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Abstract

In this thesis we follow the work of Liu in [10], where Liu proves the
Euler-Poincaré formula and Tate duality for (ϕ, Γ)-modules over the
Robba ring. We pick up an idea of Liu in [10] to extend these results
to (ϕ, Γ)-modules over the Robba ring with an additional coefficient
field.

We first show that given an L-representation of the absolute Galois
group of a local field, we can retrieve the Galois cohomology from the
étale (ϕ, Γ)-module associated to the representation. We use this fact
to show that there exists an analogue to the Euler-Poincaré formula
and the local Tate duality for the cohomology of étale (ϕ, Γ)-modules
over the Robba ring with an additional coefficient field.

The main result of this thesis is to extend the Euler-Poincaré for-
mula for the category of étale (ϕ, Γ)-modules to the category of gen-
eralised (ϕ, Γ)-modules and the Tate duality for the category of étale
(ϕ, Γ)-modules to the category of (ϕ, Γ)-modules.

Abstrakt

In dieser Arbeit folgen wir der Arbeit [10] von Liu, welche die
Euler-Poincaré Formel und die lokale Tate Dualität für (ϕ, Γ)-Moduln
über gewissen Robba Ringen beweißt. Wir greifen dabei eine Idee Lius
aus [10] auf und verallgemeinern diese Resultate auf (ϕ, Γ)-Moduln
über dem Robba Ring mit einem zusätzlichen Koeffizientenkörper.

Zunächst zeigen wir, dass wir aus einer L-Darstellung der ab-
slouten Galoisgruppe eines lokalen Körpers und dem dazugehörigen
étalen (ϕ, Γ)-Modul, die Galoiskohomologie des lokalen Körpers zurück-
gewinnen können. Daraus folgern wir die Existenz eines Analogons der
Euler-Poincaré Formel und der lokalen Tate Dualität, welche man aus
der Galoiskohomologie kennt, für die Kohomologie von étalen (ϕ, Γ)-
Moduln über dem gewöhnlichen Robba Ring mit zusätzlichem Koef-
fizientenkörper.

Das Hauptresultat der Arbeit ist die Euler Poincaré Formel und
die Tate Dualität für étale (ϕ, Γ)-Moduln auf die Kategorie der ver-
allgemeinerten (ϕ, Γ)-Moduln, im Fall der Euler Poincaré Formel und
die Kategorie der (ϕ, Γ)-Moduln, im Fall der Tate Dualität, zu verall-
gemeinern.
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1 Introduction
In [10] Liu proved that the Euler-Poincaré characteristic formula and Tate’s
local duality from the theory of Galois cohomology over a local field can be
generalised to larger categories than the categpory of p-adic representations,
namely the category of (ϕ,Γ)-modules over the Robba ring RK and the
category of generalized (ϕ,Γ)-modules over the Robba ring RK . Liu statet
in [10] that these results can be generalised to modules over the Robba ring
RK with additional coefficient field L, where L is a finite extension of Qp

and the ϕ and Γ-action act trivially on L. In this thesis we give a proof of
this generalisation.

We first prove the Euler-Poincaré formula and Tate duality for the cat-
egory of étale (ϕ,Γ)-modules by showing it is equivalent to the category of
L-representations of GK = Gal(K/K). Then the results follow from the
Euler-Poincaré formula and Tate duality for Galois cohomology. We will
then introduce generalised (ϕ,Γ)-modules, which only need to be finitely
presented and compute the cohomology for such torsion modules, which will
show that the Euler-Poincaré formula holds for these torsion modules.

We can then prove the main results of this thesis, which we will state
here:

Theorem (Euler-Poincaré formula). For any generalised (ϕ,Γ)-module D
over RL

Qp, we get that
(i) dimLH

i(D) is finite for all i = 0, 1, 2
(ii) χ(D) = ∑2

i=0(−1)idimLH
i(D) = −rankD.

Theorem (Tate duality). For any (ϕ,Γ)-module D over RL
K the compositum

H i(D)×H2−i(D∨(ω))→ H2((D ⊗D∨)(ω))→ H2(RL
K(ω)) ∼= L

is a perfect pairing.

1.1 p-adic Hodge theory
Let p be a fixed natural prime number and K be a finite extension of Qp.
Let k be the residue field of K and write W (k) for the Witt vectors with
coefficients in k. Set K0 = W (k)[1/p] to be the maximal unramified subfield
of K. For n ≥ 1 set Kn = K(µpn) for µpn the group of pn-th roots of
unity and set K∞ = ∪n≥1Kn. We write GK = Gal(K/K) for the absolute
Galois group of K. The cyclotomic character χ : GK → Z×p has the kernel
HK = Gal(K/K∞). So we get that the group ΓK = GK/HK is an open
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subgroup of Z×p . We will write simply Γ for ΓK , if there is no confusion
about which field is being considered.

Furthermore let Cp be the p-adic completion of Qp and set

Ẽ = lim←−Cp =
{

(x(i))i∈N
∣∣∣ (x(i+1))p = x(i)

}
where the connecting maps are given by taking p-th power.

The following properties of Ẽ can be found in [12, Section 4.1] and [3, Sec-
tion 4.1.1]. One has a ring structure on Ẽ where addition and multiplication
for x, y ∈ Ẽ are given by

(x+ y)(i) = lim
j→∞

(x(i+j) + y(i+j))pj

and
(xy)(i) = x(i)y(i)

for any i ∈ N. With this ring structure Ẽ becomes an algebraically closed
field of characterstic p. Furthermore Ẽ is perfect, so the Frobenius map ϕ
is an automorphism on Ẽ. We can define a valuation v

Ẽ
on Ẽ by setting

v
Ẽ

(x) = vp(x(0)) for x = (x(i))i∈N ∈ Ẽ and Ẽ is complete with respect to
the topology induced by this valuation. We set Ẽ+ = {x ∈ Ẽ | x(0) ∈ OCp}
to be the ring of integers of Ẽ. Also note that we can endow Ẽ with a
GQp-action, which preserves the valuation v

Ẽ
. This GQp-action is defined by

g((x(i))i∈N) = (g(x(i)))i∈N for any g ∈ GQp . We choose a sequence (ε(n))n∈N
with ε(0) = 1, ε(1) 6= 1 and (ε(n+1))p = ε(n) for all n ∈ N. Then ε = (ε(n))n∈N
can be viewed as an element of Ẽ+ as well as a generator of Z×p . We set
EK0 = k((ε− 1)) and take E to be the seperable closure of EK0 in Ẽ and set
EK = EHK . Note that EK also carries a discrete valuation and a ΓK-action
induced from Ẽ. Let K ′0 denote the maximal unramified extension of K0
in K∞ and k′ be the residue field of K ′0. Then the discrete valutaion ring
E+
K = (Ẽ+ ∩ E)HK is simply k′[[πK ]], where πK is a uniformizer (see [12,

Remarks 2.3.3 and Section 4.2]).
Now set Ã = W (Ẽ) to be the ring of Witt vectors with coefficients in Ẽ.

Since Ẽ is perfect, we can write elements of Ã as convergent p-adic series,
which means we get

Ã+ =
{ ∞∑
k=0

pk[xk] | xk ∈ Ẽ
}
.

We can define a valuation vp on (̃A), by setting vp(x) = mink∈N
{
k | [xk] 6= 0

}
for x = ∑∞

k=0 p
k[xk] a nonzero element in Ã. We will refer to the topology on

Ã induced by this valuation vp as the p-adic topology.
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The Frobenius operation ϕ of Ẽ lifts to a Frobenius operation ϕ on Ã
and we get that

ϕ(
∞∑
k=0

pk[xk]) =
∞∑
k=0

pk[ϕ(xk)].

The GQp-action lifts in the same way. We set π = [ε]− 1 ∈ Ã and
q = ϕ(π)/π ∈ Ã.

Next we define AK0 to be the completion of OK0 [[π]][π−1] with respect
to the p-adic topology in Ã. We get that AK0 is a Cohen ring with residue
field EK0 . Set BK0 = AK0 [1/p] and define B as the p-adic completion of the
maximal unramified extension of BK0 . Furthermore we define A = Ã ∩ B.
These rings inherit a Frobenius and GQp-action from the ring B̃.

For any ring S that has a GQp-action we will set SK = SHK . Note that
this ring is then endowed with a ΓK-action.

To define the Robba ring we need to introduce the ring of overconvergent
elements, which for an r ∈ R≥0 is given by

B̃†,r =
{ ∞∑
k>−∞

pk[xk] ∈ B̃| lim
k→∞

v
Ẽ

(xk) + kpr/(p− 1) =∞
}
.

We set B̃† = ∪r≥0B̃
†,r, B†,r = B̃†,r ∩ B and B† = ∪r≥0B

†,r. Furthermore we
set

Ã†,r =
{ ∞∑
k>−∞

pk[xk] ∈ B̃†,r|vẼ(xk) + kpr/(p− 1) ≥ 0 for any k
}
∩ Ã,

as well as Ã† = ∪r≥0Ã
†,r, A†,r = Ã†,r ∩A and A† = ∪r≥0A

†,r. We now choose
an element πK ∈ A†K , which has image πK modulo p. Also we let eK denote
the ramification index of K∞/K0. One can show for r large enough, that the
ring B†,rK is defined by
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B†,rK =
{
f(πK) =

∞∑
k=−∞

akπ
k
K |ak ∈ K ′0 and f(T ) is convergent and

bounded on p−1/eKr ≤ |T | < 1
}
.

One can show that the element t = log([ε]) ∈ B†,rK . For s1, s2 ∈ [p−1/ekr, 1)
the supremum norms on closed annuli
{x | s1 ≤ |x| ≤ s2 < 1} form a family of norms on B†,rK . The Fréchet
completion with respect to this family of norms is

B†,rrig,K =
{
f(πK) =

∞∑
k=−∞

akπ
k
K |ak ∈ K ′0 and f(T ) is convergent

on p−1/eKr ≤ |T | < 1
}
.

The union of these rings

B†rig,K = ∪r≥0B
†,r
rig,K

is called the Robba ring. We will simply write RK to denote this ring. We
note that B†K = (B†)HK are the bounded functions of B†rig,K .

Another way to define the Robba ring is stated in [8, Section 1.1]. Let
s ∈ R[0,1] and F/Qp a finite extension of fields and let RF

[s,1) be the ring of
Laurent series in T with coefficients in F converging on the annulus
s ≤ |T | < 1. Note that by [5, Prop 4.6] this ring is a Bézout domain (a
Bézout ring is a ring where every finitely generated ideal is principal). Then
by mapping πK to T we can identify the ring B†,rrig,K with RK′0

[p1/(eKr),1), the ring
of rigid analytic functions on the annulus p−1/eKr ≤ |T | < 1. This allows us
to identify the Robba ring with ∪r≥0R

K′0
[r,1), the set of holomorphic functions

on the boundary of the open unit disc.
Note that if K is unramified, we can explicitly describe the ϕ and ΓK-

action for any series f(πK) = ∑
i∈Z anπ

n
K ∈ RK by

ϕ(f(πK)) =
∑
i∈Z

ϕ(an)((1 + πK)p − 1)n

and
g(f(πK)) =

∑
i∈Z

g(an)((1 + π)χ(g) − 1)n

for any g ∈ ΓK .
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In this thesis we will also discuss (ϕ,Γ)-modules over the Robba ring with
an additional coefficient field. For this let L/Qp be a fixed, finite extension.
For any of the following rings S ∈ {B,B†, B†,r, BK , B

†
Qp , B

†,r
K , B†rig,K , B

†,r
rig,K}

we define SL = S ⊗Qp L. We call B†,Lrig,K the Robba ring with additional
coefficient field L. Similarly for any S ∈ {A,AK , A†K} we can define
SL = (S ⊗Zp OL). All these rings are endowed with a ϕ and Γ-action that
acts trivially on L (resp. OL). We set RL

K = B†,Lrig,K .
For K = Qp, recall that we can identify B†,rrig,Qp with RQp

[p1/r,1). We can
then identify B†,r,Lrig,Qp with RL

[p1/r,1) by simply mapping ∑
n∈Z anπ

n
Qp ⊗ l to∑

n∈Z anlT
n. This map is clearly well-defined and injective. To see that

it is also surjective, take f(T ) = ∑
n∈Z anT

n a Laurent series with coefficients
in L and converging on the annulus p−1/r ≤ |T | < 1. Let l1, . . . lm be a
Qp-basis of L. We can then write an = ∑m

i=1 anili for some ani ∈ Qp for all
i and claim that ∑n∈Z aniT

n ∈ B†,rrig,Qp for all i = 1, . . . ,m. For any y ∈ Cp

with |y| ∈ [p−1/r, 1) we have that

0 = lim
n→±∞

any
n = lim

n→±∞

m∑
i=1

aniliy
n =

m∑
i=1

( lim
n→±∞

aniy
n)li.

