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Abstract

In this thesis we follow the work of Liu in [10], where Liu proves the
Euler-Poincaré formula and Tate duality for (¢,T')-modules over the
Robba ring. We pick up an idea of Liu in [10] to extend these results
to (p,T')-modules over the Robba ring with an additional coefficient
field.

We first show that given an L-representation of the absolute Galois
group of a local field, we can retrieve the Galois cohomology from the
étale (¢, I')-module associated to the representation. We use this fact
to show that there exists an analogue to the Euler-Poincaré formula
and the local Tate duality for the cohomology of étale (p,I')-modules
over the Robba ring with an additional coefficient field.

The main result of this thesis is to extend the Euler-Poincaré for-
mula for the category of étale (p,I')-modules to the category of gen-
eralised (g, I')-modules and the Tate duality for the category of étale
(¢, T')-modules to the category of (¢, T')-modules.

Abstrakt

In dieser Arbeit folgen wir der Arbeit [10] von Liu, welche die
Euler-Poincaré Formel und die lokale Tate Dualitét fir (o, I')-Moduln
iiber gewissen Robba Ringen beweifit. Wir greifen dabei eine Idee Lius
aus [10] auf und verallgemeinern diese Resultate auf (¢,I')-Moduln
iiber dem Robba Ring mit einem zusétzlichen Koeffizientenkorper.

Zunachst zeigen wir, dass wir aus einer L-Darstellung der ab-
slouten Galoisgruppe eines lokalen Koérpers und dem dazugehorigen
étalen (¢, I')-Modul, die Galoiskohomologie des lokalen Kérpers zuriick-
gewinnen kénnen. Daraus folgern wir die Existenz eines Analogons der
Euler-Poincaré Formel und der lokalen Tate Dualitat, welche man aus
der Galoiskohomologie kennt, fiir die Kohomologie von étalen (¢, T')-
Moduln iiber dem gewohnlichen Robba Ring mit zusétzlichem Koef-
fizientenkorper.

Das Hauptresultat der Arbeit ist die Euler Poincaré Formel und
die Tate Dualitat fiir étale (o, I')-Moduln auf die Kategorie der ver-
allgemeinerten (¢, I')-Moduln, im Fall der Euler Poincaré Formel und
die Kategorie der (¢,I')-Moduln, im Fall der Tate Dualitét, zu verall-
gemeinern.
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1 Introduction

In [10] Liu proved that the Euler-Poincaré characteristic formula and Tate’s
local duality from the theory of Galois cohomology over a local field can be
generalised to larger categories than the categpory of p-adic representations,
namely the category of (¢,I')-modules over the Robba ring Ry and the
category of generalized (p,I")-modules over the Robba ring Ry. Liu statet
in [10] that these results can be generalised to modules over the Robba ring
Rk with additional coefficient field L, where L is a finite extension of Q,
and the ¢ and ['-action act trivially on L. In this thesis we give a proof of
this generalisation.

We first prove the Euler-Poincaré formula and Tate duality for the cat-
egory of étale (¢, I')-modules by showing it is equivalent to the category of
L-representations of G = Gal(K/K). Then the results follow from the
Euler-Poincaré formula and Tate duality for Galois cohomology. We will
then introduce generalised (¢, ')-modules, which only need to be finitely
presented and compute the cohomology for such torsion modules, which will
show that the Euler-Poincaré formula holds for these torsion modules.

We can then prove the main results of this thesis, which we will state
here:

Theorem (Euler-Poincaré formula). For any generalised (o, T)-module D
over Rép, we get that

(i) dimp H*(D) is finite for all i =0,1,2

(ii) x(D) = ¥?_o(—1)'dimy H'(D) = —rankD.

Theorem (Tate duality). For any (¢, ')-module D over RY the compositum
H'(D) x H*'(D"(w)) = H*((D ® D")(w)) = H*(Ri(w)) = L

is a perfect pairing.

1.1 p-adic Hodge theory

Let p be a fixed natural prime number and K be a finite extension of Q,.
Let k be the residue field of K and write W (k) for the Witt vectors with
coefficients in k. Set Ky = W (k)[1/p] to be the maximal unramified subfield
of K. For n > 1 set K,, = K(upn) for p,» the group of p"-th roots of
unity and set Ko, = U,>1K,. We write Gx = Gal(K/K) for the absolute
Galois group of K. The cyclotomic character x : Gk — Z, has the kernel
Hig = Gal(K/K.). So we get that the group 'y = Gg/Hy is an open



subgroup of Z;. We will write simply T' for I'g, if there is no confusion
about which field is being considered.
Furthermore let C, be the p-adic completion of Q, and set

E = lim C, = {(m(i))ieN ‘ (zD)P = x(i)}
where the connecting maps are given by taking p-th power.

The following properties of £/ can be found in [12, Section 4.1] and [3, Sec-
tion 4.1.1]. One has a ring structure on £/ where addition and multiplication
for z,y € E are given by

(z + 1)@ = lim (29 4 y(i+j))pf

J—00

and
(xy)(i) = 2y®

for any ¢ € N. With this ring structure E becomes an algebraically closed
field of characterstic p. Furthermore E is perfect, so the Frobenius map ©
is an automorphism on E. We can define a valuation vz on E by setting
vE(x) = vp(z®) for 2 = (2@),ey € E and E is complete with respect to
the topology induced by this valuation. We set E* = {z € E | 2 € O¢,}
to be the ring of integers of E. Also note that we can endow E with a
G,-action, which preserves the valuation vz. This Gg,-action is defined by
9((2D);en) = (g(2));en for any g € Gg,. We choose a sequence (¢™),en
with & 0~ =1,eM # 1 and (V)P = &l ™) for all n € N. Then ¢ = (™) pen
can be Vlewed as an element of ET as well as a generator of Zy. We set
Ex, = k((¢ —1)) and take E to be the seperable closure of Ef, in E and set
EK Efx_ Note that Ef also carries a discrete valuation and a I'g-action
induced from E. Let K denote the maximal unramified extension of K|
in K, and k' be the residue field of K. Then the discrete valutaion ring
Ef = (E* N E)"x is simply ¥'[[7x]], where 7 is a uniformizer (see [12,
Remarks 2.3.3 and Section 4.2]).

Now set A = W(E) to be the ring of Witt vectors with coefficients in E.
Since E is perfect, we can write elements of A as convergent p-adic series,
which means we get

A — {ipk[xk] | 2y € E}

We can define a valuation v, on (A), by setting vp(x) = minkeN{kJ | [zk] # 0}

forz =377, pFlxi] a nonzero element in A. We will refer to the topology on
A induced by this valuation v, as the p-adic topology.
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The Frobenius operation ¢ of E lifts to a Frobenius operation © on A
and we get that

PP land) = X ¥l

The Gg,-action lifts in the same way. We set 7 = [¢] — 1 € A and
q=p(m)/m e A

Next we define Ag, to be the completion of Of,[[r]][r~!] with respect
to the p-adic topology in A. We get that Ak, is a Cohen ring with residue
field Ek,. Set Bk, = Ak,[1/p] and define B as the p-adic completion of the
maximal unramified extension of By,. Furthermore we define A = AN B.
These rings inherit a Frobenius and Gg,-action from the ring B.

For any ring S that has a Gg,-action we will set S = SHx  Note that
this ring is then endowed with a I'k-action.

To define the Robba ring we need to introduce the ring of overconvergent
elements, which for an r € R is given by

517 = { 32 o) B i vston) + b/ 0= 1) = o).

We set Bt = U,5oB", B"" = Bt 0 B and Bf = U,>(B"". Furthermore we
set

Jtr — { Z pk[ﬂck] c ET’T|’UE<5L'I€) + kpr/(p—1) > 0 for any k} N A,

k>—00

as well as AT = U5 AT AP = At N A and AT = U,50A"". We now choose
an element mx € Ak, which has image Tx modulo p. Also we let ey denote

the ramification index of K.,/ Ky. One can show for r large enough, that the
ring Bl is defined by



Bl = {f(wK) = Y wr|ar € Kj and f(T) is convergent and

k=—o00
bounded on p~ V& < |T| < 1}.

One can show that the element ¢ = log([e]) € BY". For s1,s, € [p~ /%", 1)
the supremum norms on closed annuli

{z | sy < |z| < s, < 1} form a family of norms on BY". The Fréchet
completion with respect to this family of norms is

BngK = {f(WK) = > apmh-|ay € K} and f(T) is convergent

k=—0oc0

on p VKT < |T| < 1}.
The union of these rings

Brng 7“>OBr1g K

is called the Robba ring. We will simply write R to denote this ring. We
note that B, = (B1)#x are the bounded functions of Brlg -

Another way to define the Robba ring is stated in [8, Section 1.1]. Let
s € Rjg1) and F/Q, a finite extension of fields and let R[Iz,l) be the ring of
Laurent series in T" with coefficients in F' converging on the annulus
s < |T| < 1. Note that by [5, Prop 4.6] this ring is a Bézout domain (a
Bézout ring is a ring where every finitely generated ideal is principal). Then

rig, K with R[pl/(eKT) 1)’
of rigid analytic functions on the annulus p~1/exm < |T| < 1. This allows us

by mapping 7x to T we can identify the ring BT the ring

to identify the Robba ring with UT>0R[ , the set of holomorphic functions
on the boundary of the open unit disc.

Note that if K is unramified, we can explicitly describe the ¢ and I'k-
action for any series f(mx) = Y ;cz anmh € Ry by

mi)) =D _lan) (1 +mx)" = 1)"

1EL

and

Zgan 1+7Tx(g) "
1EZL

for any g € I'k.



