛ,ξ(T(T ))) ◦ dΛ(uχ)
Λ̃

)
=d

L̃′
(ω) ◦

(
dL′(L

′n ⊗α φ1)dL′(L
′n ⊗α φ2)

)
L̃′
◦ L′n ⊗α◦Twχ εΛ,ξ(T(T ))

=
(
dL′(RΓ(Qp , L

′n ⊗α φ2))dL′(L
′n ⊗α φ2)

)
L̃′
◦ εL′,ξ(L′n ⊗α◦Twχ T(T ))

=εL′,ξ(L
′ ⊗α T(T (χ))).

The first equality is the definition of εΛ,ξ(T(T (χ))). We used the commutativity of base change

with dΛ to get from the second to the third line. From the third to the fourth line, we used that,
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by definition of φ1, we have ωLn ◦ L′n ⊗α φ1 = RΓ(Qp , L
′n ⊗α φ2) ◦ ωTw and the specialisation

property of εΛ,ξ(T(T )). The final equality is just the multiplicativity of εL′,ξ with respect to the

exact sequence

0→ L′n ⊗α◦Twχ T(T )
L′n⊗φ2−−−−−→ L′n ⊗α T(T (χ))→ 0→ 0.

Recall that the value of a determinant functor on such a short exact sequence is compatible with

its value on the isomorphism by the third requirement in definition 1.1.32.

Proposition 3.3.4 (Multiplicativity). Let Σ : 0 → T ′ → T → T ′′ → 0 be a short exact

sequence of OL -linear GK-representations and let εΛ,ξ(T(T ), εΛ,ξ(T(T ′)) and εΛ,ξ(T(T ′′) be

isomorphisms such that the multiplicativity of conjecture 2.3.5 holds with respect to the induced

short exact sequence of GQp -modules T(Σ) : 0 → T(T ′) → T(T ) → T(T ′′) → 0. Then the

multiplicativity holds for the isomorphisms εΛ,ξ(T(T (χ)))), εΛ,ξ(T(T ′(χ)))) and εΛ,ξ(T(T ′′(χ))))

with respect to the short exact sequence obtained by twisting Σ with χ and applying T(−).

Proof. Since φ2 is natural, we have an isomorphism

Tw*
χ(T(Σ)) : 0 Tw*

χ(T(T ′)) Tw*
χ(T(T )) Tw*

χ(T(T ′′)) 0

T(Σ(χ)) : 0 T(T ′(χ)) T(T (χ)) T(T ′′(χ)) 0

φ2(T ′) φ2(T ) φ2(T ′′)

of short exact sequences of Λ-modules which induces the identity

dΛ(φ2(T ′))dΛ(φ2(T ′′)) ◦ dΛ

(
Tw*

χ(T(Σ))
)

= dΛ

(
T(Σ(χ))

)
◦ dΛ(φ2(T )).

Moreover, we have dΛ(Tw*
χ(T(Σ))) = Tw*

χ(dΛ(T(Σ))) since dΛ commutes with base change

(proposition 1.1.42 (3)). Similarly, we get

dΛ(φ1(T ′))dΛ(φ1(T ′′)) ◦ Tw*
χ dΛ(C(Qp ,T(Σ))) = dΛ(C(Qp ,T(Σ(χ)))) ◦ dΛ(φ1(T )).

Putting this together yields:(
dΛ

(
C(Qp ,T(Σ(χ)))

)
dΛ

(
T(Σ(χ))

))
Λ̃
◦ εΛ,ξ

(
T(T (χ))

)
=
(
dΛ

(
C(Qp ,T(Σ(χ)))

)
dΛ

(
T(Σ(χ))

))
Λ̃
◦
(
dΛ

(
φ1(T )

)
dΛ

(
φ2(T )

))
Λ̃
◦ Tw*

χ

(
εΛ,ξ(T(T ))

)
◦ dΛ(uχ)

Λ̃

=
(
dΛ

(
φ1(T ′)

)
dΛ

(
φ1(T ′′)

)
dΛ

(
φ2(T ′)

)
dΛ

(
φ2(T ′′)

))
Λ̃

◦ Tw*
χ

((
dΛ

(
T(Σ)

)
dΛ

(
C(Qp ,T(Σ))

))
Λ̃
◦ εΛ,ξ

(
T(T )

))
◦ dΛ(uχ)

Λ̃

=
(
dΛ

(
φ1(T ′)

)
dΛ

(
φ1(T ′′)

)
dΛ

(
φ2(T ′)

)
dΛ

(
φ2(T ′′)

))
Λ̃
◦ Tw*

χ

(
εΛ,ξ

(
T(T ′)

)
εΛ,ξ

(
T(T ′′)

))
◦ dΛ(uχ)

Λ̃

=

((
dΛ

(
φ1(T ′)

)
dΛ

(
φ2(T ′)

))
Λ̃
◦ Tw*

χ

(
εΛ,ξ

(
T(T ′)

))
◦ dΛ(uχ)

Λ̃

)
·((

dΛ

(
φ1(T ′′)

)
dΛ

(
φ2(T ′′)

))
Λ̃
◦ Tw*

χ

(
εΛ,ξ

(
T(T ′′)

))
◦ dΛ(uχ)

Λ̃

)
= εΛ,ξ

(
T(T ′(χ))

)
εΛ,ξ

(
T(T ′′(χ))

)
.

where at the first and last equality sign, we used definition 3.3.1, at the second we used the

naturality of the determinant functor on the short exact sequences from above, at the third we

used the multiplicativity of the untwisted ε-isomorphisms and at the fourth we just rearranged.
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Proposition 3.3.5 (Base Change). Let εΛ,ξ(T(T )) be compatible with base change. In other

words, let Λ′ be any adic ring and Y a finitely generated projective Λ′-module

with commuting continuous Λ-right-action via a ring homomorphism β : Λ → End(Y ). If

the ε-isomorphism for the triple (Λ′, Y ⊗β◦Tw T(T ), ξ) exists, then it is given by

εΛ′,ξ(Y ⊗β◦Tw T(T )) = Y ⊗β◦Tw εΛ,ξ(T(T )). Assume further, that the we have

εΛ′,ξ(Y ⊗β T(T (χ))) = Y ⊗β (dΛ(φ1)dΛ(φ2))
Λ̃
◦ εΛ′,ξ(Y ⊗β Tw*

χ(T(T )))

which is just an instance of the multiplicativity of εΛ′,ξ(−). Then εΛ,ξ(T(T (χ))) satisfies the base

change property with respect to Λ′, Y and β.

Proof. We will proceed similarly to the specialisation property. Let Λ′, Y and β be as in the

proposition. Since the ring homomorphism Tw : Λ → Λ is continuous, so is the right-action of

Λ on Y via β ◦ Tw and we can do the following calculations:

Y ⊗β εΛ,ξ(T(T (χ))) = Y ⊗β
(

(dΛ(φ1)dΛ(φ2))
Λ̃
◦ Tw*

χ(εΛ,ξ(T(T ))) ◦ dΛ(uχ)
Λ̃

)
= Y ⊗β

(
(dΛ(φ1)dΛ(φ2))

Λ̃

)
◦ Y ⊗β Tw*

χ εΛ,ξ(T(T )) ◦ Y ⊗β dΛ(uχ)
Λ̃

= Y ⊗β
(
(dΛ(φ1)dΛ(φ2))

Λ̃

)
◦ Y ⊗β◦Tw εΛ,ξ(T(T ))

= Y ⊗β
(
(dΛ(φ1)dΛ(φ2))

Λ̃

)
◦ εΛ′,ξ(Y ⊗β◦Tw T(T ))

= Y ⊗β
(
(dΛ(φ1)dΛ(φ2))

Λ̃

)
◦ εΛ′,ξ(Y ⊗β Tw*

χ(T(T )))

= εΛ′,ξ(Y ⊗β T(T (χ)))

The first two lines are just unpacking definitions and rearranging. From the second to the third

line, we pulled the twist functor down into the Λ-action on Y . Then we used the base change

property of εΛ,ξ(T(T )) along β◦Tw. Finally, we use the assumed multiplicativity of εΛ′,ξ(−).