Then since the li’s are a basis we get that limn→±∞aniy
n = 0 for all

i = 1, . . . ,m. Hence we have ∑n∈Z aniT
n ∈ RQp . This means that∑m

i=1(∑n∈Z aniT
i ⊗ li) gets mapped to f(T ), which proves the surjectivity.

Note that the induced ϕ- and Γ-action on the Laurent series act trivially on
the coefficients. This is important since it allows us to define the slope of a
ϕ-module over RL

Qp in Section 1.3.
We can get a similar result for general K. Note that K ′0 is a seper-

able extension and hence by the primitive element theorem we have that
K ′0
∼= Qp[T ]/(f(T )) for some irreducible polynomial f ∈ Qp[T ]. Then by

the chinese remainder theorem we get K ′0 ⊗Qp L
∼= L[T ]/(f(T )) ∼= ⊕mi=1L

(i)

for some m ∈ N and finite extensions L(i)/Qp. Hence we have an isomor-
phism α : K ′0 ⊗Qp L → ⊕mi=1L

(i). Recall that we can identify B†,rrig,K with
RK′0

[p1/(eKr) . Thus we can indentify B†,rrig,K ⊗Qp L with ⊕mi=1RL(i)

[p1/(eKr),1), by map-
ping ∑k∈Z akπ

k
K ⊗ l to (∑k∈Z αi(ak ⊗ l)T k)1≤i≤m, where αi denotes the pro-

jection K ′0 ⊗Qp L ↪→ L(i) induced by α. The proof for this is similar to the
one for the case K = Qp. Therefore RL

K can be identified with a finite direct
sum of holomorphic functions on the boundary of the open unit disc.
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1.2 Étale (ϕ,Γ)-modules and representations
Let S be any of the rings {BL

K , B
†,L
K ,RL

K}. In this section we define (ϕ,Γ)-
modules over S and show what it means for a (ϕ,Γ)-module over S to be
étale. Following the papers [6],[2],[8] we will show that the category of étale
(ϕ,Γ)-modules over RL

K is equivalent to the category of L-representations of
GK . From this equivalence of categories we can then derive that the Euler-
Poincaré formula and Tate local duality hold for all étale (ϕ,Γ)-modules over
the Robba ring RL

K .

Definition. We say an S-module D is a (ϕ,Γ)-module if the following holds
(i) D is a finite free S-module

(ii) D is equipped with a semi-linear ϕ-action ϕ : D → D, such that the
induced linear map ϕ∗D = S⊗ϕ,SD → D, a⊗x 7→ aϕ(x) is an isomor-
phism.

(iii) D is equipped with a continuous semi-linear ΓK-action, which com-
mutes with the ϕ-action.

Note that semi-linear in this context means that ϕ(ax) = ϕ(a)ϕ(x) and
γ(ax) = γ(a)γ(x) for any γ ∈ ΓK , a ∈ S and x ∈ D.

Remark. The category of (ϕ,Γ)-modules overRL
K admits tensor products and

taking duals. The ϕ- and Γ-actions of such modules are defined as follows.
For two (ϕ,Γ)-modules D1, D2 over RL

K we define a ϕ and Γ-action on
D1⊗RLKD2 by setting ϕ(a1⊗a2) = ϕ(a1)⊗ϕ(a2) and γ(a1⊗a2) = γ(a1)⊗γ(a2)
for any γ ∈ Γ.

For any (ϕ,Γ)-module D over RL
K write D∨ = HomRLK (D,RL

K) for the
dual module. Take f ∈ D∨, then for x = ∑n

i=1 aiϕ(xi) we set (ϕf)x =∑n
i=1 aiϕ(f(xi)) with ai ∈ RL

K and xi ∈ D. For γ ∈ ΓK and x ∈ D we set
(γf)x = γ(f(γ−1x)).

An L-representation V is a finitely dimensional L-vector space with a
continous linear action on GK . The dimension of the representation V is
simply the dimension of V as an L-vector space. We will write dim(V ) = d.
We define D(V ) = (BL ⊗L V )HK , which is an BL

K-vectorspace and carries a
ϕ- and ΓK-action. For T a lattice of V , we define D(T ) = (AL ⊗OL T )HK ,
which is a free ALK-module of rank d. We call a (ϕ,Γ)-module D over BL

K

étale if there is a free ALK-submodule T of D, that is stable under ϕ and
Γ-action and T ⊗ALK B

L
K = D holds. Hence D(V ) is an étale (ϕ,Γ)-module

for any L-representation V and we can adapt a result from Fontaine in [6]
to get the following theorem.

Theorem 1.1. There is an equivalence of categories between the category of
L-representations of GK and the category of étale (ϕ,Γ)-modules over BL

K.
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The functor between this categories is given by V 7→ D(V ) and the inverse
functor is D 7→ V (D) = (BL ⊗BLK D)ϕ=1.

We can extend this statement to étale (ϕ,Γ)-modules over B†,LK . Again
we define a (ϕ,Γ)-module D over B†,LK to be étale if D has a ϕ and Γ-stable
A†,LK -submodule T , that satisfies B†,LK ⊗A†,LK T . For an L-representation V of
GK we can define D†,r(V ) = (B†,r,L ⊗L V )HK and
D†(V ) = ∪r≥0D

†,r(V ) = (B†,L ⊗L V )HK . Now we can adapt a result of
Cherbonnier and Colmez in [2] to get the following theorem.

Theorem 1.2. For any L-representation V of GK there exists r(V ), such
that D(V ) = BL

K ⊗B†,r,LK
D†,r(V ) for r ≥ r(V ).

This means that D†(V ) is a d-dimensional, étale (ϕ,Γ)-module over B†,LK
and hence the functor V 7→ D†(V ) gives us an equivalence between the
category of L-representations of GK and the category of étale (ϕ,Γ)-modules
over B†,LK .

We will now extend this statement once more to étale (ϕ,Γ)-modules over
the Robba ring B†,Lrig,K . We say a (ϕ,Γ)-module D over B†,Lrig,K is étale if it has
a B†,LK -submodule D′, which is étale as a (ϕ,Γ)-module over B†,LK with the
restricted ϕ and Γ actions and for which D′ ⊗B†,LK B†,Lrig,K = D holds. Again
for an L-representation V of GK , we set D†,rrig(V ) = D†rig(V )⊗B†,r,LK

B†,Lrig,K and
D†rig(V ) = ∪r≥0D

†,r
rig(V ) = D†(V ) ⊗B†,LK B†,Lrig,K . Then by a result of Kedlaya

in [8] we get the following theorem.

Theorem 1.3. The functor D 7→ B†,Lrig,K ⊗B†,LK D gives us an equivalence
between the category of étale (ϕ,Γ)-modules over B†,LK and the category of
étale (ϕ,Γ)-modules over B†,Lrig,K.

Remark. Combining the three previous theorems gives us an equivalence of
categories between the category of L-representations of GK and the category
of étale (ϕ,Γ)-modules over B†,Lrig,K , given by V 7→ D†rig,K(V ).

1.3 Slope theory for ϕ-modules
In this section we will discuss some basics about the slope theory of ϕ-modules
over the ring R ∈ {RL

Qp ,RK}. We have seen earlier that the ring R can be
indentified with the set of holomorphic functions on the boundary of the open
unit disc and hence we can define the slope of a ϕ-module over this ring as
in the paper [8] by Kedlaya. Keeping with the notation of [8] we write Rbd

for the functions in R with bounded coefficients. Rbd is a discretly valued

7



field, where the valuation w is given by w(∑n∈Z anT
n) = infn∈Z vp(an) and

we write Rint for its ring of integers.

Definition. A ϕ-module is a finitely generated free module M over R,
equipped with a Frobenius action ϕ, such that for ϕ∗M := M ⊗ϕ,R R the
induced linear map ϕ∗M → M , m ⊗ r 7→ ϕ(m)r, for m ∈ M, r ∈ R, is an
isomorphism.

We say a ϕ-module M over R is étale, if M has a free ϕ-stable
Rint-submodule M ′, such that ϕ∗M ′ ∼= M ′ and M ′ ⊗Rint R = M .

We can also interpret a ϕ-module as a left-module over the twisted poly-
nomial ring R{T}, which is finite free over R and the twisted polynomial
ring is defined as R{T} :=

{∑∞
i=0 riT

i|ri ∈ R
}

, where the multiplication is
noncommutative and satisfies Tr = ϕ(r)T for any r ∈ R. Then for any a ∈ N
we can define the a-pushforward functor [a]∗ from ϕ-modules to ϕa-modules
along the inclusion R{T a} ↪→ R{T}.

For a ϕ-module M with rank M = n the nth exterior power ∧nM has
rank 1. Let v be a generator of ∧nM then we can choose λ ∈ (R)× ⊆ Rbd,
such that ϕ(v) = λv and set the degree of M to be deg(M) := w(λ). If M is
not trivial we can define the slope of M by setting µ(M) = deg(M)/rankM .
We will write M∨ = HomR(M,R) for the dual module. We will now give
some basic properties about the degree and slope of a ϕ-module over R.

Lemma 1.4. Let M,M1,M2 be ϕ-modules, then the following holds:
(i) For an exact sequence 0→M1 →M →M2 → 0 we have

deg(M) = deg(M1) + deg(M2).
(ii) For the tensor product of ϕ-modules we have

µ(M1 ⊗M2) = µ(M1) + µ(M2).
(iii) For the dual module we have deg(M∨) = −deg(M) and

µ(M∨) = −µ(M).
(iv) If M1 ⊆ M and M,M1 have the same rank, then µ(M1) ≥ µ(M) and

µ(M1) = µ(M) if and only if M1 = M .

Proof. [8, 1.4.5 and 1.4.10]

Definition.
(i) We say a ϕ-module M over R of slope µ(M) = c/d, (c, d coprime)

is pure if there exists a rank 1 ϕ-module N of degree −c, such that
([d])∗M)⊗N is an étale ϕ-module over R.

(ii) We say a ϕ-module M over R is called semistable, if for every nontrivial
ϕ-submodule N of M , we have µ(N) ≥ µ(M).
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An important fact of [8] is that a ϕ-module M is pure if and only if it is
semistable ([8, Theorem 1.7.1]). With this one can show the following:

(i) A ϕ-module is pure of slope 0 if and only if it is étale.
(ii) If M is a pure ϕ-module of slope s, then M∨ is pure of slope −s.