In this thesis we will also discuss (@, I')-modules over the Robba ring with
an additional coefficient field. For this let L/Q, be a fixed, finite extension.
For any of the following rings S € {B, B!, B'" By, B, | Bi", Bl,, ., Blit 1}
we define S* = S ®q, L. We call Brlg x the Robba ring with additional

coefficient field L. Similarly for any S € {A, A, A}(} we can define
St = (S ®z, Or). All these rings are endowed with a ¢ and T-action that

acts trivially on L (resp. Or). We set RE = Brlg K
For K = Q,, recall that we can identify Brng with R([@‘i /r 1) We can

then identify Brlg(@ with R[ 1r 1) by simply mapping >-,cz anmg, ® [ to
Yonez @ T, This map is clearly well-defined and injective. To see that
it is also surjective, take f(T) = 3,z a,T™ a Laurent series with coefficients
in L and converging on the annulus p~'/" < |T| < 1. Let l,...1,, be a
Q,-basis of L. We can then write a,, = >_;%; a,l; for some a,; € Q, for all
¢ and claim that oz a,;/ T" € Bng@ foralli =1,...,m. For any y € C,

with |y| € [p7'/", 1) we have that

0= nl_l)rinoo any hm Z aniliy" = ;( 1_1>rinOO A, y" )l
Then since the [;’s are a basis we get that lim,,_.4.a,;y™ = 0 for all
i=1,...,m. Hence we have 3,7 a,T" € Rg,. This means that
S (S ez aniT ® 1;) gets mapped to f(T), which proves the surjectivity.
Note that the induced (- and I'-action on the Laurent series act trivially on
the coefficients. This is important since it allows us to define the slope of a
p-module over Rf in Section 1.3.

We can get a similar result for general K. Note that K| is a seper-
able extension and hence by the primitive element theorem we have that
K| = Qu[T]/(f(T)) for some irreducible polynomial f € Q,[7]. Then by
the chinese remainder theorem we get K6 ®Qp L= L[T/(f(T)) = ar, LY
for some m € N and finite extensions L®/Q,. Hence we have an isomor-
phism a : Ky ®q, L — @2, L®. Recall that we can identify Brlg x With

R{;ﬁ/’/(em) Thus we can indentify Brlg K ®q, L with &% R[l];(f/(FKr) 1y by map-
ping Ypez armh @ 1 to (Zkez ai(ar @ 1)T*)1<i<m, where a; denotes the pro-
jection K ®q, L — L® induced by o. The proof for this is similar to the
one for the case K = Q,. Therefore R% can be identified with a finite direct

sum of holomorphic functions on the boundary of the open unit disc.



1.2 Etale (p,I')-modules and representations

Let S be any of the rings {BL, BR*, RE}. In this section we define (p,T)-
modules over S and show what it means for a (¢,I")-module over S to be
étale. Following the papers [6],[2],[8] we will show that the category of étale
(¢, T')-modules over RE is equivalent to the category of L-representations of
Gk. From this equivalence of categories we can then derive that the Euler-
Poincaré formula and Tate local duality hold for all étale (¢, I')-modules over

the Robba ring R%.

Definition. We say an S-module D is a (¢, I')-module if the following holds
(i) D is a finite free S-module
(ii) D is equipped with a semi-linear p-action ¢ : D — D, such that the
induced linear map ¢*D = S®, 9D — D,a®x — ap(x) is an isomor-
phism.
(iii) D is equipped with a continuous semi-linear I'-action, which com-
mutes with the p-action.
Note that semi-linear in this context means that p(az) = ¢(a)e(x) and
v(az) = y(a)y(z) for any v € 'x,a € S and z € D.

Remark. The category of (o, I')-modules over R% admits tensor products and
taking duals. The ¢- and I'-actions of such modules are defined as follows.

For two (p,T')-modules Dy, Dy over R% we define a ¢ and I'-action on
D1®@gtr Dy by setting p(a1®az) = ¢(a1)@p(az) and v(a1®az) = v(a1)®7(az)
for any v € I.

For any (¢, ')-module D over RE write DV = HOI’HR%{(D,R%() for the
dual module. Take f € DV, then for x = Y, a;p(x;) we set (pf)r =
S ago(f(x;)) with a; € RE and 2; € D. For v € Tk and € D we set
(v.f)z =~(f(v'2)).

An L-representation V is a finitely dimensional L-vector space with a
continous linear action on Gg. The dimension of the representation V is
simply the dimension of V' as an L-vector space. We will write dim(V') = d.
We define D(V) = (BY @, V)#x which is an BL-vectorspace and carries a
¢- and T'g-action. For T a lattice of V, we define D(T) = (A" ®¢p, T)Hx,
which is a free A%-module of rank d. We call a (¢,T')-module D over B
étale if there is a free AL-submodule T' of D, that is stable under ¢ and
I-action and T'® 4z BE = D holds. Hence D(V) is an étale (¢, T')-module
for any L-representation V' and we can adapt a result from Fontaine in [6]
to get the following theorem.

Theorem 1.1. There is an equivalence of categories between the category of
L-representations of Gi and the category of étale (o,T")-modules over BE.
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The functor between this categories is given by V +— D(V) and the inverse
functor is D — V(D) = (B* ®pL D)#=t.

We can extend this statement to étale (¢, I")-modules over BkL. Again
we define a (p,I")-module D over B}gL to be étale if D has a ¢ and I'-stable
A}’(L—submodule T, that satisfies B}gL ® 4t T. For an L-representation V' of

K

G we can define DV (V) = (Bt @ V)Hx and
DI (V) = U,soD'(V) = (B @, V). Now we can adapt a result of
Cherbonnier and Colmez in [2] to get the following theorem.

Theorem 1.2. For any L-representation V' of G there exists r(V'), such
that D(V) = B @gir DVY(V) forr > r(V).
K

This means that DT(V) is a d-dimensional, étale (¢, I')-module over BR*
and hence the functor V + DY(V) gives us an equivalence between the
category of L-representations of Gk and the category of étale (¢, I')-modules
over B}QL.

We will now extend this statement once more to étale (, I')-modules over
the Robba ring BrTi’gL, - Wesay a (¢, I')-module D over BrTi’gL, x 1s étale if it has
a Bl'-submodule D', which is étale as a (¢, )-module over Bi* with the
restricted ¢ and I' actions and for which D’ ® Bit BT’LK = D holds. Again

rig,
for an L-representation V' of G, we set DL’;(V) = DLg(V) ® it Bji’;  and

D}, (V) = UT>ODT.’T(V) = DI(V) ®p4i.z Bji’gLK. Then by a result of Kedlaya
- K bl

rig rig
in [8] we get the following theorem.

Theorem 1.3. The functor D +— Bji’é:K ®pte D gives us an equivalence
’ K

between the category of étale (p,I")-modules over B}(’L and the category of
étale (p,I')-modules over Bji’éK.

Remark. Combining the three previous theorems gives us an equivalence of
categories between the category of L-representations of Gx and the category

of étale (¢, I')-modules over BL’; i, given by V — DL& (V).

1.3 Slope theory for ¢y-modules

In this section we will discuss some basics about the slope theory of ¢-modules
over the ring R € {Ré;ﬂ Ri}. We have seen earlier that the ring R can be
indentified with the set of holomorphic functions on the boundary of the open
unit disc and hence we can define the slope of a p-module over this ring as
in the paper [8] by Kedlaya. Keeping with the notation of [8] we write R4
for the functions in R with bounded coefficients. RP? is a discretly valued
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field, where the valuation w is given by w(},cz a,T") = inf,ez vy(a,) and
we write R™ for its ring of integers.

Definition. A p-module is a finitely generated free module M over R,
equipped with a Frobenius action ¢, such that for p*M = M ®,r R the
induced linear map ¢*M — M, m @ r — p(m)r, for m € M,r € R, is an
isomorphism.

We say a ¢o-module M over R is étale, if M has a free (p-stable
R™_syubmodule M’, such that ¢*M’' = M’ and M’ @pim R = M.

We can also interpret a p-module as a left-module over the twisted poly-
nomial ring R{T'}, which is finite free over R and the twisted polynomial
ring is defined as R{T'} := { 2oriltr; € R}, where the multiplication is
noncommutative and satisfies Tr = ¢(r)T for any r € R. Then for any a € N
we can define the a-pushforward functor [a], from ¢-modules to ¢*-modules
along the inclusion R{7T*} — R{T'}.

For a ¢o-module M with rank M = n the nth exterior power A"M has
rank 1. Let v be a generator of A"M then we can choose A € (R)* C RP9,
such that p(v) = Av and set the degree of M to be deg(M) := w(A). If M is
not trivial we can define the slope of M by setting u(M) = deg(M)/rank M.
We will write MY = Hompg(M, R) for the dual module. We will now give
some basic properties about the degree and slope of a ¢-module over R.

Lemma 1.4. Let M, My, My be o-modules, then the following holds:
(i) For an exact sequence 0 — My — M — My — 0 we have
deg(M) = deg(M1) + deg(M>).
(ii) For the tensor product of p-modules we have
p(My @ M) = (M) + p(Ms).
(iii) For the dual module we have deg(M") = —deg(M) and
u(MY) = —p(M).
(iv) If My € M and M, M; have the same rank, then u(My) > p(M) and
(M) = p(M) if and only if My = M.

Proof. [8,1.4.5 and 1.4.10] ]

Definition.

(i) We say a @-module M over R of slope u(M) = ¢/d, (c,d coprime)
is pure if there exists a rank 1 ¢-module N of degree —c, such that
([d])«M) ® N is an étale p-module over R.

(ii) We say a p-module M over R is called semistable, if for every nontrivial
p-submodule N of M, we have u(N) > pu(M).



An important fact of [8] is that a p-module M is pure if and only if it is
semistable ([8, Theorem 1.7.1]). With this one can show the following:
(i) A p-module is pure of slope 0 if and only if it is étale.
(ii) If M is a pure g-module of slope s, then MV is pure of slope —s.
(iii) If My, M; are pure p-modules of slopes s; and sq, then M; ® M, is pure
of slope s1 + $».

Note that the ¢-action for tensor products and duals of ¢-modules is
defined in the same way as the (p-actions for tensor products and duals for
(¢, I')-modules in Section 1.2.

Furthermore we say a submodule M’ of a finite free module M over R is
saturated if M' = M N (M’ ®gFrac R). Note that since R is a Bézout domain
by [5, Prop 4.9] this means that both M’ and M /M’ are also free modules.
With this we can state the slope filtration theorem which will be important
later.