Proposition 3.3.6 (Change of ξ). Let σ ∈ I(Qab
p /Qp) ⊂ GabQp

. If there are isomorphisms

εΛ,ξ(T(T )) and εΛ,χcycl(σ)ξ(T(T )) compatible with a change of ξ as in conjecture 2.3.5, then

εΛ,χcycl(σ)ξ(T(T (χ))) = [T(T (χ)), σ]εΛ,ξ(T(T (χ))).

Proof. Since φ2(T ) is an isomorphism of GQp -modules, the diagram

Tw*
χ(T(T )) Tw*

χ(T(T ))

T(T (χ)) T(T (χ))

φ2(T )

Tw*
χ(σ)=idΛ⊗Twχσ

φ2(T )

σ

commutes, which shows [Tw*
χ(T(T )),Tw*

χ(σ)] = [T(T (χ)), σ]. This implies the last equality in

the following calculation

εΛ,χcycl(σ)ξ(T(T (χ)) =
(
dΛ(φ1(T ))dΛ(φ2(T ))

)
Λ̃
◦ Tw∗χ

(
εΛ,χcycl(σ)ξ(T(T ))

)
◦ dΛ(uχ)

=
(
dΛ(φ1(T ))dΛ(φ2(T ))

)
Λ̃
◦ Tw*

χ

(
[T(T ), σ]) εΛ,ξ(T(T ))

)
◦ dΛ(uχ)

=
(
dΛ(φ1(T ))dΛ(φ2(T ))

)
Λ̃
◦ [Tw*

χ(T(T )),Tw*
χ(σ)] Tw*

χ(εΛ,ξ(T(T ))) ◦ dΛ(uχ)

= [Tw*
χ(T(T )),Tw*

χ(σ)](dΛ(φ1(T ))dΛ(φ2(T ))
Λ̃
◦ Tw*

χ(εΛ,ξ(T(T ))) ◦ dΛ(uχ)

= [Tw*
χ(T(T )),Tw*

χ(σ)] εΛ,ξ(T(T (χ)))

= [T(T (χ)), σ] εΛ,ξ(T(T (χ))).
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At the second equation sign we used that the untwisted ε-isomorphisms are assumed to be

compatible with the change of ξ as in conjecture 2.3.5. The third equation holds because the

twist functor commutes with the K1(Λ)-action by lemma 3.2.3. At the first and fifth equation

sign, we used the definition of the ε-isomorphism for a twisted representation (3.3.1). Finally,

we used lemma 1.1.24 for the fourth equality.

Proposition 3.3.7 (Frobenius invariance). Let φ ∈ GQp be a Frobeniuslift with χcycl(φ) = 1.

Denote by ϕp := φ|Ẑnrp : Ẑnrp → Ẑnrp the restriction of φ : BdR → BdR. The ring homomor-

phism ϕp ⊗ idΛ : Λ̃ → Λ̃ induces a base change homomorphism (ϕp ⊗ idΛ)∗ : K1(Λ̃) → K1(Λ̃)

(see lemma 1.1.10). We put K1(Λ̃)T(T ) = {x ∈ K1(Λ̃)|(ϕp ⊗ id)∗(x) = [T(T ), φ]−1x} and

K1(Λ̃)T(T (χ)) = {x ∈ K1(Λ̃)|(ϕp ⊗ id)∗(x) = [T(T (χ)), φ]−1x}. If the ε-isomorphism εΛ,ξ(T)

belongs to V (Λ)
(
1, dΛ(RΓ(Qp ,T(T ))dΛ(T(T ))

) K1(Λ)
× K1(Λ̃)T(T ), then εΛ,ξ(T(T (χ))) belongs to

V (Λ)
(
1, dΛ(RΓ(Qp ,T(T (χ)))dΛ(T(T (χ)))

) K1(Λ)
× K1(Λ̃)T(T (χ)).

Proof. Let εΛ,ξ(T(T )) ∈ V (Λ)
(
1, dΛ(RΓ(Qp ,T(T ))dΛ(T(T ))

)K1(Λ)
× K1(Λ̃)T(T ) be given as (f, α).

Since the twist functor commutes with the action of K1(Λ̃) as described in lemma 3.2.3, we have

that

Tw*
χ(εΛ,ξ(T(T )) = Tw*

χ((f, α))

=
(

Tw*
χ(f),Tw*

χ(α)
)
∈ V (Λ)

(
Tw*

χ(1),Tw*
χ

(
dΛ(RΓ(Qp ,T))dΛ(T)

)) K1(Λ)
× K1(Λ̃).

The isomorphisms with which we pre- and post-compose Tw*
χ(εΛ,ξ(T(T )) to get

εΛ,ξ(T(T (χ))) are defined over Λ, so that

εΛ,ξ(T(T (χ)) ∈ V (Λ)
(
1, dΛ(RΓ(Qp ,T(T (χ)))dΛ(T(T (χ)))

) K1(Λ)
× K1(Λ̃)T(T (χ))

holds if and only if Tw*
χ(α) lies in K1(Λ̃)T(T (χ)). We show more generally, that the map

Tw*
χ : K1(Λ̃) → K1(Λ̃) restricts to an isomorphism K1(Λ̃)T(T ) → K1(Λ̃)T(T (χ)). The ring ho-

momorphism Twχ : Λ→ Λ has the inverse Twχ−1 . It induces an inverse to the homomorphism

Tw*
χ : K1(Λ̃) → K1(Λ̃), which is hence automatically injective. By symmetry, we only need to

prove that Tw*
χ(K1(Λ̃)T(T )) ⊂ K1(Λ̃)T(T (χ)). Let α ∈ K1(Λ̃)T(T ). Both homomorphisms Tw*

χ

and (ϕp ⊗ idΛ)∗ come from base changes. These base changes commute since the first one is

only on the first, the second only on the second factor of Λ̃ = Ẑnrp ⊗ Λ. Hence, so do Tw*
χ and

(ϕp ⊗ idΛ)∗. We get that

(ϕp ⊗ idΛ)∗
(

Tw*
χ(α)

)
= Tw*

χ

(
(ϕp ⊗ idΛ)∗(α)

)
= Tw*

χ

(
[T(T ), φ]−1α

)
= Tw*

χ

(
[T(T ), φ]

)−1
Tw*

χ(α),

where at the second equality sign we used that α came from K1(Λ̃)T(T )). We saw above in the

proof of proposition 3.3.6 that Tw*
χ

(
[T(T ), φ]

)
= [T(T (χ)), φ]. So Tw*

χ(α) lies in K1(Λ̃)T(T (χ)).
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Proposition 3.3.8 (Duality). If εΛ,ξ(T(T )) satisfies the duality statement in conjecture 2.3.5,

then so does εΛ,ξ(T(T )), i.e. up to a sign as in remark 2.3.7, we have

εΛ,ξ

(
T(T (χ))

)
εΛ°,−ξ

(
T(T (χ))∗(1)

)∗
dΛ

(
ψ(Qp ,T(T (χ)))

)−1
= dΛ

(
T(T (χ))(−1)

·ξ−→ T(T (χ))
)

Λ̃
.