(iii) If M1,M2 are pure ϕ-modules of slopes s1 and s2, then M1⊗M2 is pure
of slope s1 + s2.

Note that the ϕ-action for tensor products and duals of ϕ-modules is
defined in the same way as the ϕ-actions for tensor products and duals for
(ϕ,Γ)-modules in Section 1.2.

Furthermore we say a submodule M ′ of a finite free module M over R is
saturated if M ′ = M ∩(M ′⊗RFrac R). Note that since R is a Bézout domain
by [5, Prop 4.9] this means that both M ′ and M/M ′ are also free modules.
With this we can state the slope filtration theorem which will be important
later.

Theorem 1.5 (Slope filtration theorem). Every ϕ-module M over R admits
a unique filtration 0 = M0 ⊂M1 ⊂ · · · ⊂Ml = M of saturated ϕ-submodules,
such that all the quotients M1/M0, . . . ,Ml/Ml−1 are pure and have increasing
slopes, i.e. µ(M1/M0) < · · · < µ(Ml/Ml−1). Note that if M is a
(ϕ,Γ)-module, all the subquotients are also (ϕ,Γ)-modules.

Proof. [8, Theorem 1.7.1]
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2 Cohomology of (ϕ,Γ)-modules
In this section we will define cohomology for (ϕ,Γ)-modules over the ring
RL
K and then show that we can use the equivalences of categories between

étale (ϕ,Γ)-modules and L-representations of GK obtained in Section 1.2
to prove the Euler-Poincaré formula and local Tate duality for étale (ϕ,Γ)-
modules over RL

K . To prepare for the general case we will then study the
cohomology of certain rank 1 (ϕ,Γ)-modules over RL

K . Lastly let E/K be a
finite extension of fields. Then we can define for any (ϕ,Γ)-module D over
RL
E the induced (ϕ,Γ)-module IndKED over RL

K , such that there exists an
isomorphism between the cohomology of the two modules.

2.1 Definition of cohomology for (ϕ,Γ)-modules
To define cohomology for a (ϕ,Γ)-module D over RL

K , we take a p-torsion
subgroup ∆K of ΓK , such that ΓK/∆K is procyclic. Note that for p 6= 2 the
group ΓK itself is always procyclic, and for p = 2 the group ∆K is at most of
order 2. We set D′ = D∆K and define the projection p∆ = (1/|∆K |)

∑
δ∈∆K

δ
from D to D′. We take a topological generator γ of ΓK/∆K and to define
the following complex:

C·ϕ,γ : 0→ D′
d1→ D′ ⊕D′ d2→ D′ → 0,

where d1(x) = ((γ − 1)x, (ϕ− 1)x) and d2(x, y) = ((ϕ− 1)x− (γ − 1)y).
Since for RL

K the ϕ- and Γ-action on the coefficient field is trivial, we can
show that the cohomology is well defined, i.e. independent of the choice of
∆K as in [10, Section 2.1].
Remark. For a (ϕ,Γ)-Module D over RL

K , we have that H1(D) classifies all
extensions of RL

K by D.
We can now define cup products for two (ϕ,Γ)-modules M,N by setting

H0(M)×H0(N)→ H0(M ⊗N), (x, y) 7→ x⊗ y

H0(M)×H1(N)→ H1(M ⊗N), (x, (y, z)) 7→ (x⊗ y, x⊗ z)

H0(M)×H2(N)→ H2(M ⊗N), (x, y) 7→ x⊗ y

H1(M)×H1(N)→ H2(M ⊗N), (x, y), (z, t)) 7→ y ⊗ γ(z)− x⊗ ϕ(t).
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2.2 Euler-Poincaré formula and Tate duality for étale
(ϕ,Γ)-modules

In [10, Cor 2.9] Liu has proven the Euler-Poincaré formula and Tate duality
for étale (ϕ,Γ)-modules over RK . In this section we will make slight adapta-
tions to the proof to show that the Euler-Poincaré formula and Tate duality
is also true for étale (ϕ,Γ)-modules over the ring RL

K .
In section 1.2 we established an equivalence of categories between

L-representations of GK and étale (ϕ,Γ)-modules over RL
K . We will now use

these results to show that the Euler-Poincaré formula and Tate local duality
hold for such modules. Note that since the field B is an extension of degree p
of ϕ(B), we can define an operator ψ : B → B, x 7→ (1/p)ϕ−1(TrB/ϕ(B)(x)),
which is surjective, commutes with the Galois action and satisfies
ψ(ϕ(x)) = x for any x ∈ B, as well as ψ(A) ⊆ A hold, see [3, Section 5.3.1]
for the construction. Since the ϕ and Γ-action on the additional coefficient
field is trivial, we can extend this operator to BL, such that ψ is surjec-
tive, commutes with the Galois action and satisfies ψ(AL) ⊆ AL, as well as
ψ(ϕ(x)). Furthermore ψ can be extended (ϕ,Γ)-modules D(V ) and D†(V )
for any L-representation V of GK , so that it is still surjective, commutes
with the Galois operation and satisfies ψ(ϕ(x)) = x for all x ∈ D(V )
(resp.(D†(V )).

Theorem 2.1. Let V be an OL-representation of GK. Then for i = 0, 1, 2
there exist isomorphisms

H i(D(V )) ∼= H i(GK , V )

which are functorial in V and compatible with cup products.

Proof. As in [10, Thm. 2.3], for V of finite length we can adapt the proof of
[3, Thm. 5.2.2] for V to the case where Γ does not have to be procyclic by
replacing HK with the preimage of a p-torsion group ∆K in GK and D(V )
by D(V )′. Note that the exact sequence in [3, Thm. 5.2.2] in this case is

0 // OL // AL
ϕ−1

// AL // 0 .

Lemma 2.2. The morphism γ − 1 : ((D†(V ))′)ψ=0 → ((D†(V ))′)ψ=0 has a
continuous inverse.

Proof. We have that χ(ΓK1) ⊆ 1 + pZp is procyclic, so we can choose a
topological generator γ′ of ΓK1 such that γ′ = γm in ΓK/∆K for some m ∈ N.
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We get the following commutative diagramm

D†(V )ψ=0 γ′−1
//

p∆Qp
��

D†(V )ψ=0

p∆Qp
��

(D†(V )′)ψ=0 γm−1
// (D†(V )′)ψ=0

From [2, Prop. 2.6.1] we know that the first map
γ′ − 1 : D†(V )ψ=0 → D†(V )ψ=0 has a continuous inverse. And since p∆K

is
idempotent, the map γm − 1 : (D†(V )′)ψ=0 → (D†(V )′)ψ=0 has a continuous
inverse as well and therefore we get that γ−1 has a continuous inverse, which
is given by (γm − 1)−1(id + γ + . . . γm−1).

Let C·ψ,γ(D†(V )) be the complex

0 // (D†(V ))′ d̃1 // (D†(V ))′ ⊕ (D†(V ))′ d̃2 // (D†(V ))′ // 0

where d̃1(x) = ((γ − 1)x, (ψ − 1)x) and d̃2(x, y) = (ψ − 1)x − (γ − 1)y. We
can now get the following commutative diagram of complexes

C·ϕ,γD†(V )) : 0 // D†(V )′ d1 //

id
��

D†(V )′ ⊕D†(V )′ d2 //

−ψ⊕id
��

D†(V )′ //

−ψ
��

0

C·ψ,γ(D†(V )) : 0 // D†(V )′ d̃1 // D†(V )′ ⊕D†(V )′ d̃2 // D†(V )′ // 0

Lemma 2.3. The commutative diagram of complexes above induces an iso-
morphism on the cohomology.

Proof. Recall that the map ψ is surjective and hence the cokernel complex of
the above diagram of complexes is trivial. Furthermore the kernel complex
is just

0 // 0 // ((D†(V ))′)ψ=0 γ−1
// ((D†(V ))′)ψ=0 // 0,

which has trivial cohomology by Lemma 2.2. Hence the cohomology of the
complexes in the above diagram is isomorphic.

Lemma 2.4. For any GK-stable OL-lattice T of V the natural morphism
D†(T )/(ψ − 1)→ D(T )/(ψ − 1) is an isomorphism.

Proof. Since the ϕ- and Γ-action act trivially on the additional coefficient
field this lemma can be proven the same way as in [10, Lemma 2.6].
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Proposition 2.5. Let V be an L-representation of GK. Then for i = 0, 1, 2
the natural morphisms

H i(D†(V )) αi // H i(D†rig(V ))

H i(D†(V )) βi // H i(D(V ))
are all isomorphisms.

Proof. We first proof the case i = 1. We know that the groups
H1(D†(V )), (H1(D(V )) and H1(D†rig(V ))) classifiy all extensions of étale
(ϕ,Γ)-modules of B†,LK , BL

K and RL
K by D†(V ), D(V ) and D†rig(V ). We know

from the theorems 1.1, 1.2, 1.3, that the categories of étale (ϕ,Γ)-modules
over B†,LK , BL

K and RL
K are equivalent to the category of L-representations of

GQp . Hence the maps α1 and β1 are isomorphisms.
Next we will deal with α0 and α2. From [8, Prop 1.5.4] we know that the

natural maps D†(V )ϕ=1 → D†rig(V )ϕ=1 and D†(V )/(ϕ−1)→ D†rig(V )/(ϕ−1)
are bijective. Taking ∆K-invariants in the first map yields that
(D†rig(V )′)ϕ=1 → (D†(V )′)ϕ=1 is also bijective. The operator
p∆K

: D(V )→ D(V )′ induces the following commutative diagram

D†(V )/(ϕ− 1) //

p∆K
��

D†rig(V )/(ϕ− 1)
p∆K
��

D†(V )′/(ϕ− 1) // D†rig(V )′/(ϕ− 1)

Since p∆K
is idempotent, we get that also D†(V )′/(ϕ−1)→ D†rig(V )′/(ϕ−1)

is an isomorphism. And hence also α0 and α2 are isomorphisms.
Note that H0(D†(V )) = V ΓK = H0(D(V )), and hence β0 is an isomor-

phism.
Now by Lemma 2.3 and 2.4 we get that

H2(D†(V )) ∼= (D†(V ))′/(ψ−1, γ−1) ∼= (D(V ))′/(ψ−1, γ−1) ∼= H2(D(V )).

And hence also β2 is an isomorphism.

Combining the isomorphisms above with the isomorphisms of Theorem
2.1, we get that for any L-representation of GK , that for i = 0, 1, 2 there are
isomorphisms

H i(D†(V )) ∼= H i(GK , V )
H i(D†rig(V )) ∼= H i(GK , V )

which are functorial and compatible with cup products. With this result we
can prove the following theorem.
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Theorem 2.6. The Euler-Poincaré formula and the local Tate duality hold
for étale (ϕ,Γ)-modules over the Robba ring RL

K.

Proof. We have seen that H2(D†rig(L(1))) is isomorphic to H2(L(1)) and
hence the Euler-Poincaré formula and Tate duality for étale (ϕ,Γ)-modules
over the Robba ring RL

K follow from the Euler-Poincaré formula and Tate
duality for Galois cohomology.

2.3 (ϕ,Γ)-modules of rank 1
In this section we will show how to construct rank 1 (ϕ,Γ)-modules using
continuous characters and show that the cohomology H0 is trivial for certain
rank 1 modules, which will be used later in the proof of the Euler-Poincaré
formula and Tate duality.
Let δ be a continuous character from Q×p to L×. Then we can associate a
(ϕ,Γ)-module RL

Qp(δ) to δ by defining

ϕ(xv) = δ(p)ϕ(x)v and γ(xv) = δ(χ(γ))γ(x)v,

where v is a basis for RL
Qp(δ) and x ∈ RL

Qp . For D a (ϕ,Γ)-module of any
rank, we define D(x) = D ⊗RLQp R

L
Qp(x).