Theorem 1.5 (Slope filtration theorem). Every p-module M over R admits
a unique filtration 0 = My C My C --- C M; = M of saturated p-submodules,
such that all the quotients My /My, ..., M;/M,_y are pure and have increasing
slopes, i.e. u(My/My) < --- < pu(M;/M,_1). Note that if M is a

(¢, I')-module, all the subquotients are also (p,I")-modules.

Proof. [8, Theorem 1.7.1] O






2 Cohomology of (p,[')-modules

In this section we will define cohomology for (¢, I')-modules over the ring
RL and then show that we can use the equivalences of categories between
étale (p,I')-modules and L-representations of G obtained in Section 1.2
to prove the Euler-Poincaré formula and local Tate duality for étale (¢, I')-
modules over RE%. To prepare for the general case we will then study the
cohomology of certain rank 1 (o, T')-modules over R%. Lastly let F/K be a
finite extension of fields. Then we can define for any (¢, I')-module D over
RE the induced (p,T')-module IndE D over RE, such that there exists an
isomorphism between the cohomology of the two modules.

2.1 Definition of cohomology for (¢, I')-modules

To define cohomology for a (¢, T')-module D over R%, we take a p-torsion
subgroup Ay of 'k, such that I'x /A is procyclic. Note that for p # 2 the
group ['k itself is always procyclic, and for p = 2 the group Ak is at most of
order 2. We set D’ = D”% and define the projection pa = (1/|Ak|) Ysen, 0
from D to D’. We take a topological generator v of I' /Ax and to define
the following complex:

Cor: 0D B DaD 2D 0,

where di(z) = ((v = 1)z, (¢ = 1)z) and da(z,y) = ((¢ — Dz — (v = D)y).
Since for R the ¢- and T-action on the coefficient field is trivial, we can
show that the cohomology is well defined, i.e. independent of the choice of

Ak as in [10, Section 2.1].

Remark. For a (¢,T)-Module D over R%, we have that H(D) classifies all
extensions of R% by D.

We can now define cup products for two (¢, ')-modules M, N by setting
H°(M) x H*(N) = H(M @ N), (z,y) = 2 ®vy
H°(M) x H'(N) - H (M ®N), (z,(7,2)) — (1@ y,7® 2)
H°(M) x H*(N) - H*(M @ N), (z,7) » 2@y
H' (M) x H'(N) = H*(M @ N), (z,7), (z,1)) = y @v(2) — 2 ® o(t).
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2.2 Euler-Poincaré formula and Tate duality for étale
(¢, T')-modules

In [10, Cor 2.9] Liu has proven the Euler-Poincaré formula and Tate duality
for étale (¢, I')-modules over Rf. In this section we will make slight adapta-
tions to the proof to show that the Euler-Poincaré formula and Tate duality
is also true for étale (p, I')-modules over the ring RE.

In section 1.2 we established an equivalence of categories between
L-representations of G and étale (o, I')-modules over RE.. We will now use
these results to show that the Euler-Poincaré formula and Tate local duality
hold for such modules. Note that since the field B is an extension of degree p
of ¢(B), we can define an operator ¢ : B — B,z — (1/p)p 1 (Trp s (x)),
which is surjective, commutes with the Galois action and satisfies
Y(p(x)) = x for any x € B, as well as ¥)(A) C A hold, see [3, Section 5.3.1]
for the construction. Since the ¢ and I'-action on the additional coefficient
field is trivial, we can extend this operator to B¥, such that 1 is surjec-
tive, commutes with the Galois action and satisfies 1(AY) C AL, as well as
¥(p(z)). Furthermore 1 can be extended (¢, I')-modules D(V) and DT(V)
for any L-representation V of G, so that it is still surjective, commutes
with the Galois operation and satisfies ¥(¢(x)) = z for all x € D(V)
(resp.(DT(V)).

Theorem 2.1. Let V' be an Op-representation of Gx. Then fori = 0,1,2
there exist isomorphisms

H'(D(V)) = H'(Gk, V)
which are functorial in V and compatible with cup products.

Proof. As in [10, Thm. 2.3], for V' of finite length we can adapt the proof of
[3, Thm. 5.2.2] for V to the case where I' does not have to be procyclic by
replacing Hy with the preimage of a p-torsion group Ag in Gx and D(V)
by D(V)". Note that the exact sequence in [3, Thm. 5.2.2] in this case is

0 O, AL 75 pL 0.

]

Lemma 2.2. The morphism v — 1 : (DT(V)))¥=0 — ((DT(V)))¥=° has a
continuous inverse.

Proof. We have that x(I'x,) C 1+ pZ, is procyclic, so we can choose a
topological generator 7' of ', such that 4/ = 4™ in I'x /A for some m € N.
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We get the following commutative diagramm

Dt (V)¥=0 L> DT(V)w:O

[ s

(DHV)Y)¥=0 25 (DY (V) )»=0

From [2, Prop. 2.6.1] we know that the first map

v —1: DI(V)¥=0 — DI(V)¥=0 has a continuous inverse. And since pa, is
idempotent, the map 4™ — 1 : (DT(V))¥=0 — (DT(V)")¥=0 has a continuous
inverse as well and therefore we get that v—1 has a continuous inverse, which
is given by (v — 1) (id + vy +...4™1). O

Let CJ,W(DT(V)) be the complex

0—— (DI(V)) —2= (DI(V)) @ (DI(V)) —2= (D1(V)) ——0

where di(z) = (7 — 1)z, (¥ — 1)) and do(z,y) = (¥ — 1)z — (v — 1)y. We
can now get the following commutative diagram of complexes

dy

CoryDY(V)) : 0—— DI (V) 2

L DIV ——0

DYV @ DY (VY
id l—w@id -
C,.(DI(V)): 0—— DI(VY 4, DY (V) @ DYV SN DHV)Y —0

Y

Lemma 2.3. The commutative diagram of complexes above induces an iso-
morphism on the cohomology.

Proof. Recall that the map ) is surjective and hence the cokernel complex of
the above diagram of complexes is trivial. Furthermore the kernel complex
is just

0——0—— ((DI(V)))*=* 2= ((DI(V)))*=" —0,

which has trivial cohomology by Lemma 2.2. Hence the cohomology of the
complexes in the above diagram is isomorphic. O

Lemma 2.4. For any G-stable Op-lattice T' of V' the natural morphism
DN(T) /(¢ — 1) — D(T)/(x» — 1) is an isomorphism.

Proof. Since the ¢- and I'-action act trivially on the additional coefficient
field this lemma can be proven the same way as in [10, Lemma 2.6]. ]
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Proposition 2.5. Let V' be an L-representation of Gx. Then fori=0,1,2
the natural morphisms

H' (D' (V) = H' (Dl (V)

HI(D'(V)) 2 Hi(D(V))

are all isomorphisms.

Proof. We first proof the case i = 1. We know that the groups
HY(DI(V)), (HY{(D(V)) and Hl(DrTig(V))) classifiy all extensions of étale
(¢,T)-modules of B, BEL and RE by D(V), D(V) and DLg(V). We know
from the theorems 1.1, 1.2, 1.3, that the categories of étale (¢, ')-modules
over B}gL, BE and RE are equivalent to the category of L-representations of
G, Hence the maps a; and 3, are isomorphisms.

Next we will deal with ap and ay. From [8, Prop 1.5.4] we know that the
natural maps D(V)#=! — D} (V)#=' and D'(V)/(p—1) — DL, (V)/(¢—1)
are bijective. Taking Ag-invariants in the first map yields that
(DL, (V))#=' — (D'(V)')#=! is also bijective. The operator
Pa, = D(V) — D(V) induces the following commutative diagram

D(V)/(¢ = 1) —— D, (V) /(¢ = 1)

lpa x lm x

DY(V)'/(p —1) — Dl(V)' /(¢ = 1)

rig

Since pa, is idempotent, we get that also DT(V)'/(¢—1) — DLg(V)’/(go— 1)

is an isomorphism. And hence also ag and as are isomorphisms.

Note that H(DT(V)) = VIx = HY(D(V)), and hence /3, is an isomor-
phism.
Now by Lemma 2.3 and 2.4 we get that

H*(D'(V)) = (DN(V))' /(= 1,7 =1) = (D(V)) /(¥ = 1,4 =1) = H*(D(V)).
And hence also (3, is an isomorphism. O

Combining the isomorphisms above with the isomorphisms of Theorem
2.1, we get that for any L-representation of Gk, that for ¢+ = 0, 1,2 there are
isomorphisms

H'(D'(V)) = H'(Gk, V)

H'(Df,(V)) = H' (G, V)
which are functorial and compatible with cup products. With this result we
can prove the following theorem.
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Theorem 2.6. The Fuler-Poincaré formula and the local Tate duality hold
for étale (¢, T')-modules over the Robba ring R%.

Proof. We have seen that HQ(DLg(L(l))) is isomorphic to H?*(L(1)) and
hence the Euler-Poincaré formula and Tate duality for étale (¢, I')-modules
over the Robba ring R% follow from the Euler-Poincaré formula and Tate

duality for Galois cohomology. O]

2.3 (p,I')-modules of rank 1

In this section we will show how to construct rank 1 (¢, I')-modules using
continuous characters and show that the cohomology H? is trivial for certain
rank 1 modules, which will be used later in the proof of the Euler-Poincaré
formula and Tate duality.

Let 0 be a continuous character from Q; to L*. Then we can associate a
(¢, T)-module RE (9) to § by defining

p(zv) = 6(p)p(z)v and (zv) = 6(x(7))(x)v,

where v is a basis for Rf () and z € Rf, . For D a (p,T)-module of any
rank, we define D(z) = D ®g R, ().

Remark. We will now give some examples for rank 1 (¢, I')-modules.

(i) Let z: QF — L* be the character induced from the inclusion Q, — L.
Then the ¢ and I' actions of R(x) are defined by ¢(v) = pv and
v(v) = x(7)v.
We can now compute H(Rg (v)). Let av € H°(Rg, (x)) then
o(a) = a/p. But then p(at) = at and therefore a is a constant and
hence a = 0. This implies HO(Rép(.’B)) = 0.