Proof. We begin by noting that the map ·ξ is a natural transformation between the identity

on PMod(Λ) and the functor (−)(−1). So, the diagram

Tw*
χ(T(T )(−1) Tw*

χ(T(T ))

T(T (χ))(−1) T(T (χ))

φ2(T )(−1)

·ξ

φ2(T )

·ξ

commutes. Clearly, the twist functor Tw*
χ, being a base change, commutes with (−)(−1). Thus,

we get that the left side of the following diagram is just multiplication by ξ:

dΛ(T(T (χ))(−1))
dΛ(RΓ(Qp ,T(T (χ))∗(1))∗ · dΛ(T(T (χ))∗(1))∗

·(dΛ(RΓ((Qp ,T(T (χ))∗(1))∗)−1

Tw*
χ(dΛ(T(T )(−1)))

Tw*
χ (dΛ(R(Γ(Qp ,T(T )∗(1))∗ · dΛ(T(T )∗(1)))∗

· d(RΓ(Qp ,T(T )∗(1))∗)−1
)

Tw*
χ(dΛ(T(T )) Tw*

χ (dΛ(RΓ(Qp ,T(T ))) · dΛ(T(T )) · dΛ(RΓ(Qp ,T(T )))−1

dΛ(T(T (χ)) dΛ(RΓ(Qp ,T(T (χ))) · dΛ(T(T (χ))) · dΛ(RΓ(Qp ,T(T )))−1.

φ2(−1)

µ

(φ′1·φ′2·φ
′−1
1 )∗

·ξ

µ

φ2

µ

φ1·φ2·φ−1
1

µ

The diagram itself commutes up to the necessary sign from remark 2.3.7. Each horizontal

arrow is induced by de-trivialising objects. The upper two also use the isomorphism (−)∗(1)∗ =

(−)(−1) (1.2.8) and the middle two are post-composed with Tw*
χ. The twist functor commutes

with dΛ by construction, with duals by remark 3.3.2 and with inverses by lemma 1.1.30 since it

is monoidal. Therefore, we can pull it out as done in the middle of the right column. The upper

and lower square commute by the definition of inverses of morphisms (1.1.20 (3)) and using the

isomorphism (−)∗(1)∗ = (−)(−1) in the upper square. The middle square is nothing but the

duality for εΛ,ξ(T(T )) and εΛ°,−ξ(T(T )∗(1))∗ post-composed with Tw*
χ. So this square commutes

up to Tw*
χ applied to the sign from remark 2.3.7 for T(T ). We have the Λ-isomorphism

φ0
1 : Tw*

χ(H0(Qp ,T(T ))) ∼= H0(Qp ,Tw*
χ(T(T ))) ∼= H0(Qp ,T(T (χ))).

Now, if we have a finite resolution P • → H0(Qp ,T(T )), consisting of finitely generated, projec-

tive Λ-modules, we obtain a resolution Λ⊗Tw P • → H0(Qp ,T(T (χ))) with the same properties.

This shows that applying Tw*
χ to the sign associated to T(T ) yields the sign associated to

T(T (χ)).

Therefore, it only remains to prove that the right hand side of the diagram is the product

εΛ,ξ

(
T(T (χ))

)
· εΛ°,−ξ

(
T(T (χ))

)∗ · dΛ

(
ψ(Qp ,T(T (χ)))

)−1
. By definition of εΛ,ξ

(
T(T (χ))

)
and

εΛ°,−ξ
(
T(T (χ))∗(1)

)
and because duals commute with dΛ, this reduces to showing the commu-

tativity of the diagram
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Tw*
χ

(
RΓ(Qp ,T(T ))

)
Tw*

χ

(
RΓ(Qp ,T(T )∗(1))∗[−2]

)
(

Tw*
χ(RΓ(Qp ,T(T )∗(1)))

)∗
[−2]

RΓ(Qp ,T(T (χ))) RΓ(Qp ,T(T (χ))∗(1))∗[−2].

φ1

Tw*
χ

(
ψ(Qp ,T(T ))

)
ν

φ′∗−1
1 [−2]

ψ(Qp ,T(T (χ))

This, however, is just an instance of the compatibility of the local Tate-duality with base change

(1.3.18) and its naturality.

Remark 3.3.9. The heart of our construction of εΛ,ξ(T(T (χ))) was a base change along

Tw : Λ → Λ. In the proofs of the properties of εΛ,ξ(T(T (χ))) we established in particular

the compatibility of those properties with this base change. However, the techniques are not

limited to the base change along Tw : Λ → Λ. In fact, for any triple (Λ,T, ξ) as in conjecture

2.3.5 and another adic ring Λ′ with Y in PMod(Λ′) and Λ acting continuously from the right on

Y in a way compatible with the Λ′-action, our arguments show that if εΛ,ξ(T) has some of the

properties in 2.3.5, then so does Y ⊗Λ εΛ,ξ(T).

Remark 3.3.10. The finiteness of the Galois extension F/K is not essential to the proofs in

this chapter. The assumption is a remnant of the setting in chapter 4. In fact, the proofs in this

chapter go through for certain infinite extensions F/K, too. We only have to make sure that Λ

remains an adic ring. In [FK06] 1.4.2 Fukaya and Kato show that if a profinite group G contains

a topologically finitely generated pro-p open normal subgroup, then the completed group ring

OLJGK := limN∈N OL[G/N ], where N is the set of open normal subgroups of G, is an adic ring.

For our purpose, we want to take Λ as OLJGK, where G is the Galois group of F/K. Again by

[FK06] 1.4.2, Λ will be an adic ring, for instance, if F/K is a p-adic Lie extension.

The key argument in this chapter was the twist functor. Before we define it in the new sit-

uation, we briefly consider the topology on Λ. By definition, Λ carries a natural profinite

topology given by the system of fundamental neighbourhoods of 0 consisting of

πnLΛ + I(U) = ker
(
Λ → OL/πnL[G/U ]

)
, where πL is a uniformiser of OL and the ideal

I(U) = ker
(
Λ → OL[G/U ]

)
is the augmentation ideal of an open normal subgroup U . On

the one hand, this topology is clearly finer than the topology in [FK06] 1.4.2 that makes Λ an

adic ring. On the other hand, by lemma 1.3.11 (2) the latter topology is the same as the J-adic

topology, where J is the Jacobson radical of Λ. Since Λ is semi-local as an adic ring (1.3.11 (3)),

the J-adic topology is finer than the natural profinite topology by [NSW13] 5.2.16 and hence all

these topologies are the same.

Now, we can extend the main ingredients of the definition of εΛ,ξ(T(T (χ))) from the finite to

the infinite case:

Lemma 3.3.11. There is a continuous OL-algebra homomorphism T̂w : Λ→ Λ, which extends

the twist morphism Tw : OL[G] → OL[G], defined as at the beginning of section 3.2, along the

dense embedding

OL[G] ↪→ Λ, g 7→ (gN)N∈N .
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Proof. We want to use the universal property of the completed group ring (see [Wil98] propo-

sition 7.2.1). Therefore, we check that the map f : G→ Λ×, g 7→ χ(g)−1(gN)N is continuous if

we equip Λ× ⊂ Λ with the subspace topology. Let n ≥ 1 and U ∈ N . Then by the continuity

of χ there is an open normal subgroup U ′ of G inside U such that χ(U ′)−1 ⊂ 1 + πnOL. Since

(gN)N∈N − (gu′N)N∈N lies in I(U) for all g in G and u′ in U ′, we have

f(gU ′) = χ(g)−1χ(U ′)−1(gU ′N)N∈N ⊂ χ(g)−1χ(U ′)−1(gN)N∈N + I(U) = f(g)χ(U ′)−1 + I(U)

⊂ f(g)(1 + πnΛ) + I(U) ⊂ f(g) + (πnΛ + I(U)).

By the universal property of the completed group ring, we get T̂w. It extends Tw since Tw is

given by the universal property of the group ring OL[G] applied to f and because the injection

G ⊂ Λ factors over OL[G].

As a result of this lemma, we get a twist functor as before. The next lemma shows that this

twist functor also relates to twisting T with χ as in the finite case.

Lemma 3.3.12. There is a (Λ, GK)-isomorphism φ̂2 : Λ⊗
T̂w

(Λ\ ⊗OL T )→ Λ\ ⊗OL T (χ) that

is also a homeomorphism.