Remark. We will now give some examples for rank 1 (ϕ,Γ)-modules.

(i) Let x : Q×p → L× be the character induced from the inclusion Qp ↪→ L.
Then the ϕ and Γ actions of R(x) are defined by ϕ(v) = pv and
γ(v) = χ(γ)v.
We can now compute H0(RL

Qp(x)). Let av ∈ H0(RL
Qp(x)) then

ϕ(a) = a/p. But then ϕ(at) = at and therefore a is a constant and
hence a = 0. This implies H0(RL

Qp(x)) = 0.
(ii) Let |x| : Q×p → L×, x 7→ p−vp(x) be a character, then the ϕ and Γ actions

of RL
Qp(|x|) are defined by ϕ(v) = v/p and γ(v) = v, since the image of

χ lies in Z×p .
Again we can compute H0(RL

Qp(|x|)). Let av ∈ H0(RL
Qp(|x|)) then

γ(a) = a, so a is a constant. But we have ϕ(a) = pa and hence a = 0.
This implies H0(RL

Qp(|x|)) = 0.
(iii) Lastly let ω = x|x|, then the ϕ- and Γ-actions of RL

Qp(ω) are ϕ(v) = v

and γ(v) = χ(γ)p−vp(χ(γ)).
Next we will prove some facts about the modules RL

Qp(x) and RL
Qp(|x|)

and their duals, which will be useful for the proof of the Tate duality in the
last section.
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Lemma 2.7. We have the following formulas
(i) RL

Qp(|x|)∨ ∼= RL
Qp(xω−1) = RL

Qp(|x|−1)
(ii) RL

Qp(x)∨ ∼= RL
Qp(|x|ω−1) = RL

Qp(x−1)

Proof. For (i) let us assume that v denotes a generator of RL
Qp(|x|), then v∗ is

a generator of RL
Qp(|x|)∨ defined by v∗(v) = 1. Then we can write v = pϕ(v)

and hence have ϕ(v∗)(v) = pϕ(v∗(v)) = p. Also we have for any γ ∈ Γ
that γ(v∗)(v) = γ(v∗(γ−1(v)) = 1. If we compare these operations to the
operations of RL

Qp(|x|−1), see example above, we get that they are the same
on generators and hence (i) holds.

For (ii) let us assume that v denotes a generator of RL
Qp(x), then v∗ is

agenerator of RL
Qp(x)∨ defined by v∗(v) = 1. Then we can write v = ϕ(v)/p

and hence we have ϕ(v∗)(v) = ϕ(v∗(v))/p = 1/p. Also we have for any γ ∈ Γ
that γ(v∗)(v) = γ(v∗(γ−1(v)) = γ(v∗(χ(γ)−1v)) = 1. If we compare these
operations to the operations of RL

Qp(x−1), see example above, we get that
they are the same on generators and hence (ii) holds.

2.4 Induced (ϕ,Γ)-modules
In this section we will prove Shapiros’s Lemma, which compares cohomology
of (ϕ,Γ)-modules over RL

K with (ϕ,Γ)-modules over RL
E, when E/K is a

finite extension of fields. For this we will introduce the notion of induced
modules and show that it is well behaved with taking duals.

Definition. Let D be a (ϕ,ΓE)-module and define

IndΓK
ΓED = {f : ΓK → D | f(hg) = h · f(g) for h ∈ ΓE},

which has an RL
K-module structure with a ϕ- and ΓK-action that can be

defined by (af)(g) = g(a)f(g) and (ϕ(f))(g) = ϕ(f(g)) and (hf)(g) = f(hg)
for any a ∈ RL

K and g, h ∈ ΓK . With this, IndΓK
ΓED becomes a

(ϕ,ΓK)-module, which we will call the induced (ϕ,Γ)-module of D from E
to K. To simplify notation, we write IndKED for IndΓK

ΓED.

Note that [E : K] = [E∞ : K∞][ΓK : ΓE] = [RL
E : RL

K ][ΓK : ΓE], where
the last equality follows from [11, Section 2.1]. Hence we have
rankRLED = [E : K]rankRLK IndKED.

Theorem 2.8 (Shapiro’s Lemma). Let E be a finite extension of K. Then
for a (ϕ,Γ)-module D over RL

E, there exist isomorphisms

H i(D) ∼= H i(IndKED)

for i = 0, 1, 2.
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Proof. First we prove the theorem in the case that ΓK and ΓE are both pro-
cyclic. Write e for the neutral element of ΓK . We assume [ΓK : ΓE] = m and
set γK to be a topological generator of ΓK , then γmK is a topological generator
of ΓE. Note that this means any element in IndKED can by uniquely deter-
mined by the images of {e, γK , γ2

K , . . . , γ
m−1
K }, a set of representatives of the

cosets of ΓK/ΓE. We define a map Q : D → IndKED by setting (Q(x))(e) = x
and (Q(x))(γiK) = 0 for 1 ≤ i ≤ m − 1 for any x ∈ D. We show that Q is
well-defined, injective and ϕ and ΓE-equivariant morphism of
RL
K-modules, which will become evident by the following: Let x, y ∈ D,

g ∈ ΓE and r ∈ RL
K . Since Q(x) is defined on a set of representatives of the

cosets of ΓK/ΓE, we in fact have Q(x) ∈ IndKED for any x ∈ D. We have that
(Q(rx + y))(e) = rx + y = e(r)(Q(x))(e) + (Q(y))(e) = (rQ(x) + Q(y))(e),
hence Q is a morphism of RL

K-modules. Assume that Q(x) = Q(y), then we
have that x = (Q(x))(e) = (Q(y))(e) = y and hence Q is injective. Also
ϕ(Q(x))(e) = ϕ((Q(x)(e)) = ϕ(x) = Q(ϕ(x))(e), therefore
ϕ(Q(x)) = Q(ϕ(x)) and henceQ is ϕ-equivariant. Finally the ΓE-equivariance
of Q follows from the definition of IndKED.

We now claim that Q induces a ϕ-equivariant isomorphism
Q : D/(γE − 1)→ (IndKED)/(γK − 1).

First we need to show that Q is well-defined. For this take any x ∈ D
and now show that Q((γE − 1)x) ∈ (γK − 1)IndKED. Take f ∈ IndKED
with f(e) = x and f(γiK) = γEx for 1 ≤ i ≤ m − 1. Then we have that
(γK − 1)f(e) = f(γK)− f(e) = γEx− x and
(γK − 1)f(γiK) = f(γi+1

K )− f(γiK) = 0 for 1 ≤ i ≤ m− 1, since
f(γmK ) = γEf(e) = γEx. Therefore Q((γE − 1)x) = (γK − 1)f and hence Q
is well-defined.

Next we show Q is injective, for this assume we have x ∈ D such that
Q(x) ∈ (γK − 1)IndKED, so there is f ∈ IndKED such that (γK − 1)f = Q(x),
then for 1 ≤ i ≤ m− 1 we have

x = Q(x)(e) = f(γK)− f(e)

0 = Q(x)(γiK) = f(γi+1
K )− f(γiK).

Summing these equalities we obtain

x =
m−1∑
i=0

f(γi+1
K )− f(γiK) = f(γE)− f(e) = (γE − 1)f(e)

and therefore x ∈ (γE − 1)D, so Q is injective.
Next we show Q is surjective. For this take f ∈ IndKED and set

xj = f(γjK) for 0 ≤ j ≤ m− 1. We claim that
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f ≡ Q(x) mod (γK − 1)IndKED for x = (γE)−1(∑m
i=1 xm−i). Now define

g ∈ IndKED by setting g(e) = (γE)−1(∑m
j=1 xm−j) and g(γiK) = ∑i−1

j=0 xj.
Then we have

(f −Q(x))(e) = x0 − (γE)−1(
m∑
j=0

xm−j) = g(γK)− g(e) = (γK − 1)g(e)

and for 1 ≤ i ≤ m− 1 we have

(f −Q(x))(γiK) = xi = g(γi+1
K )− g(γiK) = (γK − 1)g(γiK),

since g(γmK ) = γEg(e) = ∑m
i=1 xm−i.

Hence we have Q(x) ≡ f mod (γK−1) and therefore Q is surjective. The
ϕ-equivariance of Q follows directly from the ϕ-equivariance of Q.
For any g ∈ ΓK , we can define a map Qg by setting Qg(x) = g(Q(x)) for
x ∈ D. Note that Qg in fact is a morphism of RL

K-modules, since for x, y ∈ D
and r ∈ RL

K we have

(rQg(x) +Qg(y))(γ) = r(Qg(x))(γ) + (Qg(y))(γ)
= r(Q(x))(gγ) +Q(y)(gγ)
= (rQ(x) +Q(y))(gγ)
= Q(rx+ y)(gγ)
= Qg(rx+ y)(γ).

Now we define Q̃ = ∑m−1
i=0 QγiK . The morphism Q̃ is also

ΓE- and ϕ-equivariant since the ϕ and ΓK-action commute. Now we show
that Q̃ is injective. Assume that x ∈ D such that Q̃(x) = 0. Then
Q̃(x)(e) = Q(x)(e) = x = 0, since QγiK (y)(e) = Q(y)(γiK) = 0 for all
i = 1, . . . ,m− 1 and all y ∈ D. Hence Q̃ is in fact injective.

Next we claim that Q̃ induces a ϕ-equivariant isomorphism
Q̂ : DΓE → (IndKED)ΓK .

We first check that Q̂ is well-defined. For this let x ∈ DΓE , then for any
0 ≤ j ≤ m− 1 we get that

γKQ̃(x)(γjK) = Q̃(x)(γ1+j
K ) = Qγm−1+j

K (x)(γ1+j
K ) = γEx = x.

And hence γKQ̃(x) = Q̃(x), so Q̂(x) is well-defined.
Clearly Q̂ is also injective. To see it is also surjective take

f ∈ (IndKED)ΓK and set x = f(e). Because of the ΓK-invariance of f we
then have f(g) = gf(e) = f(e) = x for any g ∈ ΓK . But if g ∈ ΓE we also
have that f(g) = g(f(e)) = gx, which implies that x is ΓE-invariant and
therefore x ∈ DΓE . Furthermore since Q̃(x)(γiK) = Qγm−iK (γiK) = γEx = x for
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all 0 ≤ i ≤ m− 1 we have that Q̃(x) = f and hence Q̂ is surjective. We will
now consider the following diagramm

C·ϕ,γE : 0 // D //

Q̃
��

D ⊕D //

Q⊕Q̃
��

D //

Q

��

0

C·ϕ,γK : 0 // IndKED // IndKED ⊕ IndKED // IndKED // 0
To see that this diagram commutes we need to check that
(γK − 1)Q̃ = Q(γE − 1). This holds since for x ∈ D we have

(γK − 1)Q̃(x) =
m−1∑
i=0

Qγi+1
K (x)−QγiK (x) = QγE(x)−Q(x) = Q((γE − 1)x).

This induces morphisms αi : H i(D) → H i(IndKED) for 0 ≤ i ≤ 2. We will
now show that these are the required isomorphisms.

For H0, recall that we have already shown that Q̃ induces a ϕ-equivariant
isomorphism Q̂ : DΓE → (IndKED)ΓK . By taking ϕ-invariants on both sides,
we obtain that the map α0 is also an isomorphism.