(ii) Let |z| : QX — L*,x +— p~**®) be a character, then the ¢ and I actions
of R§, (|z]) are defined by ¢(v) = v/p and y(v) = v, since the image of
x lies in Z.
Again we can compute H°(R§ (|z])). Let av € H°(Rg,(|z])) then
v(a) = a, so a is a constant. But we have ¢(a) = pa and hence a = 0.
This implies H°(Rg, (|z])) = 0.

(iii) Lastly let w = z|z|, then the - and I-actions of Rf (w) are (v) = v
and (v) = x(y)p~ &0,

Next we will prove some facts about the modules R@p(m) and Rép(|a:|)
and their duals, which will be useful for the proof of the Tate duality in the
last section.
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Lemma 2.7. We have the following formulas
(i) R, (=) = RG, (zw™) = Rg, (lz| ™)
(ii) Rg,(x)" = RG, (lzjw™) = Rg, (=)

Proof. For (i) let us assume that v denotes a generator of Rép(|x|), then v* is
a generator of Rép(!x\)v defined by v*(v) = 1. Then we can write v = pp(v)
and hence have ¢(v*)(v) = pp(v*(v)) = p. Also we have for any v € T
that y(v*)(v) = y(v*(y"'(v)) = 1. If we compare these operations to the
operations of R (|z|7"), see example above, we get that they are the same
on generators and hence (i) holds.

For (ii) let us assume that v denotes a generator of Rg (), then v* is
agenerator of Rg ()" defined by v*(v) = 1. Then we can write v = ¢(v)/p
and hence we have p(v*)(v) = p(v*(v))/p = 1/p. Also we have for any v € T
that v(v*)(v) = Y(v* (v (v)) = v(v*(x(v)"'v)) = 1. If we compare these
operations to the operations of Rép(zfl), see example above, we get that
they are the same on generators and hence (ii) holds. O

2.4 Induced (¢, I')-modules

In this section we will prove Shapiros’s Lemma, which compares cohomology
of (¢,T)-modules over R% with (¢,T')-modules over REL, when E/K is a
finite extension of fields. For this we will introduce the notion of induced
modules and show that it is well behaved with taking duals.

Definition. Let D be a (¢, 'g)-module and define
Ind XD = {f :Tx — D | f(hg) = h- f(g) for h € T},

which has an R%-module structure with a ¢- and T'x-action that can be

defined by (af)(g) = g(a)f(g) and ((f))(g) = #(f(9)) and (hf)(g) = f(hg)
for any a € R% and g, h € T'x. With this, IndﬁgD becomes a

(¢, I'k)-module, which we will call the induced (¢,I")-module of D from E
to K. To simplify notation, we write Indg D for Indgg D.

Note that [E : K| = [Ex : Kuo|[lk : Tr] = [RE : RE][Tk : Tg], where
the last equality follows from [11, Section 2.1]. Hence we have
rankgr D = [E : K]rankg: Indz D.

Theorem 2.8 (Shapiro’s Lemma). Let E be a finite extension of K. Then
for a (o,T)-module D over R, there exist isomorphisms

H'(D) = H'(Indj D)
fori1=0,1,2.
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Proof. First we prove the theorem in the case that 'y and I'g are both pro-
cyclic. Write e for the neutral element of I'. We assume [['k : I'g] = m and
set vk to be a topological generator of I', then 7} is a topological generator
of T'y. Note that this means any element in Inds D can by uniquely deter-
mined by the images of {e,vx, V%, ..., 7 '}, a set of representatives of the
cosets of ' /T'5. We define a map Q : D — IndE D by setting (Q(x))(e) =
and (Q(z))(v%) =0 for 1 <i <m —1 for any x € D. We show that Q is
well-defined, injective and ¢ and I'g-equivariant morphism of

RE-modules, which will become evident by the following: Let z,y € D,

g € Tpand r € RE. Since Q(x) is defined on a set of representatives of the
cosets of I'x /T g, we in fact have Q(z) € Indk D for any z € D. We have that
(Qrz +y))(e) = rz +y = e(r)(Qz))(e) + (Qy))(e) = (rQ(z) + Q(y))(e),
hence @ is a morphism of RE-modules. Assume that Q(z) = Q(y), then we
have that x = (Q(z))(e) = (Q(y))(e) = y and hence @ is injective. Also
AQ@)(e) = P((Q)(e)) = @) = Q(2))(e), therefore

0(Q(x)) = Q(p(x)) and hence Q is p-equivariant. Finally the I" g-equivariance
of Q follows from the definition of Ind% D.

We now claim that ¢ induces a ¢-equivariant isomorphism
D/ — 1) = (Inds D) /(e — 1).

First we need to show that () is well-defined. For this take any x € D
and now show that Q((vg — 1)z) € (yx — 1)IndgD. Take f € IndjD
with f(e) = x and f(v%) = gz for 1 < i < m — 1. Then we have that
(vx —1)f(e) = f(yx) — f(e) = vpx — x and
(vk =D f (i) = fF(vE) = f(vk) = 0 for 1 < i <m — 1, since

f(y®) = vef(e) = ygx. Therefore Q((yg — 1)z) = (yx — 1)f and hence Q
is well-defined.

Next we show (@ is injective, for this assume we have x € D such that
Q(z) € (vx — 1)Indg D, so there is f € Indjy D such that (yx — 1)f = Q(z),

then for 1 <4 <m — 1 we have
= Q(z)(e) = f(vx) — fle)
0=Q(z)(vk) = F(YE") — F(vk)-

Summing these equalities we obtain

,_.

m—

=Y fOY) = fOk) = flye) — fle) = (e — 1) f(e)

=0

and therefore € (yg — 1)D, so @ is injective.
Next we show @ is surjective. For this take f € Ind¥ D and set
x; = f(vk) for 0 < j <m — 1. We claim that
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f = Q(z) mod (yx — 1)IndsD for 2 = (vg) (X", Tm_s). Now define
g € IndgD by setting g(e) = (y£)"'(Z}Ly @m-y) and g(vk) = Tip ;.

Then we have
<f—@@»@w:m—«mr%§;%ﬁ>=m%a—g@w=wK—nma

and for 1 <i < m — 1 we have

(f = Qx) (k) =z = g(v") — 9(vk) = (v — Dg(Vi),

since g(Vg) = vrg(e) = iy Tomei. _

Hence we have Q(z) = f mod (yx — 1) and therefore () is surjective. The
p-equivariance of @Q follows directly from the p-equivariance of Q.
For any g € 'k, we can define a map Q7 by setting Q9(z) = g(Q(z)) for
x € D. Note that Q9 in fact is a morphism of RE-modules, since for z,y € D
and r € R% we have

(rQ*(z) + Q°(y))(7) = r(Q%(2))(7)

Now we define Q = st k. The morphism Q is also
['g- and @-equivariant since the ¢ and I'g-action commute. Now we show
that @ is injective. Assume that z € D such that Q(x) = 0. Then
Q)(e) = Q(x)(e) = = = 0, since Qi (y)(€) = Qy)(7) = 0 for all
1=1,...,m—1and all y € D. Hence @ is in fact injective.

Next we claim that @ induces a @-equivariant isomorphism
Q:D'r — (Ind¥ D).

We first check that Q is well-defined. For this let x € D'#, then for any
0<7<m—1we get that

—1+7

Q@) () = Q) (7x) = Q% (2) (i) = ywa = .
And hence vxQ(z) = Q(x), so Q(x) is well-defined.
Clearly Q is also injective. To see it is also surjective take
f € (IndED)'« and set © = f(e). Because of the I'g-invariance of f we
then have f(g) = gf(e) = f(e) = z for any g € T'x. But if g € T'g we also
have that f(g) = g(f(e)) = gx, which implies that z is I'g-invariant and
therefore # € D'?. Furthermore since Q(x)(vy) = Q%  (vk) = ypx = x for
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all 0 < i < m—1 we have that Q(z) = f and hence Q is surjective. We will
now consider the following diagramm

Coprp 2 0 D D@D D 0

P

Corpe : 0——Ind¥D ——Ind¥D @ IndkD —— Ind¥D——0

To see that this diagram commutes we need to check that
(vxk —1)Q = Q(vg — 1). This holds since for € D we have

(% — 1)Q Z Q' (z) — QK (z) = Q% (2) — Q(z) = Q((v& — 1)a).

This induces morphisms o/ : H (D) — H(Ind5D) for 0 < i < 2. We will
now show that these are the required isomorphisms.

For H°, recall that we have already shown that Q induces a p-equivariant
isomorphism @ : D'= — (IndX D)'x . By taking g-invariants on both sides,
we obtain that the map o is also an isomorphism.

For H?, recall that we have shown that @ induces a p-equivariant isomor-
phism Q : D/(vg —1) = (Indj D)/(vx — 1) and hence a; is an isomorphism.
For H*, consider the following short exact sequence

0—— (D'=)/(p — 1) =2 HY(D) 25 (D/ (7 — 1))#= ——0

where [1(z) = (0,2) and Sa(y, x) = y. We check now that the diagram is in
fact commutative.

We can see that 3; is well-defined, since for € D'Z we have that
Pille = D) = (0, (¢ — D) = ((7e — D, (p — D)z) € im(dy) and
B1(x) € ker(dy) since dy(0,z) = (yg — 1)z = 0. We have that [, is injective.
To see this take a y € (D'#) such that 5;(y) = (0,y) = 0. Then there exists
x € D such that di(z) = ((vg — 1)z, (¢ — 1)x) = (0,9), so y € (¢ — 1)D'F)

We can see that (3, is well-defined since for (y,z) € H'(D) we get that
0 = (p—1)y+(yg—1)x and therefore p(x) = x in D/(yg—1).We have that 3,
is surjective, since for any y € (D/(yg—1))?=!, we have that (y,0) € H'(D),
because da(y,0) = (¢ — 1)y = 0 and Ba(y,0) = v.

We get the same short exact sequence for the induced module and then
obtain the following commutative diagram

0——D's/(p—1)——— H(D)———— (D/(vg — 1))} ———0

! s !

0 —— (Indx D)% /(p — 1) —— H'(Indk D) —— (IndE D)/ (vx — 1))#=! ——0
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We have seen that Q and Q are isomorphisms, so by the Five lemma we get
that o! is also an isomorphism, which concludes the proof for the case that
['g and 'k are procyclic.