Proof. Similar to the definition of φ2 in corollary 3.2.2, we have a (OL[G], GK)-isomorphism

OL[G] ⊗Tw (OL[G]\ ⊗OL T ) → OL[G]\ ⊗OL T (χ). We tensor this isomorphism with Λ over

OL[G] and observe that Λ⊗Tw OL[G]\ and Λ⊗
T̂w

Λ\ are isomorphic as (Λ,OL[GK ])-bimodules

to obtain the desired isomorphism. The continuity is clear since the topologies are induced by

the Λ-structure.

The remaining parts of the finite situation, except the connection to Shapiro’s lemma, now carry

over to the infinite situation.
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Chapter 4

Specialisation and twists

In this chapter we will give an outlook on a stronger compatibility of specialisation and twists

than the one in the previous chapter. In addition to the problem setting in chapter 3, we

assume that the finite, continuous character χ : GK → G → OL is unramified. Suppose there

is an isomorphism εΛ,ξ(T(T )) : 1
Λ̃
→
(
dΛ(RΓ(Qp ,T(T ))) · dΛ(T(T ))

)
Λ̃

and a continuous ring

homomorphism α : Λ → Mn(L′) for some finite extension L′/Qp , such that L′n ⊗α T(T ) is an

L′-linear de Rham representation of GQp , for which L′n ⊗α εΛ,ξ(T(T )) = εL′,ξ(L
′n ⊗α T(T )).

The question we will address in this chapter is if the specialisation property along α holds for

εΛ,ξ(T(T (χ))) as well, i.e. if in the case of L′n ⊗α T(T (χ)) being de Rham (which we will see to

be always the case) we also have L′n ⊗α εΛ,ξ(T(T (χ))) = εL′,ξ(L
′n ⊗α T(T (χ))).

Remark 4.0.1. The specialisation property in this chapter is different from the one in the

previous chapter. In proposition 3.3.3, we assumed that εΛ,ξ(T(T )) specialised correctly along

all α’s that yield de Rham representations and concluded that εΛ,ξ(T(T (χ))) also specialised

correctly along all α’s which yield de Rham representations. In fact, by the proof of 3.3.3

we actually showed that if εΛ,ξ(T(T )) specialises correctly along α ◦ Tw, then εΛ,ξ(T(T (χ)))

specialised correctly along α. So the ring homomorphism for which we assumed the desired

specialisation behaviour differed from the one for which we wanted to establish the correct

specialisation. In this chapter we will work with the same ring homomorphism α in both cases.

Alternatively, we could ask whether the two equations

L′n ⊗α εΛ,ξ(T(T )) = εL′,ξ(L
′n ⊗α T(T ))

L′n ⊗α◦Tw εΛ,ξ(T(T )) = εL′,ξ(L
′n ⊗α◦Tw T(T ))

are equivalent for a single α.

The question of this chapter is not solved. We will present some of our thoughts on the matter.

From now on, we fix a continuous ring homomorphism α : Λ→Mn(L′) such that L′n ⊗α T(T ))

is an L′-linear de Rham representation and for which L′n ⊗α εΛ,ξ(T(T )) = εL′,ξ(L
′n ⊗ αT(T ))

holds.

To simplify the notation, we write V := L′n⊗αT(T ) and Vχ := L′n⊗αT(T (χ)). We will analyse

how the ε-isomorphisms of V and Vχ are related. Recall that εL′,ξ(V) = Γ(V) · εdR
L′ξ(V) · θ(V)

with εdR
L′ξ(V) = t−tH(V) · εL(Dpst(V), ξ) · canV.

4.1 Relating the Hodge-Tate structure of V and Vχ

The next lemma shows that Vχ is automatically de Rham and that the parts of the ε-isomorphisms

related to the Hodge-Tate structure of V and Vχ agree. Let F ′ be the Galois closure over Qp of

the maximal unramified subextension of F/K.
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Lemma 4.1.1. There is an isomorphism µ : F ′ ⊗Qp DdR(V) → F ′ ⊗Qp DdR(Vχ) of filtered

F ′ ⊗Qp L
′-modules.

In particular, Vχ is de Rham, we have h(r)V = h(r)Vχ for all r in Z and thus tH(V) = tH(Vχ)

and Γ(V) = Γ(Vχ).

Proof. The proof rests on Galois descent for DdR. Since χ is unramified and trivial on GF ,

it is also trivial on GF ′ . The morphism ν : V → Vχ which is induced by the simple map

T → T (χ), t 7→ t⊗eχ is an isomorphism of GF ′-representations, since GF ′ is normal in GQp , and

induces an isomorphism of filtered F ′ ⊗Qp L
′-modules DdR,F ′(ν) : DdR,F ′(V) → DdR,F ′(Vχ).

Moreover, by Galois descent (proposition 1.2.30,) we have filtered F ′ ⊗Qp L
′-isomorphisms

F ′ ⊗Qp DdR(V) ∼= DdR,F ′(V) and F ′ ⊗Qp DdR(Vχ) ∼= DdR,F ′(Vχ). Now, one can easily read

off that the Qp-dimensions of DdR(V) and DdR(Vχ) agree, so that Vχ is de Rham since V is. As

µ is an isomorphism of filtered modules, we immediately get the remaining results.

Corollary 4.1.2. We have

dL′(ν)BdR⊗QpL
′ · dF ′⊗QpL

′(µ)−1
BdR⊗QpL

′ ◦ canV = canVχ

as maps

1→ dL′(Vχ)BdR⊗QpL
′ · dL′(DdR(Vχ))−1

BdR⊗QpL
′ .

Proof. The diagram

BdR⊗Qp DdR(V) BdR⊗F ′F ′ ⊗Qp DdR(V) BdR⊗F ′DdR,F ′(V) BdR⊗Qp V

BdR⊗Qp DdR(Vχ) BdR⊗F ′F ′ ⊗Qp DdR(Vχ) BdR⊗F ′DdR,F ′(Vχ) BdR⊗Qp Vχ

canV

idBdR
⊗µ idBdR

⊗DdR,F ′ (ν) idBdR
⊗ν

canVχ

commutes. Here, the first horizontal arrow in each row is the Galois descent and the second one

is the comparison isomorphism when the representations are viewed as GF ′-representations. We

multiply the outer two ways from the top left to the bottom right corner with dF ′⊗QpL
′(µ)−1

BdR⊗QpL
′ ,

rearrange and de-trivialise appropriately to obtain the statement.

Remark 4.1.3. Note while being F ′-linear, the map µ need not be the base change of some

isomorphism DdR(V)→ DdR(Vχ) to F ′. If K is unramified over Qp , then F ′ is unramified over

Qp and hence the morphism dF ′⊗QpL
′(µ) lives over L̃′.

78



4.2 Relating the ε-factors of V and Vχ

We collect some results on the behaviour of D? with respect to induction (see for instance

[BB05a] 2.13.).

Lemma 4.2.1.

(1) Let ? be any of dR, st or cris and let W be an object of RepL′(GK). Then the map

D?,K(W )→ D?(Ind
Qp

K W ),
∑
i

bi ⊗ wi 7→
∑

ḡ∈GQp /GK

∑
i

g(bi)⊗ g ⊗ wi,

where g is a lift of ḡ to GQp , is an isomorphism of filtered L′-vector spaces (of (ϕ,N)-

modules, of ϕ-modules).

(2) The map

ψ : Ind
WQp

WK
Dpst,K(W )→ Dpst(Ind

Qp

K (W )), g ⊗
∑
i

bi ⊗ wi 7→
∑
i

gϕ−v(g)(bi)⊗ g ⊗ wi

is an isomorphism of Qnr
p -linear WQp -representations.

Proof.

(1) Note that the map is independent of the choice of representatives g of ḡ. Let h be in GK .