For H2, recall that we have shown that Q induces a ϕ-equivariant isomor-
phism Q : D/(γE−1)→ (IndKED)/(γK−1) and hence α2 is an isomorphism.
For H1, consider the following short exact sequence

0 // (DΓE)/(ϕ− 1) β1
// H1(D) β2

// (D/(γE − 1))ϕ=1 // 0

where β1(x) = (0, x) and β2(y, x) = y. We check now that the diagram is in
fact commutative.

We can see that β1 is well-defined, since for x ∈ DΓE we have that
β1((ϕ− 1)x) = (0, (ϕ− 1)x) = ((γE − 1)x, (ϕ− 1)x) ∈ im(d1) and
β1(x) ∈ ker(d2) since d2(0, x) = (γE − 1)x = 0. We have that β1 is injective.
To see this take a y ∈ (DΓE) such that β1(y) = (0, y) = 0. Then there exists
x ∈ D such that d1(x) = ((γE − 1)x, (ϕ− 1)x) = (0, y), so y ∈ (ϕ− 1)DΓE)

We can see that β2 is well-defined since for (y, x) ∈ H1(D) we get that
0 = (ϕ−1)y+(γE−1)x and therefore ϕ(x) = x in D/(γE−1).We have that β2
is surjective, since for any y ∈ (D/(γE−1))ϕ=1, we have that (y, 0) ∈ H1(D),
because d2(y, 0) = (ϕ− 1)y = 0 and β2(y, 0) = y.

We get the same short exact sequence for the induced module and then
obtain the following commutative diagram

0 // DΓE/(ϕ− 1) //

Q̃
��

H1(D) //

α1

��

(D/(γE − 1))ϕ=1 //

Q
��

0

0 // (IndKED)ΓK/(ϕ− 1) // H1(IndKED) // (IndKED)/(γK − 1))ϕ=1 // 0
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We have seen that Q̃ and Q are isomorphisms, so by the Five lemma we get
that α1 is also an isomorphism, which concludes the proof for the case that
ΓE and ΓK are procyclic.

For the general case, let ∆E and ∆K be the torsion subgroups of ΓE and
ΓK respectively. Then ΓE/∆E is a subgroup of ΓK/∆K and both groups
are procyclic. We take a topological generator γK of ΓK/∆K . We assume
m = [(ΓK/∆K) : (ΓE/∆E)], then γE = γmK is a topological generator of
ΓE/∆E. We can define Q′ : D′ → (IndKED)′ by setting for any x ∈ D′,
Q′(x)(e) = x and Q′(x)(y) = 0 for any non-trivial y ∈ ΓK/ΓE. Similarly we
can define Q̃′ = ∑m−1

i=0 γiKQ
′. Now by replacing Q by Q′ and Q̃ by Q̃′ in the

above argument, one can show the statement for the non-procyclic case in
the same way.

Next we will show that the induced modules are compatible with taking
duals.

Theorem 2.9. Let E/K be a finite field extension and let D be a
(ϕ,Γ)-module over RL

E, then IndKE (D∨) ∼= (IndKED)∨.

Proof. Let (dk)k∈I be an RL
K-basis of D and (γj)j∈J be a system of represen-

tatives of ΓE/ΓK .
Next for any j ∈ J and k ∈ I define hjk ∈ IndEKD by setting

hjk(γi) =
{
dk if j = i
0 else

for any i ∈ J .
Then (hjk)k∈I,j∈J is a RL

K-basis of IndKED. Write (h∗jk)k∈I,j∈J for the
corresponding dual basis.

Write ((dk)∗)k∈I for the RL
K-dual basis of (dk)k∈I . Furthermore for any

j ∈ J, k ∈ I define fjk ∈ IndKE (D∨) by setting

fjk(γi) =
{

(dk)∗ if j = i
0 else

for any i ∈ J .
Then (fjk)k∈I,j∈J is a RL

K-basis of IndKE (D∨). This allows us to define the
following isomorphism of modules

Φ : (IndKED)∨ → IndKE (D∨)
h∗jk 7→ fjk

We still need to check that Φ respects ϕ and Γ-actions.
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We will start with checking the Γ-action. Take γ ∈ ΓK , then for any
j ∈ J there exists one mj ∈ J such that γγmj = γjγ

E
j for some γEj ∈ ΓE. We

write (γEj )−1(dk) = ∑
n∈I b

k
jnd

n for some bkjn ∈ RL
K . Now fix i ∈ J and l ∈ I

and compute γh∗il. We have

γh∗il(hjk) = γ(h∗il(γ−1hjk)

and
γ−1hjk(γi) = hjk(γ−1γi) = hjk(γmi(γEi )−1)

Note that this means if j 6= mi, then h∗il(hjk) = 0.
So now assume that j = mi, then we have

γ−1hjk(γi) = hjk(γj(γEi )−1) = (γEi )−1(dk) =
∑
n∈I

bkind
n

Hence we have γ−1hjk = ∑
n∈I γ

−1
i (bkin)hin.

Then
γh∗il(hjk) = γ(h∗il(

∑
n∈I

γ−1
i (bkin)hin)) = γγ−1

i (bkil).

And so γh∗il = ∑
k∈I γγ

−1
i (bkil)h∗jk.

Next we will compute γfil.
For j ∈ J we have γfil(γj) = fil(γγj) = 0, if j 6= mi, since then γγj /∈ γiΓE.
So assume that j = mi, then

γfil(γj) = fil(γγj) = fil(γiγEi ) = γEi (dl)∗.

We have for k ∈ I that

(γEi (dl)∗)(dk) = γEi ((dl)∗((γEi )−1(dk)) = γEi ((dl)∗(
∑
n∈I

bkind
n)) = γEi (bkil).

This gives us
γfil(γj) = γEi ((dl)∗) =

∑
k∈I

γEi (bkil)(dk)∗.

And hence
γfil =

∑
k∈I

γ−1
j γEi (bkil)fjk =

∑
k∈I

γγ−1
i (bkil)fjik.

Therefore Φ(γh∗il) = γ(Φ(hil)) holds for all i ∈ J, l ∈ I and hence Φ respects
the Γ-action.

Now we check the ϕ-action. First note that for any k ∈ I we can write
dk = ∑

n∈K bnkϕ(dn) for some bnk ∈ RL
K . Now fix i ∈ J and l ∈ I and

compute ϕfil.
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Clearly ϕfil(γj) = ϕ(fil(γj)) = 0, if j 6= i. And ϕfil(γi) = ϕ((dl)∗). For
k ∈ I we have

ϕ((dl)∗)(dk) = ϕ((dl)∗)(
∑
n∈I

bnkϕ(dn)) =
∑
n∈I

bnkϕ((dl)∗(dn)) = blk.

This means ϕfil(γi) = ∑
k∈I blk(dk)∗ and therefore

ϕfil =
∑
k∈I

γ−1
i (blk)fik.

And lastly we will compute ϕh∗il.
First note that for k ∈ I we have ϕh∗il(hjk) = 0 if j 6= i, since then

hjk(γi) = 0. Hence it suffices to compute ϕh∗il(hik).
Note that

hik(γi) = dk =
∑
n∈I

bnkϕ(dn) =
∑
n∈I

bnkϕhin(γi).

Therefore hik = ∑
n∈I γ

−1
i (bnk)ϕhin and hence

ϕh∗il(hik) = ϕh∗il(
∑
n∈I

γ−1
i (bnk)ϕhin) =

∑
n∈I

γ−1
i (bnk)ϕ(h∗il(hin)) = γ−1

i (blk).

This gives us
ϕh∗il =

∑
k∈I

γ−1
i (blk)h∗ik.

These computations show that ϕ(Φ(h∗il)) = Φ(ϕfil) for any i ∈ J, l ∈ I and
hence Φ respects the ϕ-action and defines an isomorphism of (ϕ,Γ)-modules.
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3 Generalized (ϕ,Γ)-modules
In this section we will define generalized (ϕ,Γ)-modules over the ring RL

K

and first study some properties of torsion (ϕ,Γ)-modules over RL
Qp . With

these results and Shapiro’s lemma we can then show that the Euler-Poincaré
formula holds for torsion (ϕ,Γ)-modules over RL

K .
To define generalised (ϕ,Γ)-modules over RL

K , we first need to show that
RL
K is a Bézout ring. Recall from Section 1.1, that we can write RL

K as a
finite direct sum of Bézout domains. Hence RL

K is no longer a domain, but
in the following lemma it can be seen that it maintains the Bézout property:

Lemma 3.1. Let R be a commutative ring, such that R = ⊕mi=1Ri for some
m ∈ N and some Ri commutative Bézout domains. Then R is a Bézout ring.

Proof. Let I = (f1, . . . fl) be a finitely generated ideal in R. Write
fj = (f (1)

j , . . . , f
(m)
j for j = 1, . . . l. Since Ri are Bézout, we get that for

i = 1, . . . ,m, there is g(i) ∈ Ri, such that (g(i)) = (f (i)
1 , . . . , f

(i)
l ). We now

claim that for g = (g(1), . . . , g(m)) we have that I = (g). We have

x ∈ I ⇐⇒ x =
l∑

j=1
rjfj =

l∑
j=1

(r(1)
j f

(1)
j , . . . , r

(m)
j f

(m)
j )

for some rj = (r(1)
j , . . . , r

(m)
j ) ∈ R

⇐⇒ x = (r(1)g(1), . . . , r(m)g(m)) = rg

for some r = (r(1), . . . , r(m)) ∈ R
⇐⇒ x ∈ (g)

Hence R is in fact a Bézout ring.

Definition. We say a generalized (ϕ,Γ)-module over RL
K is a finitely pre-

sented RL
K-module D with commuting ϕ and Γ-actions, such that ϕ∗D → D

is an isomorphism. By the previous Lemma RL
K is a Bézout ring and hence

also a coherent ring, hence the generalized (ϕ,Γ)-modules over RL
K form an

abelian category. We say a generalized (ϕ,Γ)-module is a torsion (ϕ,Γ)-
module if it has RL

K-torsion. We say a generalized (ϕ,Γ)-module is a pure
tk-torsion (ϕ,Γ)-module, if it is a free RL

K/(tk ⊗ 1)-module.
We can also define the rank of a generalized (ϕ,Γ)-module D. For this we

take the torsion submodule S of D, which is a torsion (ϕ,Γ)-module. Then
by [5, Prop. 4.8] we get that D/S is a free (ϕ,Γ)-module and we can set
rank D = rank D/S.
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We can define the cohomology for a generealized (ϕ,Γ)-module using the
same complex that was used for the usual (ϕ,Γ)-modules in Section 2.1.

We will now compute the cohomology of torsion (ϕ,Γ)-modules over RL
Qp .

Lemma 3.2. For any principal ideal I of RL
Qp, which is stable under ΓQp,

there exist jn ∈ N such that I = (πj0Qp
∏∞
n=1(ϕn−1(q)/p)jn ⊗ 1). Furthermore,

if ϕ(I) ⊆ I, we get that the (jn)n form a decreasing sequence.