For the general case, let Ag and Ak be the torsion subgroups of I'p and
[k respectively. Then I'g/Apg is a subgroup of I'x /Ak and both groups
are procyclic. We take a topological generator vx of I'x /Ax. We assume
m = [(Tx/Ak) : (Tg/Ag)], then vg = ~} is a topological generator of
I'p/Ap. We can define Q' : D' — (IndE D)’ by setting for any z € D/,
Q'(x)(e) = x and Q'(z)(y) = 0 for any non-trivial y € I'i/I'g. Similarly we
can define Q' = Y75 7% Q'. Now by replacing Q by @ and Q by Q' in the
above argument, one can show the statement for the non-procyclic case in
the same way. O]

Next we will show that the induced modules are compatible with taking
duals.

Theorem 2.9. Let E/K be a finite field extension and let D be a
(¢, T)-module over RE, then Indk (DY) = (Indk D)V.

Proof. Let (d*)ger be an R%-basis of D and (7;);es be a system of represen-
tatives of I'p/T'k.
Next for any j € J and k € I define hj;, € Inng by setting

d* ifj =i
hjk(%) - { 0 else

for any 7 € J.

Then (hj)rerjes is a Ri-basis of IndjD. Write (hl)kerjes for the
corresponding dual basis.

Write ((d*)*)rer for the RE-dual basis of (d¥)ge;. Furthermore for any
j € J k€I define fj;, € Inds (D) by setting

fut) ={ 41 2

for any 7 € J.
Then (fjr)rerjes is a Ri-basis of Indf (DY). This allows us to define the
following isomorphism of modules

®: (Ind¥D)Y — IndE(DY)

We still need to check that ® respects ¢ and I'-actions.
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We will start with checking the I'-action. Take v € D'k, then for any
J € J there exists one m; € J such that yvy,,, = %7] for some 7 el'p. We
write (y7) 7' (d¥) = X,¢; b5, d" for some b}, € Ri. Now fix i € J and [ € [
and compute yh};. We have

YRy (hj) = (R (v )

and

v () = hyr(v ) = i (g, (1))
Note that this means if j # m;, then h}j(h;;) = 0.

So now assume that j = m;, then we have
v k() = har( () = (0 = bhd"
nel
Hence we have v~ hx = S cr v (05 hin.
Then
nGI

And so yh = Yper vy (V)3

Next we will compute 7 f;.

For j € J we have vfi(v;) = fu(yy;) =0, if j # my, since then yvy; ¢ v'g.
So assume that 7 = m;, then

7fz‘l(7j) = fil(W%’) = fz'l(%’%E) = %E(dl)*-
We have for k € I that

(V7 (d))(d") = ~4F (@) (7)1 (d)) = Zlb’“ d")) =~ (by).
This gives us
vfaly) =47 (d)) = Y7 (by)(d”
And hence

V=Y O fir = Y v (00 fine

kel kel
Therefore ®(yh};) = v(®(hy)) holds for all ¢ € J,I € I and hence ® respects
the I'-action.
Now we check the p-action. First note that for any k£ € I we can write
d* = 3,cx burp(d?) for some b, € RE. Now fix i € J and [ € I and
compute p fj.
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Clearly ¢ fu(v;) = @(fu(y;)) = 0, if j # i. And @fa(v:) = @((d')*). For
k € I we have

p((d))(d") = Q2 barp(d™) = D bup((d)*(d")) = bu.

nel nel

This means ¢ f;;(7;) = ke bix(d¥)* and therefore
ofa = Z% (bik) fik-

kel

And lastly we will compute hj;.

First note that for & € I we have ph}(hjy) = 0 if j # 4, since then
hji(vi) = 0. Hence it suffices to compute @h;(hi).

Note that

hzk ’Yz - dk Z bnkso Z bnk@hm('%>

nel nel

Therefore hy, = X ner Vi ' (bnk)9hin and hence

ohi(hik) = @hs (" 37 (bar)hin) = > 7 b)) o(h (hin)) = 7" (big).-

nel nel

This gives us

Z Y blk

kel

These computations show that o(®(h};)) = ®(¢fy) for any i € J,I € I and
hence ® respects the g-action and defines an isomorphism of (¢, I')-modules.
m
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3 Generalized (p, [')-modules

In this section we will define generalized (¢, T')-modules over the ring R%
and first study some properties of torsion (¢, [')-modules over Rép. With
these results and Shapiro’s lemma we can then show that the Euler-Poincaré
formula holds for torsion (¢, T')-modules over R%.

To define generalised (i, I')-modules over R%, we first need to show that
REL is a Bézout ring. Recall from Section 1.1, that we can write R% as a
finite direct sum of Bézout domains. Hence R% is no longer a domain, but
in the following lemma it can be seen that it maintains the Bézout property:

Lemma 3.1. Let R be a commutative ring, such that R = @] R; for some
m € N and some R; commutative Bézout domains. Then R is a Bézout ring.

Proof. Let I = (fi,...f1) be a finitely generated ideal in R. Write

fi = (fj(l), . ,fj(m) for j = 1,...1. Since R; are Bézout, we get that for
i = 1,...,m, there is ¢ € R;, such that (¢¥) = ( fi), e ,fl(i)). We now
claim that for g = (¢V, ..., ¢™) we have that I = (g). We have

! !
r€el < x= Zijj _ Z(r§1)f](1)’ o 7Tj(‘m)f;m))

j=1 j=1
for some r; = (rj(l), o ,r](-m)) €R
=z = (rWg® . rmgmy =g
for some r = (r®, ... +(™) € R
<~z € (9)
Hence R is in fact a Bézout ring. O

Definition. We say a generalized (¢, T')-module over R is a finitely pre-
sented RE-module D with commuting ¢ and I'-actions, such that ¢*D — D
is an isomorphism. By the previous Lemma R% is a Bézout ring and hence
also a coherent ring, hence the generalized (p,')-modules over R% form an
abelian category. We say a generalized (g, I')-module is a torsion (p,I')-
module if it has RE-torsion. We say a generalized (¢, I')-module is a pure
th-torsion (¢, ')-module, if it is a free RE /(t* ® 1)-module.

We can also define the rank of a generalized (¢, I')-module D. For this we
take the torsion submodule S of D, which is a torsion (¢, I")-module. Then
by [5, Prop. 4.8] we get that D/S is a free (¢, ')-module and we can set
rank D =rank D/S.
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We can define the cohomology for a generealized (¢, I')-module using the
same complex that was used for the usual (¢, I')-modules in Section 2.1.
We will now compute the cohomology of torsion (¢, I')-modules over Rép.

Lemma 3.2. For any principal ideal I of Rép, which is stable under I'g,,
there exist j, € N such that I = (), TInZ, ( ©"1(q)/p)» @ 1). Furthermore,

if p(I) C I, we get that the (J,)n form a decreasing sequence.

Proof. Recall that we can identify the ring R@p with the set of holomorphic
functions on the boundary of the open unit disc.

We choose a Laurent series f(7) € Rf which generates I. We know that
the series f(7T') converges on some annulus p~ /" < |T| < 1. Let V(I) denote
the set of zeros of I. Then by [9, Prop. 4 bis and Section 4] we know that for
any ¢ > 0 the set Vs(I) =V ({I)N{z € (Cp‘p’l/’” +o<]z| <1— 5} is finite.

Since I is invariant under I'g, and since g(T) = (1 + T)X¢ — 1 for all
g € I'g,, we get that the transformation z — (1 + 2)9 — 1 maps V5(/) onto
itself for all g € I'g,. And since Vs([) is finite and I'g, is infinte we get
that there is a g € I'g, \ {1} € Z; \ {1}, such that (1+2)? —1 = 2 for
all z € Vg(I). This however implies that (2 4+ 1)9~! = 1, and hence we get
that z =0 or 2+ 1 € pyn \ prn—1 for some n € N. In case z = 0 we get the
minimal polynomial Py(7T") =T for z and in case z + 1 € pipn \ pn-1, we get
the minimal polynomial P,(T) = ((1+T)"" —1)/((1 +T)*"" —1)). Note
that for ¢ = ¢(T)/T we get that 0" (¢') = ©"(T) /(" (T)) = P,(T) for
n > 1. So we get that

(e 9]

f(T ﬁ (1/p)P, = T7( H ¢)/p)’")

for some u(T) € (R§,)*. This product converges since we have
SPT) = S+ (1 + T + (1 +T)* +...(1+T)»D%") and we have
for k € {0,...,p — 1} that |(1 + T)*""| tends to 1 for large n and hence so
does |(1/p)P,(T)|. Note that the right hand side of the equation has only
coefficients in Q,, hence (mg, ) (102, (¢" (q)/p)’") ® 1 is a generator for I,
where the j,’s denote the multiplicity of the root e™ — 1 in f(T)).

The fact that the j,’s are decreasing in case p(I) C I, follows immediately
from the fact that o(T) = T'¢' and p(0"(¢)) = ©"(¢).

[

For the next lemma we first need to discuss some special properties of the
Robba ring Rép. We know that the Robba ring can be viewed as a module

over itself via ¢, more specifically Rép ~ gp] bigo(Rép) for some b; € Rép.
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Lemma 3.3. Let S be a torsion (p,T')-module over R . Then S is a suc-
cessive extension of pure t-torsion (¢, T')-modules.

Proof. By a result of Lazard in [9] we know that RL is an adequate ring and
hence allows a theory of elementary divisors (see [7 Theorem 3]), so there
exists a set {eq,...,eq} € S and chain of unique principal ideals
(r1) C (re) C--- C (ra) in R, such that S = &L, R e;, and
Ann(e;) = (r;) for all i. Then for any vy € I'g, we have
SLIRG, e = S =7(5) = &L, R§,v(e;) and by the uniqueness of the r;’s we
get that (y(r;)) = (r;), so (r;) is I'g,-invariant for all 7.

Next we claim that the ideals (r;) are stable under ¢. We know that

S p'S = Ré ® oRE S
= (2§ 25p(RE,)b;) © omE S
= @j(ﬂp(RQp)bj e.RE, S)
= 8,0 @y rs S
= ®jb; B,z DRy, €
= @i ;bjp(Rg,)e(es)
= @iR{@pcp(ei).