We have
∑

i gh(bi)⊗ gh⊗wi =
∑

i g(h(bi))⊗ g⊗ h(wi). But
∑

i bi⊗wi is invariant under

GK . Hence, we get
∑

i g(h(bi))⊗ g ⊗ h(wi) =
∑

i g(bi)⊗ g ⊗ wi.
Up to the GQp -equivariant L′-isomorphism

B? ⊗Qp Ind
Qp

K W → Ind
Qp

K (B? ⊗Qp W ), b⊗ g ⊗ w 7→ g ⊗ g−1(b)⊗ w,

where GQp acts diagonally on the left side, the statement is just Shapiro’s lemma 1.3.8 for

the zero-th cohomology group of the module Ind
Qp

K (B? ⊗Qp W ). The filtration, ϕ and N

are all compatible with the GQp -action and thus with the isomorphism in the statement.

Alternatively, one can prove the statement more explicitly like (2).

(2) We start by checking that ψ is well-defined. Let
∑

i bi ⊗ wi ∈ Dpst,K(W ), h ∈ WK and

g ∈WQp . We have

ψ

(
gh⊗

∑
i

bi ⊗ wi

)
=
∑
i

gh(ϕ−v(gh)(bi))⊗ gh⊗ wi

=
∑
i

gϕ−v(g)(hϕ−v(h)(bi))⊗ g ⊗ h(wi) = ψ

(
g ⊗ h

(∑
i

bi ⊗ wi

))
.

Moreover, ψ actually maps to Dpst(Ind
Qp

K (W )). Let g⊗
∑

i bi⊗wi be in Ind
WQp

WK
(Dpst,K(W )).

Without loss of generality, we can assume that
∑

i bi ⊗ wi lies in (Bst⊗QpW )GM for M

being a finite Galois extension of Qp containing K. For h ∈ GM , such that hg = gh′ with

h′ ∈ GM , we have

h(ψ(g ⊗
∑
i

bi ⊗ wi)) =
∑
i

hg(ϕ−v(g)(bi))⊗ hg ⊗ wi =
∑
i

gh′(ϕ−v(g)(bi))⊗ g ⊗ h′(wi)

=
∑
i

gϕ−v(g)(h′(bi))⊗ g ⊗ h′(wi) =
∑
i

gϕ−v(g)(bi)⊗ g ⊗ wi

= ψ(g ⊗
∑
i

bi ⊗ wi).
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We used
∑

i h
′(bi)⊗h′(wi) =

∑
i bi⊗wi at the fourth equality sign. Another such compu-

tation shows that ψ is WQp -equivariant with respect to the linearised WQp -action on the

right and left multiplication on the left. ψ is Qnr
p -linear since g ∈WQp acts on Qnr

p as the

arithmetic Frobenius to the power v(g) and ϕ acts on Qnr
p as the arithmetic Frobenius as

well 1.2.14. It remains to prove bijectivity. The map is clearly injective. For surjectivity

pick an element x in Dpst(Ind
Qp

K (W )). We choose a left-transversal τg of WK in WQp . So,

for all elements g of WQp , we have gWK = τgWK inside WQp . This transversal is also a

GK-left-transversal in GQp . So, without loss of generality, we can assume x to have the

form
∑

ḡ∈WQp /WK

∑
i bi,ḡ ⊗ τg ⊗wi,ḡ and to be GM -invariant for some finite Galois exten-

sion M of Qp containing K. Then we have for all h ∈ GM and all ḡ ∈ WQp/WK some

hḡ ∈ GM such that hḡτg = τgh. In particular, left multiplication of hḡ does not change

the GK-coset in GQp , since GM ⊂ GK . By assumption, hḡ(x) = x and so we have for each

h ∈ GM on the ḡ-component of x:∑
i

bi,ḡ ⊗ τg ⊗ wi,ḡ =
∑
i

hḡ(bi,ḡ)⊗ hḡτg ⊗ wi,ḡ =
∑
i

τg(hτ
−1
g (bi,ḡ))⊗ τg ⊗ h(wi,ḡ).

This implies that for all ḡ ∈WQp/WK we have

∀h ∈ GM :
∑
i

τg(τ
−1
g bi,ḡ)⊗ wi,ḡ =

∑
i

τg(hτ
−1
g (bi,ḡ))⊗ h(wi,ḡ),

so that yḡ :=
∑

i τ
−1
g (bi,ḡ) ⊗ wi,ḡ is an element of (Bst⊗QpW )GM . A preimage of x under

ψ is given as
∑

ḡ∈WQp /WK
τg ⊗ yḡ ∈ Ind

WQp

WK
(Dpst,K(W )).

Consider the assumption that im(OL ↪→ Λ
α−→ Mn(L′)) consists of diagonal matrices with a

single value of L′ on the diagonal. We label this assumption (?). The prime example we have

in mind in which (?) holds is the case where L′ is a finite extension of L and α comes from a

representation G → GLn(L′), so that OL is unchanged by α. This is the situation which we

need for the compatibility of the ETNC with the functional equation (see [Ven05b] 5.11). In

these cases OL ⊂ Λ is a subring of the “coefficients” of the motive.

Lemma 4.2.2.

(1) Let R be a ring, k a field, G a group with subgroup H. Let M be an R-module with R-linear

H-action and W a k-vector space with a compatible right action of R. Then the map

W ⊗R IndGHM → IndGH(W ⊗RM), w ⊗ g ⊗m 7→ g ⊗ w ⊗m

is a well-defined isomorphism of k-linear G-representations.

(2) Assuming (?), there is an (L′, GQp )-isomorphism

Vχ ∼= Ind
Qp

K

(
L′n ⊗α (Λ\ ⊗OL T )⊗L′ L′ ⊗α,OL OL(χ)

)
where GK acts on L′ ⊗α,OL OL(χ) only via χ.

Proof. (1) This can easily be checked.
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(2) We can pull the induction out of Vχ as in the first part of this lemma. With the assumption

(?), the expression L′ ⊗α,OL OL(χ) makes sense and the map

L′n ⊗α (Λ\ ⊗OL T (χ))→ L′n ⊗α (Λ\ ⊗OL T )⊗L′ L′ ⊗α,OL OL(χ))

l ⊗ ḡ ⊗ t⊗ eχ 7→ (l ⊗ ḡ ⊗ t)⊗ (1⊗ eχ

is visibly a GK-equivariant L′-isomorphism.

The next lemma shows how the local ε-factors differ for V and Vχ.

Lemma 4.2.3. Let f be the residue degree of the extension K/Qp. If we assume (?), then

ε(Dpst(Vχ)σ, ξ) = ε(Dpst(V)σ, ξ) · σ(α(χ(Frf )))a(Yσ)+nd·v(d),

where d is the different of K/Qp. We put Yσ := Qp ⊗σ,ADpst,K(L′n⊗α (Λ\⊗OL T )), write a(Yσ)

for the Artin-conductor of the representation Yσ and denote by d the rank of T as OL-module.

Proof. Let σ : L′ ↪→ Qp be a Qp-linear embedding. By the lemmata 4.2.1 (2) and 4.2.2 (1), we

have

Dpst(Vχ)σ = Qp ⊗σ,A Dpst(Vχ) ∼= Ind
WQp

WK

(
Qp ⊗σ,A Dpst,K(L′n ⊗α (Λ\ ⊗OL T (χ)))

)
as Qp-linear WQp -representations. Let ψ be the character Qp → Qp

×
with kernel Zp correspond-

ing to ξ (see remark 2.1.2). Using theorem 2.1.1 (4), we get

ε(Dpst(Vχ)σ, ξ) = ε
(

Ind
WQp

WK

(
Qp ⊗σ,A Dpst,K(L′n ⊗α (Λ\ ⊗OL T (χ)))

)
, ξ
)

= ε
(
Qp ⊗σ,A Dpst,K(L′n ⊗α (Λ\ ⊗OL T (χ))), ψ ◦ TrK/Qp

)
· λ(K/Qp , ψ)

dimQp
(Yσ)

,

where λ(K/Qp , ψ) is a factor independent of the representation. The GK-representations

L′n ⊗α (Λ\ ⊗OL T ) and L′ ⊗α,OL OL(χ) are potentially semi-stable. For the former one sees

this by comparing dimensions in lemma 4.2.1 (2). The latter is unramified and hence even

crystalline by completed unramified descent 1.2.30. As a result, we can use the compatibility of

Dpst,K with tensor products from lemma 1.2.39 (3) and obtain

ε
(
Qp ⊗σ,A Dpst,K(L′n ⊗α (Λ\ ⊗OL T (χ))), ψ ◦ TrK/Qp

)
=ε
(
Qp ⊗σ,A Dpst,K(L′n ⊗α (Λ\ ⊗OL T )⊗Qp

Qp ⊗σ,A Dpst,K(L′ ⊗α,OL OL(χ)), ψ ◦ TrK/Qp

)
.