Proof. Recall that we can identify the ring RL
Qp with the set of holomorphic

functions on the boundary of the open unit disc.
We choose a Laurent series f(T ) ∈ RL

Qp which generates I. We know that
the series f(T ) converges on some annulus p−1/r ≤ |T | < 1. Let V (I) denote
the set of zeros of I. Then by [9, Prop. 4 bis and Section 4] we know that for
any δ ≥ 0 the set Vδ(I) = V (I) ∩ {z ∈ Cp

∣∣∣p−1/r + δ < |z| < 1− δ} is finite.
Since I is invariant under ΓQp and since g(T ) = (1 + T )χ(g) − 1 for all

g ∈ ΓQp , we get that the transformation z 7→ (1 + z)g − 1 maps Vδ(I) onto
itself for all g ∈ ΓQp . And since Vδ(I) is finite and ΓQp is infinte we get
that there is a g ∈ ΓQp \ {1} ⊆ Z×p \ {1}, such that (1 + z)g − 1 = z for
all z ∈ Vδ(I). This however implies that (z + 1)g−1 = 1, and hence we get
that z = 0 or z + 1 ∈ µpn \ µpn−1 for some n ∈ N. In case z = 0 we get the
minimal polynomial P0(T ) = T for z and in case z + 1 ∈ µpn \ µpn−1 , we get
the minimal polynomial Pn(T ) = (((1 + T )pn − 1)/((1 + T )pn−1 − 1)). Note
that for q′ = ϕ(T )/T we get that ϕn−1(q′) = ϕn(T )/(ϕn−1(T )) = Pn(T ) for
n ≥ 1. So we get that

f(T )u(T ) = (
∞∏
n=0

(1/p)Pi(T )jn) = T j0(
∞∏
n=1

(ϕn−1(q′)/p)jn)

for some u(T ) ∈ (RL
Qp)×. This product converges since we have

1
p
Pn(T ) = 1

p
(1 + (1 + T )pn + (1 + T )2pn + . . . (1 + T )(p−1)pn) and we have

for k ∈ {0, . . . , p − 1} that |(1 + T )kpn| tends to 1 for large n and hence so
does |(1/p)Pn(T )|. Note that the right hand side of the equation has only
coefficients in Qp, hence (πQp)j0(∏∞n=1(ϕn−1(q)/p)jn)⊗ 1 is a generator for I,
where the jn’s denote the multiplicity of the root ε(n) − 1 in f(T ).

The fact that the jn’s are decreasing in case ϕ(I) ⊆ I, follows immediately
from the fact that ϕ(T ) = Tq′ and ϕ(ϕn−1(q′)) = ϕn(q′).

For the next lemma we first need to discuss some special properties of the
Robba ring RL

Qp . We know that the Robba ring can be viewed as a module
over itself via ϕ, more specifically RL

Qp
∼= ⊕p−1

i=0 biϕ(RL
Qp) for some bi ∈ RL

Qp .

23



Lemma 3.3. Let S be a torsion (ϕ,Γ)-module over RL
Qp. Then S is a suc-

cessive extension of pure t-torsion (ϕ,Γ)-modules.

Proof. By a result of Lazard in [9] we know that RL
Qp is an adequate ring and

hence allows a theory of elementary divisors (see [7, Theorem 3]), so there
exists a set {e1, . . . , ed} ⊆ S and chain of unique principal ideals
(r1) ⊂ (r2) ⊂ · · · ⊂ (rd) in RL

Qp , such that S = ⊕di=1RL
Qpei, and

Ann(ei) = (ri) for all i. Then for any γ ∈ ΓQp we have
⊕di=1RL

Qpei = S = γ(S) = ⊕di=1RL
Qpγ(ei) and by the uniqueness of the ri’s we

get that (γ(ri)) = (ri), so (ri) is ΓQp-invariant for all i.
Next we claim that the ideals (ri) are stable under ϕ. We know that

S ∼= ϕ∗S = RL
Qp ⊗ϕ,RLQp S

= (⊕p−1
j=0ϕ(RL

Qp)bj)⊗ϕ,RLQp S

= ⊕j(ϕ(RL
Qp)bj ⊗ϕ,RLQp S)

= ⊕jbj ⊗ϕ,RLQp S

= ⊕jbj ⊗ϕ,RLQp ⊕
d
i=1RL

Qpei

= ⊕i,jbjϕ(RL
Qp)ϕ(ei)

= ⊕iRL
Qpϕ(ei).

Now by the uniqueness property of the (ri)’s we get that
ϕ((ri)) ⊆ Ann(ϕ(ei)) = (ri) for all i and so the ideals (ri) are stable under
ϕ. By the previous lemma we know that the ideals (ri) are of the form
(ri) = (πj0,iQp

∏∞
n=1(ϕn−1(q)/p)jn,i ⊗ 1) and jn,i ∈ N for all n, where (jn,i)n is a

decreasing sequence. So the sequence will eventually become constant, let ki
denote this constant. We have that t = log(πQp + 1) = πQp

∏∞
n=1(ϕn−1(q)/p)

and so we have that (tki ⊗ 1)u = (πj0,iQp
∏∞
n=1(ϕn−1(q)/p)jn,i ⊗ 1), where u is a

finite product of ϕn−1(q)/p and hence is a unit in RL
Qp . Therefore

(tki ⊗ 1) = (ri).
By the chain property of the (ri) we get that the ki are decreasing, hence

we then have (tk1⊗1)S = 0 and hence 0 = (tk1⊗1)S ⊆ (tk1−1⊗1)S ⊆ · · · ⊆ S
is a filtration of S, where all the subquotients are t-torsion.

For K = Qp, take a (ϕ,Γ)-module S, which is of pure tk-torsion, and
let d = rankRLQp/(tk⊗1)S and let {e1, . . . ed} be a basis of S. Let A be the
transformation matrix for ϕ in this basis. Since we have ϕ∗S ∼= S, there
is a matrix B such that AB = BA = 1d. And since Γ is topologically
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finitely generated we can find an r0, such that the entries of A,B and all the
transformation matrices of the Γ-operation have entries in B†,r,Lrig,Qp/(tk ⊗ 1).
For any r ≥ r0 we set Sr to be the B†,r,Lrig,Qp/(tk ⊗ 1)-submodule of S, which is
spanned by {e1 . . . ed}. We get a Γ-action on Sr and the map ϕ : Sr → Spr
induces an isomorphism 1⊗ ϕ : B†,pr,Lrig,Qp/(tk ⊗ 1)⊗B†,r,Lrig,Qp/(t

k⊗1) Sr → Spr.

Lemma 3.4. For r ≥ p − 1 and n(r) the smallest N ∈ N such that satifies
(p− 1)pN−1r ≥ 1 the following holds

(i) For n ≥ n(r) the maps B†,rrig,Qp/(tk ⊗ 1) → B†,rrig,Qp/(ϕn(qk) ⊗ 1) induce
an isomorphism

B†,r,Lrig,Qp/(t
k ⊗ 1)→

∞∏
n≥n(r)

B†,r,Lrig,Qp/(ϕ
n(qk)⊗ 1).

(ii) For n ≥ n(r) and l ∈ L mapping π ⊗ l to (ε(n)et/p
n − 1) ⊗ l induces a

ΓQp-equivariant isomorphism

B†,r,Lrig,Qp/(ϕ
n(qk)⊗ 1)→ (L(ε(n))[t])/(tk).

(iii) For r′ ≥ r and n ≥ n(r′) using the isomorphism (ii), we get that the
natural inclusion B†,rrig,Qp → B†,r

′

rig,Qp induces the following commutative
diagramm

B†,r,Lrig,Qp/(ϕn(qk)⊗ 1) id //

��

B†,r
′,L

rig,Qp/(ϕn(qk)⊗ 1)

��

L(ε(n))[t]/(tk) id // L(ε(n))[t]/(tk)

(iv) We can describe ϕ : B†,r,Lrig,Qp/(tk ⊗ 1) → B†,pr,Lrig,Qp/(tk ⊗ 1) via the isomor-
phism (i) by setting ϕ((xn)n≥n(r)) = (yn)n≥n(r)+1 and yn+1 = xn for
n ≥ n(r) for any (xn)n≥n(r) ∈

∏
n≥n(r) B

†,r,L
rig,Qp/(ϕn(qk)⊗ 1).

Proof. Since (tk⊗1) = (tk)⊗L we get that B†,r,Lrig,Qp/(tk⊗1) ∼= B†,r,rig,Qp/(tk)⊗QpL

and since (ϕn(qk)⊗ 1) = (ϕn(qk))⊗ L we get that
B†,r,Lrig,Qp/(ϕn(qk)⊗1) ∼= B†,rrig,Qp/(ϕn(qk))⊗QpL and hence the proof is the same
as in [4, Prop. 3.15].

Let S be a pure tk-torsion module overRL
Qp , such that d = rankRLQp/(tk⊗1)S,

then by the previous lemma we can embed L(ε(n))[t]/(tk) in
B†,r,Lrig,Qp/(tk ⊗ 1) and hence we can set Sn = Sr ⊗L(ε(n))[t] L(ε(n))[t]/(tk), which
is a free L(ε(n))[t]/(tk)-module of rank d, with a ΓQp-action. By the previous
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lemma we get that the image ϕSn lies in Sn+1 and furthermore we get that
ϕ is injective on Sn. This however implies that
1 ⊗ ϕ : L(ε(n))[t]/(tk) ⊗L(ε(n))[t]/(tk) S

n ∼= Sn+1. Hence we can view Sn as a
submodule of Sn+1. This gives us the following theorem.

Theorem 3.5. (i) With the above notation we get that for n ≥ n(r) the
natural map Sr → Sn induces an isomorphism

Sr ∼=
∞∏

n≥n(r)
Sn

as ΓQp-modules over L(ε(n(r)))[t]/(tk).
(ii) With the isomorphism of (i) and r ≥ p − 1, we can deduce that for

r′ ≥ r there exists a natural map

Sr −→Sr′
(xn)n≥n(r) 7−→(xn)n≥n(r′).

(iii) The map ϕ on Sr is given by

Sr −→Spr
(xn)n≥n(r) 7−→(yn)n≥n(r)+1,

where yn+1 = xn for n ≥ n(r).

Proof. As in Lemma 3.4, this theorem can be proven in the same way as in
[10, Thm. 3.3].

Let E/K be a finite extension of fields. Note that we can extend Shapiro’s
lemma to generalised (ϕ,Γ)-modules. This can be done by defining the in-
duced RL

K-module IndKED of a generalised (ϕ,Γ)-module D over RL
E in the

same way we did in Section 2.4. The lemma for generalised (ϕ,Γ)-modules
can be proven in the same way, so we get:

Theorem 3.6 (Shapiro’s lemma for generalised (ϕ,Γ)-modules). Let D be a
generalised (ϕ,Γ)-module over RL

E, then there exist isomorphisms

H i(D) ∼= H i(IndKED)

for i = 0, 1, 2, which are functorial and comaptible with cup products.

Let η : Z×p → O×E be a character of finite order. The conductor of η is
given by pN(η), where N(η) = 0 if η = 1, else N(η) is the smallest n ∈ N such
that η is trivial on 1 + pnZp. Next for any N ∈ N take ζNp to be a primitive

26



pN -th root of unity, such that (ζpN+1)p = ζpN for all N ∈ N. We can then
define the Gauss sum G(η) by setting G(η) = 1, if η = 1 and else

G(η) =
∑

x∈(Z/pn(η)Z)×
η(x)ζxpN(η) ∈ (E(µpN(η)))×

Lemma 3.7. For any k ∈ N, we have
(i) For any η : Z×p → OE a character of finite order and 0 ≤ i ≤ k − 1 we

have that
g(G(η)ti) = (η−1χi)(g) · (G(η)ti)

for any g ∈ Γ.
(ii) For any n ∈ N we have that

E(ε(n))[t]/(tk) = ⊕η,N(η)≤n ⊕0≤i≤k−1 E ·G(η)ti.

Proof. See [4, Prop. 3.13] for the proof.

With all the statements from above, we can proof the next theorem, which
states how the cohomology of a torsion (ϕ,Γ)-module over R behaves and is
crucial for the proof of Euler-Poincaré formula and Tate duality.

Theorem 3.8 (Euler-Poincaré formula for torsion (ϕ,Γ)-modules). Let S be
a torsion (ϕ,Γ)-module over RL

K. Then we have
(i) dimLH

0(S) = dimLH
1(S) <∞

(ii) ϕ− 1 is surjective on S and hence H2(S) = 0.