Now by the uniqueness property of the (r;)’s we get that

©((r;)) € Ann(p(e;)) = (r;) for all i and so the ideals (r;) are stable under
¢. By the previous lemma we know that the ideals (r;) are of the form
(r;) = (W(gjp’ (" Mq)/p)y™i @ 1) and j,; € N for all n, where (j,,), is a
decreasing sequence. So the sequence will eventually become constant, let k;
denote this constant. We have that ¢ = log(mg, + 1) = mg, [1021(¢"*(¢)/p)

and so we have that (t* ® 1)u = (Wfop’ > (¢" Hq)/p)™ ®1), where u is a

n=1
finite product of ©"~'(g)/p and hence is a unit in R . Therefore
(th ®1) = (r;).
By the chain property of the (r;) we get that the k; are decreasing, hence
we then have (t** ®1)S = 0 and hence 0 = (t"' ®1)S C (th~'@1)SC---C S
is a filtration of S, where all the subquotients are t-torsion.
O

For K = Q,, take a (¢,I')-module S, which is of pure t*-torsion, and
let d = rankRS oS and let {ej,...eq} be a basis of S. Let A be the

transformation matrix for ¢ in this basis. Since we have ¢*S = S| there
is a matrix B such that AB = BA = 1;. And since I' is topologically
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finitely generated we can find an ry, such that the entries of A,B and all the
transformation matrices of the I'-operation have entries in BmgQ J(tF ® 1).
For any r > ry, we set S, to be the B;ri;’(gp/(tk ® 1)-submodule of S, which is
spanned by {e;...eq}. We get a I-action on S, and the map ¢ : S, = S,
induces an isomorphism 1 ® ¢ : B;ri’gf{@i/(tk ® 1) ®prt L ko) Sy — Spr
Lemma 3.4. Forr > p—1 and n(r) the smallest N € N such that satifies
(p— 1)pN~tr > 1 the following holds

(i) For n > n(r) the maps Brlg@ /tF 1) = Bji’g,(@p/(gon(qk) ® 1) induce

an isomorphism

;L N ;L n
B;rig,@p/(tk ® 1) - 1_[( )B;fig,(@p/(gp (qk) ® 1)
n>n(r
(i) Forn > n(r) and | € L mapping 7 @1 to (e™e!/?" — 1) @ | induces a
lq,-equivariant isomorphism

Bliyg, /(9" (¢") @ 1) = (L)) /(1)

(iii) For v" > r and n > n(r') usmg the isomorphism (ii), we get that the
natural inclusion B;rng — Brng induces the following commutative
diagramm

Bl /(¢"(d") © 1) = Blga /(") ® 1)

0 J

L(eM)[t)/ (%) ——— L(™)[t] /(t*)

(iv) We can describe ¢ : B“L St e1) — Bji’gf@i/(tk ® 1) via the isomor-
phism (1) by setting go((xn)mn(r)) = (Yn)nzn(m)+1 and Ypp1 = , for
n 2 TL( ) fOT‘ any (xn>n2n (r) € ann(r) B;rf;ép/(SDn(qk) ® 1)

(t")® L we get that Bliyg /(t*@1) = Bl /(t)®q, L

and since (¢" (q ) ®1) = (¢"(¢")) ® L we get that

Bji’;ép /(" (") ®21) rlg,Qp/ (¢™(¢")) ®g, L and hence the proof is the same

as in [4, Prop. 3.15]. O

Proof. Since (t*®1)

’—‘H

IIZ

Let S be a pure t*-torsion module over Rép, such that d = ranknép (k1))

then by the previous lemma we can embed L(¢™)[t]/(t*) in
Bji’;’ép/(tk ® 1) and hence we can set 5™ = S, @y L(e™)[t]/(*), which
is a free L(e™)[t]/(t*)-module of rank d, with a I'g, -action. By the previous
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lemma we get that the image ©S™ lies in S"! and furthermore we get that
@ is injective on S™. This however implies that

1® @ LE™)[t]/(t*) @pemygery S™ = S™T. Hence we can view S™ as a
submodule of S™™!. This gives us the following theorem.

Theorem 3.5. (i) With the above notation we get that for n > n(r) the
natural map S, — S™ induces an isomorphism

s, = I[ s
n>n(r)

as Dg,-modules over L(e™™)[t]/(t").
(i) With the isomorphism of (i) and r > p — 1, we can deduce that for
r’ > r there exists a natural map

Sy — Sy
(@n)nzn(r) (@) n>n()-
(iii) The map ¢ on S, is given by
Sy —Spr
(Tn)nzn(r) = (Un)nzn(r)+15
where Ypi1 = T, forn > n(r).

Proof. As in Lemma 3.4, this theorem can be proven in the same way as in
[10, Thm. 3.3]. O

Let E/K be a finite extension of fields. Note that we can extend Shapiro’s
lemma to generalised (¢, ')-modules. This can be done by defining the in-
duced RE-module Indjs D of a generalised (¢, T')-module D over R in the
same way we did in Section 2.4. The lemma for generalised (¢, I')-modules
can be proven in the same way, so we get:

Theorem 3.6 (Shapiro’s lemma for generalised (¢, I')-modules). Let D be a
generalised (p,T)-module over RE, then there exist isomorphisms

H (D) = H'(Ind5 D)
for1=20,1,2, which are functorial and comaptible with cup products.

Let 1 : Z; — Of be a character of finite order. The conductor of 7 is

given by pV™ where N(n) = 0 if n = 1, else N () is the smallest n € N such
that 7 is trivial on 1 + p"Z,. Next for any N € N take QIJ)V to be a primitive
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pN-th root of unity, such that ({,n+1)? = (,~ for all N € N. We can then
define the Gauss sum G(n) by setting G(n) =1, if n = 1 and else

G(U) - Z n(x)C;N(n) S (E(MpN(n)))X

x€(Z/p™(MZ)*

Lemma 3.7. For any k € N, we have
(i) For any n : Z; — Og a character of finite order and 0 <i <k —1 we
have that

g(Gmt) = ("X (g) - (Gt

for any g € I
(ii) For any n € N we have that

E(E")[8)/(t) = ®pnimn Posise—1 B - G)t'.
Proof. See [4, Prop. 3.13] for the proof. O

With all the statements from above, we can proof the next theorem, which
states how the cohomology of a torsion (¢, I')-module over R behaves and is
crucial for the proof of Euler-Poincaré formula and Tate duality.

Theorem 3.8 (Euler-Poincaré formula for torsion (¢, I')-modules). Let S be
a torsion (p,T)-module over RY.. Then we have

(i) dimy H°(S) = dimy H'(S) < oo

(ii) @ — 1 is surjective on S and hence H?*(S) = 0.

Proof. We can use Shapiro’s lemma to reduce to the case that K = Q,.
Next we claim that if we have an exact sequence of torsion modules over
Rép, say
05 —>85—->858"=0

and the theorem holds for both S” and S”, it must also hold for S.

We consider the long exact sequence of cohomology and from that we im-
mediately conclude that (i7) holds for S. Again from the long exact sequence
of cohomology we get that dimy H*(S) < co and we get that
dimL HO(S,) + dlmL HO(S”) + dlmL H1(5> == dlmL HO(S) + dlmL H1<S/)

+ dimy, H'(S"”). Then since (i) holds for S’ and S” we get that
dimy H°(S) = dimy H'(S), so (i) holds for S. Then by Lemma 3.3 we can
assume that S is of pure t*-torsion. We now show that (ii) holds for S.

We claim that the map ¢ — 1 : S, — S, is surjective for r > p — 1.
From this we can conclude that S satisfies (ii), since S = U, S,. Recall
that S, = [[;2,) 5" Take (Yn)nzn(41 € Spr and set x, = — 3Ly

n>n(r
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(set Yn(r) = 0). Then (In)TLZn(T) € S, and (¢ — 1)((xn)n2n(T)> = (yn)nzn(r)+17
which proves the surjectivity of ¢ —1 on S.

We still need to show that (i) holds. We start by computing the group
H°(S). For this set (S,) = (S,)%% and (S")' = (S")*%, where Ag, is a
torsion subgroup of I'g,. Then we have (S,)" = [I5%,(S™)', since the
['g,-action acts componentwise on the right hand side. Let a € S then there
is a representation a = (an)p>n() € (Sy) for some r. We then have a = 0 if
and only if a,, = 0 for almost all n by Thm. 3.5. Now take a € H°(S) with
a = (@n)n>n@) € (Sy) for some r, such that (¢ — 1)a = 0, then by Thm. 3.4,
this implies that a,, becomes constant for n large enough.

Therefore, since elements of H°(S) are I'g, -invariant, we can write

HO — i m\\Tg, /Ao, — li n FQP_
(5) n%((s )) nﬁo(s )

Next we will compute H'(S). For this let (a,b) € Z*(S). We now claim
that we can assume b = 0. Since we know (@ — 1) is surjective on S, there
exists a ¢ € S such that (¢ — 1)c = b, but then we have that
(a,0) = (a — (vg, — 1)c;b = (¢ — 1)c) = (a — (g, — 1)c,0), hence we can
assume that b = 0.

We then take for some 7 a representative (an)n>ne) € (Sr)" of a. Then we
have (¢ — 1)a = 0 and this means that the a,, become constant for n large
enough. We also have that (a,0) € B'(S) if and only if a,, € (yx — 1)(S™)
for n > ng. This implies that

H'(S) = lig (8")'/(7g, — 1)-
n—oo
Now since (S™)" is a finitedimensional L-vector space, we get that
dimp,(S")'% = dimz(5")'/(g, — 1). Recall that we can view S™ as a sub-
module of S"*! and hence we also have an injection (S™)'e < (S7+1)l',

To conclude that dimz H°(S) = dimy, H'(.S) holds, it now suffices to show
that (S™)'/(vg, — 1) — (S"*')'/(vg, — 1) is an injection for all n.