The one-dimensional Qp-linear WK-representation Zσ := Qp ⊗σ,A Dpst,K(L′ ⊗α,OL OL(χ)) is

unramified since χ is. So by part (5) of theorem 2.1.1, we get

ε
(
Qp ⊗σ,A Dpst,K(L′n ⊗α (Λ\ ⊗OL T )⊗Qp

Qp ⊗σ,A Dpst,K(L′ ⊗α,OL OL(χ)), ψ ◦ TrK/Qp

)
=ε
(
Qp ⊗σ,A Dpst,K(L′n ⊗α (Λ\ ⊗OL T ), ψ ◦ TrK/Qp

)
· detQp

(Frf |Zσ)
a(Yσ)+dimQp

(Yσ)·n(ψ◦TrK/Qp )
,

where a(Yσ) is the Artin-conductor of Yσ and n(ψ ◦ TrK/Qp
) the greatest integer such that

π−nK ∈ ker(ψ ◦ TrK/Qp
). The kernel of ψ is Zp, so π−nK ∈ ker(ψ ◦ TrK/Qp

) is equivalent to

TrK/Qp
(π−nK ) ∈ Zp. So n(ψ ◦ TrK/Qp

) = v(d), with d the different of the extension K/Qp . By
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lemma 1.2.36, we have dimQp
(Yσ) = dimL′(L

′n ⊗α (Λ\ ⊗OL T )) = nd. Using theorem 2.1.1 part

(4) once again to pull the induction back inside Dpst, we get

ε
(
Qp ⊗σ,A Dpst,K(L′n ⊗α (Λ\ ⊗OL T )), ψ ◦ TrK/Qp

)
· λ(K,Qp , ψ)

dimQp
(Yσ)

detQp
(Frf |Zσ)

a(Yσ)+dimQp
(Yσ)·n(ψ◦TrK/Qp )

=ε(Qp ⊗σ,A Dpst(L
′n ⊗α T(T )), ξ) · detQp

(Frf |Zσ)a(Yσ)+nd+v(d)

=ε(Dpst(V)σ, ξ) · detQp
(Frf |Zσ)a(Yσ)+nd·v(d).

By lemma 4.2.4 below, we know that Frf acts on Dpst(L
′ ⊗α,OL OL(χ)) via multiplication with

α(χ(Frf )). So, on Zσ the element Frf acts via multiplication with σ(α(χ(Frf ))).

The following lemma is inspired by an exercise from the tutorial of the lecture “L-Funktionen

und ε-Konstanten II” held in the summer term of 2017 at the University of Heidelberg.

Lemma 4.2.4. Let η : GK → L′× be an unramified, continuous character and W the induced

one-dimensional L′-linear GK-representation. Then τ ∈WK acts on Dpst,K(W ) via η.

Proof. Since η is unramified, W is a crystalline (thus semi-stable) GK-representation. Let d

be a non-trivial element of Dst,K(W ). The ring K0⊗Qp L
′ is a product of fields by lemma 1.2.4.

So d is not a torsion-element and thus (K0 ⊗Qp L)d is a free K0 ⊗Qp L
′-submodule of Dst,K(W )

of rank one. By complete unramified descent, we have

Q̂nr
p ⊗K0 Dst,K(W ) ∼= D

st,K̂nr(W ) = Q̂nr
p ⊗Qp W = Q̂nr

p ⊗K0 K0 ⊗Qp W.

The first equality sign is due to G
K̂nr = IK acting trivially on the unramified representation W .

As a result, we get dimK0(Dst,K(W )) = dimK0(K0 ⊗Qp L
′). But this means that the K0-linear

injection (K0⊗Qp L)d ↪→ Dst,K(W ) is an isomorphism and Dst,K(W ) is a free K0⊗Qp L
′-module

of rank one. Let w be a L′-basis of W . The element 1⊗w is a K0⊗Qp L
′-basis of Dst,K(W ). An

element τ of WK sends 1⊗w to τ(ϕ−v(τ)(1))⊗ τ(w) = 1⊗ η(τ)w. Since W is K-semi-stable, we

have Dpst,K(W ) = Qnr
p ⊗K0 Dst,K(W ) and so the action of τ on Dpst,K(W ) is by multiplication

with η(τ).

We recall a lemma on the invariants of an induced representation.

Lemma 4.2.5. Let G be a group with a subgroup H and a normal subgroup N . Let M be an

H-module. Then the morphism

Ind
G/N
H/H∩N

(
MH∩N)→ (

IndGH(M)
)N

, gN ⊗m 7→
∑

n̄∈N/N∩H

gn⊗m

is an isomorphism of G/N -representations.

Since we could not find a reference for this standard result, we give a proof.

Proof. We omit the simple calculations establishing that the map is well-defined. Let n1, . . . , nr
be a left-transversal of N ∩ H in N and g1N, . . . , gsN a left-transversal of H/N ∩ H in G/N .

Then it is easy to check that ginj for i = 1, . . . , s and j = 1, . . . r is a left-transversal for H

in G. This shows the injectivity of the morphism. For the subjectivity, consider an element

x =
∑

i,j ginj ⊗mij of
(
IndGH(M)

)N
. Let h be in H ∩N . Then nij := ginjh(ginj)

−1 lies in the
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normal subgroup N . We have nij(x) =
∑

ij ginj ⊗ h(mij). But also nij(x) = x by the choice of

x. Comparing the (i, j)-th component, we get h(mij) = mij . This holds for any h and thus we

get mij ∈MN∩H for all i and j.

We need to show that mij is independent of j. To see this, we choose some h in N ∩ H and

define elements njj′ ∈ N so that njj′nj′ = njh. Put nijj′ := ginjj′g
−1
i . Again, by normality of

N , we know that nijj′ lies in N . The element nijj′ sends ginj′ ⊗mij′ to ginj ⊗mij′ since we

saw that mij′ is H ∩N -invariant. So the (i, j)-th component of the equation nijj′(x) = x yields

mij = mij′ , which we now call mi. A preimage of x under the map is given by
∑

i giN ⊗mi.

The G/N -equivariance of the map is clear.

We can now compute how the correction factor for Vχ is related to the one for V.

Lemma 4.2.6. Let f be the residue degree of K/Qp. Assuming (?), we have

detL′
(
− ϕ

∣∣Dst(Vχ)/Dcris(Vχ)
)

= detL′
(
− ϕ

∣∣Dst(V)/Dcris(V)
)
· α(χ(Frf ))dimL′ (Dst(V)/Dcris(V))/f .

Proof. By lemma 2.2.7, it suffices to consider detQp

(
−Fr

∣∣Dpst(Vχ)Iσ/(Dpst(Vχ)Iσ)N=0
)

for some

Qp-linear embedding σ : L′ ↪→ Qp . We have

detQp

(
− Fr

∣∣Dpst(Vχ)Iσ/(Dpst(Vχ)Iσ)N=0
)

= σdetA
(
− Fr

∣∣Dpst(Vχ)I/((Dpst(Vχ)I)N=0
)
,

where σ : A → Qp sends q ⊗ l to qσ(l). Using the lemmata 4.2.1 (2) and 4.2.5, we pull the

induction out of Dpst(Vχ)I :

Dpst(Vχ)I = Ind
WQp /I

WK/IK

(
Dpst,K

(
L′n ⊗α (Λ\ ⊗OL T (χ))

)IK) .
By lemma 4.2.2 (2) we can further write

L′n ⊗α (Λ\ ⊗OL T (χ)) = L′n ⊗α (Λ\ ⊗OL T )⊗L′ L′ ⊗α OL(χ)

Now, by lemma 4.2.1 (1) we know that V := L′n⊗α (Λ\⊗OL T ) is de Rham as GK-representation

and hence potentially semi-stable. W := L′ ⊗α OL(χ) is unramified and hence crystalline and

(potentially) semi-stable. The compatibility of the tensor products with Dpst,K (1.2.39 (3))

yields

Dpst,K(V ⊗L′ W )IK ∼=
(
Dpst,K(V )⊗A Dpst,K(W )

)IK = Dpst,K(V )IK ⊗A Dpst,K(W ).