Proof. We can use Shapiro’s lemma to reduce to the case that K = Qp.
Next we claim that if we have an exact sequence of torsion modules over

RL
Qp , say

0→ S ′ → S → S ′′ → 0

and the theorem holds for both S ′ and S ′′, it must also hold for S.
We consider the long exact sequence of cohomology and from that we im-

mediately conclude that (ii) holds for S. Again from the long exact sequence
of cohomology we get that dimLH

i(S) <∞ and we get that
dimLH

0(S ′) + dimLH
0(S ′′) + dimLH

1(S) = dimLH
0(S) + dimLH

1(S ′)
+ dimLH

1(S ′′). Then since (i) holds for S ′ and S ′′ we get that
dimLH

0(S) = dimLH
1(S), so (i) holds for S. Then by Lemma 3.3 we can

assume that S is of pure tk-torsion. We now show that (ii) holds for S.
We claim that the map ϕ − 1 : Sr → Spr is surjective for r ≥ p − 1.

From this we can conclude that S satisfies (ii), since S = ⋃
r Sr. Recall

that Sr = ∏∞
n≥n(r) S

n. Take (yn)n≥n(r)+1 ∈ Spr and set xn = −∑n
i=n(r) yi
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(set yn(r) = 0). Then (xn)n≥n(r) ∈ Sr and (ϕ− 1)((xn)n≥n(r)) = (yn)n≥n(r)+1,
which proves the surjectivity of ϕ− 1 on S.

We still need to show that (i) holds. We start by computing the group
H0(S). For this set (Sr)′ = (Sr)∆Qp and (Sn)′ = (Sn)∆Qp , where ∆Qp is a
torsion subgroup of ΓQp . Then we have (Sr)′ =

∏∞
n≥n(r)(Sn)′, since the

ΓQp-action acts componentwise on the right hand side. Let a ∈ S then there
is a representation a = (an)n≥n(r) ∈ (Sr)′ for some r. We then have a = 0 if
and only if an = 0 for almost all n by Thm. 3.5. Now take a ∈ H0(S) with
a = (an)n≥n(r) ∈ (Sr)′ for some r, such that (ϕ− 1)a = 0, then by Thm. 3.4,
this implies that an becomes constant for n large enough.

Therefore, since elements of H0(S) are ΓQp-invariant, we can write

H0(S) = lim−→
n→∞

((Sn)′)ΓQp/∆Qp = lim−→
n→∞

(Sn)ΓQp .

Next we will compute H1(S). For this let (a, b) ∈ Z1(S). We now claim
that we can assume b = 0. Since we know (ϕ − 1) is surjective on S, there
exists a c ∈ S such that (ϕ− 1)c = b, but then we have that
(a, b) = (a − (γQp − 1)c, b − (ϕ − 1)c) = (a − (γQp − 1)c, 0), hence we can
assume that b = 0.

We then take for some r a representative (an)n≥n(r) ∈ (Sr)′ of a. Then we
have (ϕ − 1)a = 0 and this means that the an become constant for n large
enough. We also have that (a, 0) ∈ B1(S) if and only if an ∈ (γK − 1)(Sn)′
for n ≥ n0. This implies that

H1(S) = lim−→
n→∞

(Sn)′/(γQp − 1).

Now since (Sn)′ is a finitedimensional L-vector space, we get that
dimL(Sn)ΓQp = dimL(Sn)′/(γQp − 1). Recall that we can view Sn as a sub-
module of Sn+1 and hence we also have an injection (Sn)ΓQp ↪→ (Sn+1)ΓQp .

To conclude that dimLH
0(S) = dimLH

1(S) holds, it now suffices to show
that (Sn)′/(γQp − 1)→ (Sn+1)′/(γQp − 1) is an injection for all n.

From Lemma 3.7 we know that L(ε(n))[t]/(tk) is a direct summand of
L(ε(n+1))[t]/(tk) as ΓQp-modules. This implies that also Sn is a direct sum-
mand of Sn+1 and hence (Sn)′ is a direct summand of (Sn+1)′, so the natural
injection induces an injection (Sn)′/(γQp − 1) ↪→ (Sn+1)′/(γQp − 1).

We now still need to show that dimLH
0(S) < ∞. For this we will show

that dimL(Sn)ΓQp has an upper bound which does not depend on n. Take
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s ∈ N, then by Lemma 3.7, we get that

(Sn+s)ΓQp =
( ⊕
η,n<N(η)≤n+s

k−1⊕
i=0

(L ·G(η)ti)⊗ Sn
)ΓQp

=
⊕

η,n<N(η)≤n+s

k−1⊕
i=0

(
(L ·G(η)ti)⊗ Sn

)ΓQp
.

Therefore we get that

dimL(Sn+s)ΓQp ≤
∑

η,n<N(η)≤n+s

k−1∑
i=0

dimL((L ·G(η)ti)⊗ Sn)ΓQp ≤ dimL S
n.

Here the last inequality follows from the fact that
((L ·G(η)ti)⊗Sn)ΓQp = Sn(η−1χi)ΓQp ⊂ Sn. And since all the characters are
distinct, we have that all Sn(η−1χi) are disjoint subspaces of Sn.

Therefore dimL(Sn)ΓQp has an upper bound independant of n and there-
fore dimLH

0(S) is finite.

Remark. For any torsion (ϕ,Γ)-module S over RL
K Thm 3.8 proves that

χ(S) = 0 and dimQp H
i(S) <∞ for i = 0, 1, 2. Since we also have rank S = 0,

we in fact know that the Euler-Poincaré formula holds for torsion (ϕ,Γ)-
module over RL

K .
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4 Euler-Poincaré formula
In this section we will prove the Euler-Poincaré formula for generalised
(ϕ,Γ)-modules over the ring RL

K .
In case D is a generalised (ϕ,Γ)-module over RL

K the Euler-Poincaré
formula states that:

(i) dimLH
i(D) is finite for all 0 ≤ i ≤ 2

(ii) χ(D) = ∑2
i=0 dimLH

i(D) = −[K : Qp]rank D

Lemma 4.1. Let D be a (ϕ,Γ)-module over RL
K. Then for i = 0, 1, 2, we

have dimLH
i(D) <∞ if and only if dimLH

i(D(x)) <∞. And also if H i(D)
is finite dimensional for all i, then χ(D) = χ(D(x)).

Proof. If we compare the ϕ- and Γ-operation of the module tD and D(x),
we see that they coincide. To see this, we can for any d ∈ D calculate
ϕ(td) = pϕ(d) and ϕ(d⊗ v) = pϕ(d)⊗ v as well as γ(td) = χ(γ)γ(d) and
γ(d ⊗ v) = χ(γ)γ(d) ⊗ v for any γ ∈ Γ. Hence there exists a natural iso-
morphism between tD and D(x) by mapping td to d ⊗ v for any d ∈ D.
Since D/tD is a torsion module we get by Thm. 3.8 that dimLH

i(D/D(x))
is finite for all i and for i = 2 one has H2(D/D(x)) = 0. We consider the
following short exact sequence

0 // D(x) // D // D/D(x) // 0

and with it the long exact sequence of cohomology

0 // H0(D(x)) // H0(D) // H0(D/D(x)) // · · · // H2(D) // 0

We can now see for 0 ≤ i ≤ 2 that if either H i(D) or H i(D(x)) are finitedi-
mensional over L, then the other one also has to be finitedimensional. From
the long exact sequence of cohomology we get that

dimLH
0(D(x)) + dimLH

0(D/D(x)) + dimLH
1(D) + dimLH

2(D(x))

= dimLH
0(D) + dimLH

1(D(x)) + dimLH
1(D/D(x)) + dimLH

2(D).
Since by Thm. 3.8 we have that dimLH

0(D/D(x)) = dimLH
1(D/D(x)), we

conclude that χ(D) = χ(D(x)).

Remark. Note that if 0 → D1 → D → D2 → 0 is an exact sequence of free
(ϕ,Γ)-modules over R. Then we have rankD1 + rankD2 = rank(D) and the
long exact sequence of cohomology shows that also χ(D1) + χ(D2) = χ(D),
if the cohomolgy of these modules is finitedimensional.
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Next we will construct pure (ϕ,Γ)-modules of arbitrary slopes, which can
be obtained through succesive extensions of RL

Qp(xi).

Lemma 4.2. There is a (ϕ,Γ)-module E over RL
Qp of rank d such that E is

pure of slope 1/d and which is a successive extension of RL
Qp(xi) with i = 0, 1.

Proof. We will proof this by induction on the rank d. For d = 1 set
E = RL

Qp(x). The module E is pure, since all rank 1 modules are pure by
Lemma 1.4(iv) and we have µ(E) = 1. Now for d ≥ 2 assume we can find a
module E0 of rank d− 1, which is pure of slope 1/(d− 1) and is a successive
extension of RL

Qp(xi). We claim there is a nontrivial extension of RL
Qp by E0.

To see this we first note that RL
Qp is étale and hence by Thm. 2.9

χ(RL
Qp) = −1. By Lemma 4.1 we also have that χ(RL

Qp) = χ(RL
Qp(x)) and

since E0 is a successive extension of RL
Qp(xi) we get that

χ(E0) = (rankE0)(χ(RL
Qp)).

Therefore we have

dimLH
1(E0) ≥ −χ(E0) = (rankE0)(χ(RL

Qp)) = (d− 1) ≥ 1.

And hence there exists a nontrivial extension E of RL
Qp by E0, i.e.

0 // E0 // E
α //RL

Qp
// 0

We now claim that E is the module we want. By Lemma 1.4 (i) we have
that deg(E) = deg(E0) + deg(RL

Qp) = deg(E0) and hence µ(E) = 1/d. So
it suffices to show that E is pure. For this we now assume that E is not
semistable, that means there is a submodule P ⊂ E such that µ(P ) < 1/d.
Then since rank(P ) ≤ d we have deg(P ) ≤ 0, since the deg is Z-valued.
Therefore µ(P ) ≤ 0. Since E0 is pure of positive slope we have that
P ∩ E0 = {0}. And therefore P ⊂ E ∩ ker(α) = {0} and hence α|P is
injective. So we can view P as a submodule of RL

Qp . Then by Lemma 1.4
(iv) we get that µ(P ) ≥ 0 and µ(P ) = 0 if and only if P ∼= RL

Qp . But we have
seen earlier µ(P ) ≤ 0, so this implies µ(P ) = 0 and hence P ∼= RL

Qp . But this
implies that the extension E is trivial, which is a contradiction. So we can
assume that E is semistable and hence also pure. Clearly E is a successive
extension of RL

Qp(xi) and this concludes the induction step.

Remark. For any q = c/d ∈ Q this theorem allows us to find a pure
(ϕ,Γ)-module of slope µ(D) = c/d, which is a successive extension ofRL

Qp(xi)
where the i’s can be taken from Z. This can be done by taking
D = (⊗sj=1E)(xk), where c/d = k + s/d and k ∈ Z and 0 ≤ s < d. Here E
is the module constructed in Lemma 4.2 with slope 1/d. Then D is in fact
pure since the tensor product of pure modules is again pure.
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Before we can prove the Euler-Poinare formula, we need to define the
localization at ε(n) − 1 of a generalized (ϕ,Γ)-module over RL

Qp . Note that
there is an injective morphism ιn : B†,r,Lrig,Qp → L(ε(n))[[t]] for n ≥ n(r), which
is constructed in [1, Chapter 2]. The Γ- and ϕ-operation of
L(ε(n))[[t]] = Qp(ε(n))[[t]] ⊗Qp L act trivially on L. This map can be viewed
as evaluating the function at ε(n) − 1. We can then define
D+,n

dif (D) = Dr ⊗B†,r,Lrig,Qp
L(ε(n)[[t]], the localization at ε(n) − 1 of D.