From Lemma 3.7 we know that L(c™)[t]/(t*) is a direct summand of
L(e™t)[t]/(t*) as Ig,-modules. This implies that also S™ is a direct sum-
mand of S"™! and hence (S™) is a direct summand of (S™™!), so the natural
injection induces an injection (S™)'/(vg, — 1) < (S"*1)'/(yg, — 1).

We now still need to show that dim;, H°(S) < oco. For this we will show
that dimpz(S™)"% has an upper bound which does not depend on n. Take
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s € N, then by Lemma 3.7, we get that

sy = @ @-cmres)”

nn<N(n)<n+s 1=0

- B P(-amies) .

n,n<N(n)<n-+s i=0

Therefore we get that

k—1
dimy, (S" ) ' < > Y dimg((L- Gp)t') @ S™)Fer < dimy, 5™

nn<N(n)<n+s =0

Here the last inequality follows from the fact that
(L-Gnt) @ S™)'e = S*(n~ty")'e» C S". And since all the characters are
distinct, we have that all S"(n~1x*) are disjoint subspaces of S™.
Therefore dimy,(S™)'% has an upper bound independant of n and there-
fore dimy, H°(.9) is finite.
O

Remark. For any torsion (¢, T')-module S over R% Thm 3.8 proves that
x(S) = 0and dimg, H'(S) < oo fori =0, 1,2. Since we also have rank S = 0,
we in fact know that the Euler-Poincaré formula holds for torsion (p,T')-
module over RE.
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4 FEuler-Poincaré formula

In this section we will prove the Euler-Poincaré formula for generalised
(¢,T')-modules over the ring R%.
In case D is a generalised (p,I')-module over RE the Euler-Poincaré
formula states that:
(i) dimg H*(D) is finite for all 0 < i < 2
(ii) x(D) = X7 ,dim; H(D) = —[K : Q,Jrank D

Lemma 4.1. Let D be a (p,T')-module over RY%. Then for i = 0,1,2, we
have dim;, H (D) < oo if and only if dim;, H'(D(z)) < oco. And also if H'(D)
is finite dimensional for all i, then x(D) = x(D(x)).

Proof. 1f we compare the ¢- and I'-operation of the module ¢tD and D(x),
we see that they coincide. To see this, we can for any d € D calculate
o(td) = pp(d) and ¢(d ® v) = pp(d) ® v as well as y(td) = x(7)v(d) and
Y(d®@v) = x(7)y(d) ® v for any v € I'. Hence there exists a natural iso-
morphism between tD and D(z) by mapping td to d ® v for any d € D.
Since D/tD is a torsion module we get by Thm. 3.8 that dim; H(D/D(x))
is finite for all i and for 4 = 2 one has H?(D/D(x)) = 0. We consider the
following short exact sequence

0 D(z) D D/D(z) ——0

and with it the long exact sequence of cohomology

0—— H(D(z)) —— H(D) — H(D/D(z)) — - - - —— H2(D) —— 0

We can now see for 0 <4 < 2 that if either H (D) or H'(D(z)) are finitedi-
mensional over L, then the other one also has to be finitedimensional. From
the long exact sequence of cohomology we get that

dim; H°(D(x)) + dim;, H°(D/D(x)) + dim; H'(D) + dim;, H*(D(x))

= dimy H(D) + dimy H'(D(x)) + dimy H'(D/D(x)) + dimy, H*(D)

Since by Thm. 3.8 we have that dim; H°(D/D(x)) = dim; H'(D/D(x)), we
conclude that x(D) = x(D(z)).
[

Remark. Note that if 0 - D; — D — Dy — 0 is an exact sequence of free
(¢, I')-modules over R. Then we have rankD; + rank Dy = rank(D) and the
long exact sequence of cohomology shows that also x(D1) + x(D2) = x(D),
if the cohomolgy of these modules is finitedimensional.
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Next we will construct pure (¢, I')-modules of arbitrary slopes, which can
be obtained through succesive extensions of Rf (2').

Lemma 4.2. There is a (p,1")-module E over 'Rép of rank d such that E is
pure of slope 1/d and which is a successive extension ofRép(xi) withi=0,1.

Proof. We will proof this by induction on the rank d. For d =1 set
E = R(ép(a:) The module E is pure, since all rank 1 modules are pure by
Lemma 1.4(iv) and we have u(E) = 1. Now for d > 2 assume we can find a
module Ej of rank d — 1, which is pure of slope 1/(d — 1) and is a successive
extension of Rg (z'). We claim there is a nontrivial extension of R by Eo.
To see this we first note that Rép is étale and hence by Thm. 2.9
X(R(ép) = —1. By Lemma 4.1 we also have that X(Rép) = X(Ré@p (x)) and
since Fj is a successive extension of Rép (2%) we get that
\(Eo) = (rankEg)(x(R, ).

Therefore we have

dimy H'(Ey) > —x(Eo) = (rankEo)(x(R§,)) = (d —1) > 1.

And hence there exists a nontrivial extension E of Rép by Ey, i.e.

0 Ey E—%7Rg, 0

We now claim that F is the module we want. By Lemma 1.4 (i) we have
that deg(F) = deg(Eo) + deg(Rép) = deg(Fp) and hence u(E) = 1/d. So
it suffices to show that E is pure. For this we now assume that F is not
semistable, that means there is a submodule P C E such that u(P) < 1/d.
Then since rank(P) < d we have deg(P) < 0, since the deg is Z-valued.
Therefore p(P) < 0. Since Ej is pure of positive slope we have that

PN Ey ={0}. And therefore P C E Nker(o) = {0} and hence «|p is
injective. So we can view P as a submodule of Rép. Then by Lemma 1.4
(iv) we get that u(P) > 0 and u(P) = 0 if and only if P = Rép. But we have
seen earlier yu(P) < 0, so this implies y(P) = 0 and hence P = R§ . But this
implies that the extension E is trivial, which is a contradiction. So we can
assume that E is semistable and hence also pure. Clearly F is a successive
extension of R@p (') and this concludes the induction step. [

Remark. For any g = ¢/d € Q this theorem allows us to find a pure

(¢, I')-module of slope p(D) = ¢/d, which is a successive extension of ’Rép (z%)
where the ¢’s can be taken from Z. This can be done by taking

D = (®5_,E)(z*), where ¢/d = k + s/d and k € Z and 0 < 5 < d. Here E
is the module constructed in Lemma 4.2 with slope 1/d. Then D is in fact
pure since the tensor product of pure modules is again pure.
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Before we can prove the Euler-Poinare formula, we need to define the
localization at €™ — 1 of a generalized (¢, ')-module over R, Note that
there is an injective morphism ¢,, : B;r{gT,’ép — L(e™)[[#]] for n > n(r), which
is constructed in [1, Chapter 2]. The I'- and p-operation of
L(EM)[[t]] = Qu(e™)[[t]] ®q, L act trivially on L. This map can be viewed
as evaluating the function at e™ — 1. We can then define
D(D) = D, ®BT‘,T,6 L(e™][[t]], the localization at €™ — 1 of D.

rie,0p

Theorem 4.3 (Euler-Poincaré formula). Let D be a generalized (p,T")-module
over R, then the Euler-Poincaré formula holds for D.

Proof. We can use Shapiro’s lemma to reduce to the case K = Q, since

rankpr D = [K : Qp]rankRé Ind? D. Next we can reduce to the case that
P

D is a (p,I')-module. For this suppose that S is the torsion submodule of

D. We then have that D/S is a (¢,I')-module. We assume now that the
Euler-Poincaré fomula holds for D/S. Consider the short exact sequence

0——>S——D——>D/S——0.

Since H'(S) is finitedimensional for 0 < ¢ < 2 by Thm. 3.8 and H'(D/S)
are finitedimensional by our assumption above, we get from the long exact
sequence of cohomology that dimyH'(D) is also finite for all 0 < i < 2.
So (i) holds. For (ii) note that by Thm. 3.8, we have that H*(S) = 0,
hence by the long exact sequence of cohomology we immediately get that
dim; H*(D) = dim; H*(D/S) and so the remaining sequence is as follows

0—— H°(S)—— H°(D) —— H°(D/S) —— -+ —— HY(D/S) ——0

Now using the fact that from Thm. 3.8 we get dim; H°(S) = dim; H'(9)
and hence by the long exact sequence of cohomology we have

dim; H%(D) — dimy H*(D) = dim; H*(D/S) — dimy H'(D/S). And there-
fore we get that x(D) = x(D/S). And since D and D/S have the same rank
(ii) also holds for D. Therefore we can now assume that D is a (¢, I')-module.

Let d = rank D. We will now proof that dim; H(D) < d.

Now for an r large enough we know that D, exists and we have a natural
injection o : D, < Di"(D)[1/t], where n > n(r). We first claim that
dim (D3 (D)[1/t]))" < d. We will prove this by contradiction, so we assume
that there are ey, ...eq1 € (D37 (D)[1/t])", which are linearly independent
over L.

Since we have rank D, = d, we get that D1."(D)[1/¢] is a d-dimensional
L(e™)((t))-vectorspace. And therefore ey, ...e4y1 are linearly dependent in

32



DI(D)[1/t] over L(e™)((t)). We now choose a minimal linear dependent
subset of {e1,...,e411}. We may assume {eq, ..., e} is such a subset. We
then find a; € L(s™)((t)) such that % | a;e; = 0. By minimality we may
assume that a; # 0 and hence we get

k
er + Z(ai/al)ei =0.
i=1

Because the e; are I'-invariant applying any v € I' to the above equation
gives us

k
er+ Y _v(ai/ar)e; = 0.
=1

By minimality again we get that v(a;/a;) = a;/a; for all ¢ and all v € T'.
And therefore a;/a; € (L(e™)((t)))" = L, since both ¢ and £™ are not
[-invariant. This however would imply that ey, ...e; are linearly dependent
over L, which is a contradiction, so dimy (D1 (D)[1/t])" < d. Since « is
an injection we get that dimy(D,)' < d for any r, this means we also get
dimy; H°(D) < dim; D' < d < oo.