For the equality, we used that since W is unramified, it is crystalline and semi-stable, so that

Dpst,K(W ) = Qnr
p ⊗K0 Dcris,K(W ), which is clearly fixed element-wise by IK . In total, we get

Dpst(Vχ)I ∼= IndZ
fZ
(
Dpst,K(V )IK ⊗A Dpst,K(W )

)
as WQp/I

∼= Z-representations. As the monodromy operator commutes with everything we have

done and we have Dpst,K(W )N=0 = Dpst,K(W ) since W crystalline, we also get(
Dpst(Vχ)I

)N=0 ∼= IndZ
fZ
(
(Dpst,K(V )IK )N=0 ⊗A Dpst,K(W )

)
as WQp/I

∼= Z-representations and so

Dpst(Vχ)I/(Dpst(Vχ)I)N=0 ∼= IndZ
fZ
(
Dpst,K(V )IK/(Dpst,K(V )IK )N=0 ⊗A Dpst,K(W )

)
.
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Let X be a WK-representation over Qp . We want to relate the determinant of Fr on IndZ
fZ(X)

to that of Frf on X. As transversal of WK in WQp , we choose Fr0, . . . ,Frf−1. Then IndZ
fZ(X) is

isomorphic to
⊕f−1

i=0 Fri⊗X as Qp-vector space. Fr maps Fri⊗x to Fri+1⊗x for i = 0, . . . f −2.

On the determinant, this introduces a sign, which only depends on f and dimQp
(X). Now,

Frf−1⊗ x maps to Frf ⊗ x = Fr0⊗Frf (x) under Fr. Therefore we have up to a sign, which only

depends on f and dimQp
(X),

detQp

(
Fr
∣∣∣IndZ

fZ(X)
)

= ±detQp

(
Frf |X

)
.

We apply this to X = Qp ⊗σ,A Dpst,K(V )IK/(Dpst,K(V )IK )N=0 ⊗Qp
Qp ⊗σ,α Dpst,K(W ) and,

using the formula for determinants of a Kronecker-product of two matrices, we obtain

detQp

(
Fr
∣∣∣Ind

WQp /I

WK/IK

(
Qp ⊗σ,A Dpst,K(V )IK/(Dpst,K(V )IK )N=0 ⊗Qp

Qp ⊗σ,A Dpst,K(W )
))

= ±detQp

(
Frf

∣∣∣Qp ⊗σ,A Dpst,K(V )IK/(Dpst,K(V )IK )N=0 ⊗Qp
Qp ⊗σ,A Dpst,K(W )

)
= ±detQp

(
Frf
∣∣∣Qp ⊗σ,A Dpst,K(V )IK/(Dpst,K(V )IK )N=0

)dimQp
(Qp⊗σ,ADpst,K(W ))

·detQp

(
Frf
∣∣∣Qp ⊗σ,A Dpst,K(W )

)dimQp
(Qp⊗σ,ADpst,K(V )IK /(Dpst,K(V )IK )N=0)

.

As W is potentially semi-stable, Qp ⊗σ,A Dpst,K(W ) is one-dimensional. Moreover, since

dimQp

(
Qp ⊗σ,A Dpst,K(V )IK/(Dpst,K(V )IK )N=0

)
= dimQp

(
Qp ⊗σ,A Dpst,K(V )IK/(Dpst,K(V )IK )N=0 ⊗Qp

Qp ⊗σ,A Dpst,K(W )
)
,

we know that the sign is the same as in

detQp

(
Fr
∣∣∣Ind

WQp /I

WK/IK

(
Qp ⊗σ,A Dpst,K(V )IK/(Dpst,K(V )IK )N=0

))
= ±detQp

(
Frf
∣∣∣Qp ⊗σ,A Dpst,K(V )IK/(Dpst,K(V )IK )N=0

)
.

By lemma 4.2.4 we have detQp

(
Frf
∣∣Qp ⊗σ,A Dpst(W )

)
= σ(α(χ(Frf ))). The isomorphisms

Qp ⊗σ,A Qnr
p ⊗Qp (Dst(V)/Dcris(V)) ∼= Qp ⊗σ,A Dpst(V)I/(Dpst(V)I)N=0

∼= IndZ
fZ
(
Qp ⊗σ,A Dpst,K(V )IK/(Dpst,K(V )IK )N=0

)
show f ·dimQp

(
Qp ⊗σ,A Dpst,K(V )IK/(Dpst,K(V )I)N=0

)
= dimL′

(
Dst(V)/Dcris(V)

)
. Lastly, the

dimensions of Dpst(Vχ)Iσ/(Dpst(Vχ)Iσ)N=0 and Dpst(V)Iσ/(Dpst(V)Iσ)N=0 are the same, so that we

get

detQp

(
−Fr

∣∣Dpst(Vχ)Iσ/(Dpst(Vχ)Iσ)N=0
)

=detQp

(
−Fr

∣∣Dpst(V)Iσ/(Dpst(V)Iσ)N=0
)

· σ(α(χ(Frf )))dimL′ (Dst(V)/Dcris(V))/f .

Combining these equalities for all σ, we get the statement of the lemma.

Remark 4.2.7. When we put lemma 4.2.3 and lemma 4.2.6 together, we obtain

εL′(Dpst(Vχ)σ, ξ) =εL′(Dpst(V)σ, ξ)

· σ(α
(
χ(Frf )))a(Qp⊗σ,ADpst,K(V )

)
+dimL′ (Dst(V)/Dcris(V))/f+nd·v(d).

If K/Qp is unramified, such that v(d) = 0, then the exponent of the factor σ(α(χ(Frf ))) is

precisely the conductor that Tate defines in [Tat79] 4.1.6 for the Weil-Deligne representation

Qp ⊗σ,A Dpst,K(V ) of WK over Qp .
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4.3 Relating θ(V) and θ(Vχ)

We now turn our attention to θ(Vχ). As we noted in remarks 4.1.3 and 4.2.7 it might be useful

to assume that K is unramified over Qp . We will make this assumption in the following. This

implies that F ′ = F0 is the maximal unramified subextension of F/Qp and K = K0.

The morphisms θ(Vχ) and θ(V) can be defined via exact sequences Σl,V and Σl,Vχ as in remark

2.2.4. We can relate them via the diagrams 4.1 and 4.2 on the next page.

Let us elaborate the first diagram 4.1. Its first line of isomorphisms is given by Shapiro’s lemma

using the isomorphism

B? ⊗ Ind
Qp

K (V ) ∼= Ind
Qp

K (B? ⊗ V ), b⊗ g ⊗ v 7→ g ⊗ g−1(b)⊗ v

and the compatibility of induction with Kummer duals. The isomorphism from Shapiro’s lemma

is natural and compatible with the connecting homomorphisms in long exact sequences, so that

all the unlabelled squares in that row are commutative. Square (1) is commutative if Shapiro’s

lemma is compatible with the local Tate duality. The (duals of ) restriction morphisms from

the second to the fourth line are injective (surjective) by [NSW13] corollary 1.5.7 and page 138.