We will now proceed the proof by induction on rank(D). For d > 1,
assume now that the theorem holds for all (¢, I')-modules of rank less than
d and let d = rank(D). For the rest we need to note that by the long exact
sequence of cohomology we get that the Euler-Poincaré formula is preserved
by extensions. Then if the slope filtration for D of Thm 1.5 is non-trivial, we
are done by our induction hyptothesis. Note that since the slope filtration
is unique, we get that the slope filtration of D is trivial if and only if D is
pure. Hence we can now assume D is pure. Assume that (D) = ¢/d then
by the remark after Lemma 4.2 we can find a pure (¢,')-module F' with
slope u(F) = —c/d, which is a successive extension of Rép (z'). Then the
module D ® F' is étale and by usual Euler-Poincaré formula, we get that
X(D® F) = —rank(D ® F') = —(rank D) (rank F).

Also by the construction of F' we get that D ® F' is a successive extension
of D(z*%) and hence there is a j € Z such that

0 D(a7) D®F ——G——0

for some quotient GG, which is itself obtained through successive extensions
of D(z"'). Note that both D(z?) and G are free (p,I')-modules, so by the
above we have that both H°(G) and H(D(z7)) are finite dimensional over
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L. Now we get the following long exact sequence of cohomology

i HYG) ——— HY(D(2%)) —— HY(D ® F) —— H'(G)

—— H*(D(2/)) — H*(D® F) —— - -+

By usual Euler-Poincaré forumla we have dim; H'(D ® F) < oo and since
H°(G) is also finitedimensional we get that dim;, H'(D(27)) < co. So by re-
peatedly applying Lemma 4.1 we get that dimy, H'(D(z")) < oo for all i € Z.
So in particular we have that H'(D) = H'(D(z")) is finitedimensional over L,
as well as dimy, H'(G) < oo, since it is obtained through successive extensions
by D(x'). Since by usual Euler-Poincaré formula H*(D ® F) is also finitedi-
mensional over L, we get from the above sequence that dim;, H?*(D(z7)) < oo.
And again by repeatedly applying Lemma 4.1 we get that dim;, H?(D) < oo.
And hence (i) holds.

To see (ii) note that by Lemma 4.1 x(D(z")) = x(D) for all i € Z and
since D® F is obtained through successive extensions by D(x%), so by the the
remark after Lemma 4.1 we get that x(D ® F') = (rank F')x(D). Combining
this with our earlier result, we get

—(rank F')(rank D) = x(D ® F) = (rank F)x(D)

and therefore
X(D) = —(rank D).
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5 Tate duality

In this section we prove the Tate local duality theorem for (p,I')-modules D
over RE. Tate local dualtiy states that the cup product

HY(D) x H*(D"(w)) — H*(D ® D"(w)) —— H*(R(w)) ¢ L
is a perfect pairing for any 0 < ¢ < 2. Here the map « is defined by
a(ac@ (f®r)) = f(z)®@r forany x € D, f € DV, r € Rk (w).

This map 1s a perfect pairing if and only if the induced map
H?*7(DY(w)) — HY(D)" is an isomorphism.

Lemma 5.1. If for an exact sequence 0 — D" — D — D" — 0 of
(¢, T)-modules over R% the local Tate Duality is true for any two modules,
it also is true for the third one.

Proof. First we note that 0 — D"V(w) — DY(w) — D"V(w) — 0 is also
an exact sequence. From the above exact sequences we can obtain the long
exact sequence of cohomology and therefore the following diagram:

e HPH(D™ (W) —— H? (DY (w)) —— H> (D™ (w)) —— . ..

l l J

i H/(D")Y —— S H(D)Y —— 5 H(D')

This diagram is commutative and hence by the Five lemma, we get that if
Tate duality holds for two of these modules, it also holds for the third one.
O

Lemma 5.2. Tate duality is true for R§ (|z|)

Proof. To see this we need to show that the maps
H*(Rg,(|7])"(w)) — H'(Rg,(|x|))" are isomorphisms for all 4. Note that
by Lemma 2.7 we have R§ (|z])"(w) = R§, (x). We will show that for
¢ = 0,2 this map is trivial and show it for the case ¢ = 1 by using the fact
that Tate duality is known for étale (¢, I')-modules (see Thm 2.6) and using
the Euler-Poincaré forumla.

From the Euler-Poincaré formula we get that dimy H'(Rg, (z[z|™")) >

X(RG, (z|x|")) = 1. Therefore there exists a nonsplit short exact sequence
0= Rg,(z) = D= Rg (Jz]) — 0.

One has deg(D) = deg(Rép(x)) + deg(Rép(|m|)) = 0 by Lemma 1.4 (i). We
will now show that D is in fact étale. For this we need to show that D
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is semistable. Assume D is not semistable, then we can find a submodule
P C D with pu(P) < 0. Then P must be of rank 1 by Lemma 1.4(iv) and
therefore we get u(P) < —1, since the deg is Z-valued. Since rank 1 modules
are always semistable we get PN Rép () = {0}. This however implies that
the map « is injective when restricted to P, so we can view P as a submodule
of Rg (|z|) and by Lemma 1.4 (iv) we have pu(P) > —1. Combining these
results we conclude p(P) = —1 = p(Rg,(|z])). And hence P = Rf (|z|)
again by Lemma 1.4 (iv). But this means D = Rép(x) @ P, which is a
contradiction since the sequence above is supposed to be nonsplit. So we can
now assume that D is étale.

Recall from the remark preceding Lemma 2.7 that the cohomology groups
H°(x) and H°(|z|) are trivial. Then by the long exact sequence of cohomol-
ogy we get that H°(D) is trivial as well. We will now study the cohomolgy
of the dual modules. Note that by Lemma 2.7 we have
R, (2)Y @RE, (w) = R, (|2]) and Rg (|z])¥ @ R, (w) = R, (). So taking
the dual exact sequence of the sequence above and tensoring with R@p (w)
gives us the following sequence:

0 — Rg, (x) = DY (w) = RE, (|z]) = 0.

Since we know D is étale we get from the ususal Tate Duality that

H°(D) = H*(D"(w)) = 0. By the long exact sequence of cohomology of the
dual sequence we get that also H?(|z|) = 0. Since H(|x]) is also trivial the
Euler-Poincaré forumla gives us dimy H'(]z|) = 1. The cup pairings now
give us the following commutative diagram

S H'Y(2) —% HY(DV(w)) 2 HY(Jz|) -2 H(2)

R T

H?*(x)Y —— HY(|z|)Y —— HYD)" —— H'(2)" ———

Since D is étale we get that the map 8 : H'(DY(w)) — H'(D)V is an
isomorphism by Thm 2.9. Since both §; and S are injective the map « is
injective as well and therefore dim; H'(x) < 1. By Euler-Poincaré formula
we get x(Rg,(z)) = —1 and hence dim; H'(z) = 1 and H*(z) = 0. This
gives us that « is in fact an isomorphism. Therefore the maps
H?7%(x) — H'(]x|)" are isomorphisms for all i and the Tate duality holds for
R, (|]); the map is trivial for i = 0, 2.

O
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Theorem 5.3 (Tate Duality). For any (¢,T)-module D over R% the cup

product ‘ A
H'(D) x H*7(D"(w)) — H*(R(w))

is a perfect pairing.

Proof. We can use Shapiro’s lemma and Thm. 2.9 to reduce to the case
K =Q,.

Applying the slope filtration theorem to D and using Lemma 5.1 it suffices
to show the theorem for pure modules. So we conclude that D is pure of rank
d. Since u(D) = —p(DY(w)) (note that w does not change the p-action).
We can now proof the theorem by induction on s = deg(D).

If s =0, D is étale and the Tate duality follows from usual Tate duality
(see Thm. 2.6). -

Let s > 0 and assume the theorem holds for any pure (¢, T')-module D
satisfying 0 < deg(D) < s. Now by the Euler-Poincaré formula we have
that dimp, H'(D(|x|™')) > —x(D(Jz|™!) > d > 1. Therefore there exists
a nontrivial extension 0 — D(|z|™") — E — Rg — 0. Tensoring with

Rép(|x|) gives us the exact sequence
0—=D— ESRG (|lz]) = 0.

Since deg(Ré}p(\wl)) = —1, we have that deg(F) = s — 1 by Lemma 1.4 (i)
and therefore (E) = 5= < pu(D). Applying the slope filtration theorem
to E gives us a chain 0 = Ey C Fy C --- C E; = E of pure, saturated
(¢, I')-submodules, which satisfy p(Ey) < pu(Ey/Ey) < ... u(E/E;_1).

We claim that for all of these quotients we have that

deg(Ey),deg(Es/Ey), ..., deg(E/Ei—1) < s. We consider the exact sequence

0%E1ﬂD->E1$E1/(E10D>—>O

and will show now that deg(E;) > 0.

Since D is pure of positive slope one has deg(E3ND) > 0or E;ND = 0.
We can view Ey/(E; N D) as a submodule of R@p(m) via the map a. Hence
by Lemma 1.4 (iv) we have deg(E)/(Ey N D)) > —1 = deg(Rg (|z[)), since
(Rép(!x\)) is pure. Then by Lemma 1.4 (i) and since the underlying valuation
is discrete, we have that deg(F;) = deg(Ey N D) + deg(E,/(Ey N D)) >0, if
ExND#0.

In case £y N D = 0 we get that £y = E,/(E1N D) C Rép(|x|) But if
deg(E;) < 0, we even get that deg(F;) < —1. But from the above we have
that deg(E;) > —1, so deg(E,) = deg(R@p(\x!)) and hence by
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Lemma 1.4 (iv) we get that R§ (|z|) = F1. But this implies £ = D @ F) is
nonsplit, which is a contradiction.

Hence we can assume deg(FE;) > 0 and therefore u(E;) > 0. By the
slope filtration theorem we then also have pu(E;/E;_1) > 0 for all j. So all
summands in the sum Y°_, deg(E;/E;_1) = deg(E) = s — 1 are nonnegative
and therefore each summand satisfies deg(E;/E;_1) < s. Hence the Tate
dualtity is true for £;/FE;_; for all j by the induction hypothesis. And then
by Lemma 5.1 the Tate duality is true for E. Since by Lemma 5.2 Tate
duality is true for Rép( |z|), again by theorem 5.1 we get that Tate duality
holds for D, which finishes the induction.

[
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