The injections in square (2) map x to 1⊗ x. The square (3) is dual to square (2). Both clearly

commute. They have (1 − ϕ, 1̄) and (1 − φ ⊗ ϕ, 1̄) or their duals as top and bottom arrows,

respectively. The isomorphisms from the third to the fourth line are (duals of) the unramified

Galois descent (see 1.2.30) Dcris,F0(V ) ∼= F0 ⊗K0 Dcris,K0(V ) under which the action of ϕ on the

left hand side corresponds to φ⊗ϕ on the right hand side, where φ is an arithmetic Frobenius in

GQp , and the Galois descent DdR,F0(V ) ∼= F0⊗K DdR,K(V ) of filtered F0-vector spaces (1.2.30).

The squares including two Galois descents also commute. The injections in (2) followed by the

Galois descents are just the restriction maps res : H0(K,Bcris⊗QpV ) → H0(F0,Bcris⊗QpV )

or res : H0(K,BdR /B
0
dR ⊗Qp V ) → H0(F0,BdR /B

0
dR ⊗Qp V ). Since the restriction maps are

natural and commute with the connecting homomorphism in long exact cohomology sequences

([NSW13] 1.5.2), we get the commutativity of all squares between the second and fourth row

except square (4). It commutes as well due to the compatibility of restriction maps with cup-

products ([NSW13] 1.5.3) and thus with the local Tate duality. The equalities in the last row

are due to the fact that W is trivial on GF0 . From there on, one can extend the diagram in

the same way to get to the defining sequence for θ(Vχ). We assumed (?) in the last row of the

diagram for notational convenience.

By similar arguments the second diagram 4.2 commutes. We could tensor Σl,V and Σl,Vχ over

Qp with F0. Using Galois descent (1.2.30), this turns the injections and projections involving

Dcris and the tangent spaces into F0 ⊗Qp L-isomorphisms. One could be inclined to deduce

that the maps F0 ⊗Qp res also become F0 ⊗Qp L
′-isomorphisms. However, this does not follow.

The squares labelled (5) do not commute after the tensoring. We saw above that under Galois

descent 1−ϕ on Dcris,F0(V) corresponds to 1−φ⊗ϕ on F0⊗Qp Dcris(V). But in F0⊗Qp Σl,V we

have 1− idF0 ⊗ϕ, which corresponds under Galois descent to 1−φ−1ϕ, where φ is an arithmetic

Frobenius acting nonlinearly on Dcris,F0(V). The action of φ on Dcris,F0(V) and on Dcris,F0(Vχ)

differs. Our hope is that one can relate them in a way that we get an isomorphism in V (F0⊗QpL
′)

between dF0⊗QpL
′(F0⊗Qp Σl,V) and dF0⊗QpL

′(F0⊗Qp Σl,Vχ) induced by the Galois descents up to

some factor, which ideally cancels the factor in remark 4.2.7.
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H0(Qp ,V) Dcris(V) Dcris(V)⊕ t(V) H1(Qp ,V) Dcris(V∗(1))∗ ⊕ t(V∗(1))∗ Dcris(V∗(1))∗ H0(Qp ,V∗(1))∗

H0(K,V ) Dcris,K(V ) Dcris,K(V )⊕ tK(V ) H1(K,V ) Dcris,K(V ∗(1))∗ ⊕ tK(V ∗(1))∗ Dcris,K(V ∗(1))∗ H0(K,V ∗(1))∗

F0 ⊗K0 Dcris,K(V )
F0 ⊗K0 Dcris,K(V )
⊕F0 ⊗K tK(V )

(
F0 ⊗K0 Dcris,K(V ∗(1))

)∗
⊕
(
F0 ⊗K tK(V ∗(1))

)∗ (
F0 ⊗K0 Dcris,K(V ∗(1))

)∗

H0(F0, V ) Dcris,F0(V ) Dcris,F0(V )⊕ tF0(V ) H1(F0, V ) Dcris,F0(V ∗(1))∗ ⊕ tF0(V ∗(1))∗ Dcris,F0(V ∗(1))∗ H0(F0, V
∗(1))∗

H0(F0, V ⊗W ) Dcris,F0(V ⊗W )
Dcris,F0(V ⊗W )
⊕tF0(V ⊗W )

H1(F0, V ⊗W )
Dcris,F0((V ⊗W )∗(1))∗

⊕tF0((V ⊗W )∗(1))∗
Dcris,F0((V ⊗W )∗(1))∗ H0(F0, (V ⊗W )∗(1))∗

∼= ∼= ∼=

(1)

∼= ∼= ∼= ∼=

res

(2)

(4)res

(3)

∼= ∼= ∼= ∼=

res∗

Figure 4.1: Diagram relating Σl,V and Σl,Vχ via Shapiro’s lemma and Galois descent.

Σl,V : 0 H0(Qp ,V) Dcris(V) Dcris(V)⊕ t(V) H1(Qp ,V) Dcris(V∗(1))∗ ⊕ t(V∗(1))∗ Dcris(V∗(1))∗ H0(Qp ,V∗(1))∗ 0

Σl,F0,V 0 H0(F0,V) Dcris,F0(V) Dcris,F0(V)⊕ tF0(V) H1(F0,V) Dcris,F0(V∗(1))∗ ⊕ tF0(V∗(1))∗ Dcris,F0(V∗(1))∗ H0(F0,V∗(1))∗ 0

Σl,F0,Vχ 0 H0(F0,Vχ) Dcris,F0(Vχ) Dcris,F0(Vχ)⊕ tF0(Vχ) H1(F0,Vχ) Dcris,F0(V∗χ(1))∗ ⊕ tF0(V∗χ(1))∗ Dcris,F0(V∗χ(1))∗ H0(F0,V∗χ(1))∗ 0

Σl,Vχ 0 H0(Qp ,Vχ) Dcris(Vχ) Dcris(Vχ)⊕ t(Vχ) H1(Qp ,Vχ) Dcris(V∗χ(1))∗ ⊕ t(V∗χ(1))∗ Dcris(V∗χ(1))∗ H0(Qp ,V∗χ(1))∗ 0

res (5) res (5) res∗

res∗res (5) res (5)

Figure 4.2: Diagram relating Σl,V and Σl,Vχ via restrictions.
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Assuming such an isomorphism, the Galois descents on t(V) and on t(V∗(1))∗ add up to the

map µ from corollary 4.1.2 and the ones on Dcris cancel. This yields an isomorphism

fα : dF0⊗QpL
′(F0 ⊗Qp RΓ(Qp ,V))→ dF0⊗QpL

′(F0 ⊗Qp RΓ(Qp ,Vχ)).

We would get fα · dF0⊗QpL
′(µ) ◦ θ(V) = θ(Vχ). Multipliying this identity after base change to

BdR⊗QpL
′ with the identity in corollary 4.1.2 for can, the dBdR⊗QpL

′(µ)’s cancel.

The morphism ν in lemma 4.1.1 comes from the Λ-isomorphism

ν ′ : T(T ) Tw*
χ(T(T )) T(T (χ))

σ ⊗ ḡ ⊗ t ḡ ⊗ σ ⊗ 1̄⊗ t σ ⊗ ḡ ⊗ t⊗ eχ.

φ2

Hence, the problem of this chapter would be solved if, in addition to the above assumptions,fα
came from some isomorphism

f : dΛ(RΓ(Qp ,T(T )))→ dΛ(RΓ(Qp ,T(T (χ))))

via base change along L′n ⊗α,Λ −. However, ν ′ is not GQp -equivariant, so that we cannot set

f = dΛ(RΓ(Qp , ν
′)). In fact, if T(T ) and T(T (χ)) were (Λ, GQp )-isomorphic, then T and T (χ)

need to be isomorphic as OL[GK ]-modules. In addition, in the section on Shapiro’s lemma and in

corollary 3.2.2 (3), we saw that RΓ(Qp ,T(T (χ))) is the same as RΓ(Qp ,T(T ))(χ) as Λ-modules.

We do not know if there is a suitable f and if so, how to define it. If it existed, it would also

provide a new angle to look at the problem in chapter 3.
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