Theorem 4.3 (Euler-Poincaré formula). Let D be a generalized (ϕ,Γ)-module
over R, then the Euler-Poincaré formula holds for D.

Proof. We can use Shapiro’s lemma to reduce to the case K = Qp since
rankRLKD = [K : Qp]rankRLQp IndQp

K D. Next we can reduce to the case that
D is a (ϕ,Γ)-module. For this suppose that S is the torsion submodule of
D. We then have that D/S is a (ϕ,Γ)-module. We assume now that the
Euler-Poincaré fomula holds for D/S. Consider the short exact sequence

0 // S // D // D/S // 0.

Since H i(S) is finitedimensional for 0 ≤ i ≤ 2 by Thm. 3.8 and H i(D/S)
are finitedimensional by our assumption above, we get from the long exact
sequence of cohomology that dimLH

i(D) is also finite for all 0 ≤ i ≤ 2.
So (i) holds. For (ii) note that by Thm. 3.8, we have that H2(S) = 0,
hence by the long exact sequence of cohomology we immediately get that
dimLH

2(D) = dimLH
2(D/S) and so the remaining sequence is as follows

0 // H0(S) // H0(D) // H0(D/S) // · · · // H1(D/S) // 0

Now using the fact that from Thm. 3.8 we get dimLH
0(S) = dimLH

1(S)
and hence by the long exact sequence of cohomology we have
dimLH

0(D) − dimLH
1(D) = dimLH

0(D/S) − dimLH
1(D/S). And there-

fore we get that χ(D) = χ(D/S). And since D and D/S have the same rank
(ii) also holds for D. Therefore we can now assume that D is a (ϕ,Γ)-module.

Let d = rank D. We will now proof that dimLH
0(D) ≤ d.

Now for an r large enough we know that Dr exists and we have a natural
injection α : Dr ↪→ D+,n

dif (D)[1/t], where n ≥ n(r). We first claim that
dimL(D+,n

dif (D)[1/t])Γ ≤ d. We will prove this by contradiction, so we assume
that there are e1, . . . ed+1 ∈ (D+,n

dif (D)[1/t])Γ, which are linearly independent
over L.

Since we have rank Dr = d, we get that D+,n
dif (D)[1/t] is a d-dimensional

L(ε(n))((t))-vectorspace. And therefore e1, . . . ed+1 are linearly dependent in
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D+,n
dif (D)[1/t] over L(ε(n))((t)). We now choose a minimal linear dependent

subset of {e1, . . . , ed+1}. We may assume {e1, . . . , ek} is such a subset. We
then find ai ∈ L(ε(n))((t)) such that ∑k

i=1 aiei = 0. By minimality we may
assume that a1 6= 0 and hence we get

e1 +
k∑
i=1

(ai/a1)ei = 0.

Because the ei are Γ-invariant applying any γ ∈ Γ to the above equation
gives us

e1 +
k∑
i=1

γ(ai/a1)ei = 0.

By minimality again we get that γ(ai/a1) = ai/a1 for all i and all γ ∈ Γ.
And therefore ai/a1 ∈ (L(ε(n))((t)))Γ = L, since both t and ε(n) are not
Γ-invariant. This however would imply that e1, . . . ek are linearly dependent
over L, which is a contradiction, so dimL(D+,n

dif (D)[1/t])Γ ≤ d. Since α is
an injection we get that dimL(Dr)Γ ≤ d for any r, this means we also get
dimLH

0(D) ≤ dimLD
Γ ≤ d <∞.

We will now proceed the proof by induction on rank(D). For d ≥ 1,
assume now that the theorem holds for all (ϕ,Γ)-modules of rank less than
d and let d = rank(D). For the rest we need to note that by the long exact
sequence of cohomology we get that the Euler-Poincaré formula is preserved
by extensions. Then if the slope filtration for D of Thm 1.5 is non-trivial, we
are done by our induction hyptothesis. Note that since the slope filtration
is unique, we get that the slope filtration of D is trivial if and only if D is
pure. Hence we can now assume D is pure. Assume that µ(D) = c/d then
by the remark after Lemma 4.2 we can find a pure (ϕ,Γ)-module F with
slope µ(F ) = −c/d, which is a successive extension of RL

Qp(xi). Then the
module D ⊗ F is étale and by usual Euler-Poincaré formula, we get that
χ(D ⊗ F ) = −rank(D ⊗ F ) = −(rank D) (rank F ).

Also by the construction of F we get that D⊗F is a successive extension
of D(xi) and hence there is a j ∈ Z such that

0 // D(xj) // D ⊗ F // G // 0

for some quotient G, which is itself obtained through successive extensions
of D(xi). Note that both D(xj) and G are free (ϕ,Γ)-modules, so by the
above we have that both H0(G) and H0(D(xj)) are finite dimensional over
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L. Now we get the following long exact sequence of cohomology

· · · // H0(G) // H1(D(xj)) // H1(D ⊗ F ) // H1(G)

// H2(D(xj)) // H2(D ⊗ F ) // · · ·

By usual Euler-Poincaré forumla we have dimLH
1(D ⊗ F ) < ∞ and since

H0(G) is also finitedimensional we get that dimLH
1(D(xj)) <∞. So by re-

peatedly applying Lemma 4.1 we get that dimLH
1(D(xi)) <∞ for all i ∈ Z.

So in particular we have thatH1(D) = H1(D(x0)) is finitedimensional over L,
as well as dimLH

1(G) <∞, since it is obtained through successive extensions
by D(xi). Since by usual Euler-Poincaré formula H2(D⊗ F ) is also finitedi-
mensional over L, we get from the above sequence that dimLH

2(D(xj)) <∞.
And again by repeatedly applying Lemma 4.1 we get that dimLH

2(D) <∞.
And hence (i) holds.

To see (ii) note that by Lemma 4.1 χ(D(xi)) = χ(D) for all i ∈ Z and
since D⊗F is obtained through successive extensions by D(xi), so by the the
remark after Lemma 4.1 we get that χ(D⊗F ) = (rank F )χ(D). Combining
this with our earlier result, we get

−(rank F )(rank D) = χ(D ⊗ F ) = (rank F )χ(D)

and therefore
χ(D) = −(rank D).
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5 Tate duality
In this section we prove the Tate local duality theorem for (ϕ,Γ)-modules D
over RL

K . Tate local dualtiy states that the cup product

H i(D)×H2−i(D∨(ω)) // H2(D ⊗D∨(ω)) α // H2(R(ω)) ∼= L

is a perfect pairing for any 0 ≤ i ≤ 2. Here the map α is defined by
α
(
x⊗ (f ⊗ r)

)
= f(x)⊗ r for any x ∈ D, f ∈ D∨, r ∈ RL

K(ω).
This map is a perfect pairing if and only if the induced map

H2−i(D∨(ω))→ H i(D)∨ is an isomorphism.

Lemma 5.1. If for an exact sequence 0→ D′ → D → D′′ → 0 of
(ϕ,Γ)-modules over RL

K the local Tate Duality is true for any two modules,
it also is true for the third one.

Proof. First we note that 0 → D′′∨(ω) → D∨(ω) → D′∨(ω) → 0 is also
an exact sequence. From the above exact sequences we can obtain the long
exact sequence of cohomology and therefore the following diagram:

. . . // H2−i(D′′∨(ω)) //

��

H2−i(D∨(ω)) //

��

H2−i(D′∨(ω)) //

��

. . .

. . . // H i(D′′)∨ // H i(D)∨ // H i(D′)∨ // . . .

This diagram is commutative and hence by the Five lemma, we get that if
Tate duality holds for two of these modules, it also holds for the third one.

Lemma 5.2. Tate duality is true for RL
Qp(|x|)

Proof. To see this we need to show that the maps
H2−i(RL

Qp(|x|)∨(ω)) → H i(RL
Qp(|x|))∨ are isomorphisms for all i. Note that

by Lemma 2.7 we have RL
Qp(|x|)∨(ω) = RL

Qp(x). We will show that for
i = 0, 2 this map is trivial and show it for the case i = 1 by using the fact
that Tate duality is known for étale (ϕ,Γ)-modules (see Thm 2.6) and using
the Euler-Poincaré forumla.

From the Euler-Poincaré formula we get that dimLH
1(RL

Qp(x|x|−1)) ≥
χ(RL

Qp(x|x|−1)) = 1. Therefore there exists a nonsplit short exact sequence

0 −→ RL
Qp(x) −→ D

α−→ RL
Qp(|x|)→ 0.

One has deg(D) = deg(RL
Qp(x)) + deg(RL

Qp(|x|)) = 0 by Lemma 1.4 (i). We
will now show that D is in fact étale. For this we need to show that D
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is semistable. Assume D is not semistable, then we can find a submodule
P ⊂ D with µ(P ) < 0. Then P must be of rank 1 by Lemma 1.4(iv) and
therefore we get µ(P ) ≤ −1, since the deg is Z-valued. Since rank 1 modules
are always semistable we get P ∩ RL

Qp(x) = {0}. This however implies that
the map α is injective when restricted to P , so we can view P as a submodule
of RL

Qp(|x|) and by Lemma 1.4 (iv) we have µ(P ) ≥ −1. Combining these
results we conclude µ(P ) = −1 = µ(RL

Qp(|x|)). And hence P ∼= RL
Qp(|x|)

again by Lemma 1.4 (iv). But this means D = RL
Qp(x) ⊕ P , which is a

contradiction since the sequence above is supposed to be nonsplit. So we can
now assume that D is étale.

Recall from the remark preceding Lemma 2.7 that the cohomology groups
H0(x) and H0(|x|) are trivial. Then by the long exact sequence of cohomol-
ogy we get that H0(D) is trivial as well. We will now study the cohomolgy
of the dual modules. Note that by Lemma 2.7 we have
RL

Qp(x)∨⊗RL
Qp(ω) = RL

Qp(|x|) and RL
Qp(|x|)∨⊗RL

Qp(ω) = RL
Qp(x). So taking

the dual exact sequence of the sequence above and tensoring with RL
Qp(ω)

gives us the following sequence:

0→ RL
Qp(x)→ D∨(ω)→ RL

Qp(|x|)→ 0.

Since we know D is étale we get from the ususal Tate Duality that
H0(D) ∼= H2(D∨(ω)) = 0. By the long exact sequence of cohomology of the
dual sequence we get that also H2(|x|) = 0. Since H0(|x|) is also trivial the
Euler-Poincaré forumla gives us dimLH

1(|x|) = 1. The cup pairings now
give us the following commutative diagram

0 //

��

H1(x) δ1 //

α

��

H1(D∨(ω)) δ2 //

β
��

H1(|x|) δ3 //

��

H2(x)

��

H2(x)∨ // H1(|x|)∨ // H1(D)∨ // H1(x)∨ // 0

Since D is étale we get that the map β : H1(D∨(ω)) → H1(D)∨ is an
isomorphism by Thm 2.9. Since both δ1 and β are injective the map α is
injective as well and therefore dimLH

1(x) ≤ 1. By Euler-Poincaré formula
we get χ(RL

Qp(x)) = −1 and hence dimLH
1(x) = 1 and H2(x) = 0. This

gives us that α is in fact an isomorphism. Therefore the maps
H2−i(x)→ H i(|x|)∨ are isomorphisms for all i and the Tate duality holds for
RL

Qp(|x|); the map is trivial for i = 0, 2.
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Theorem 5.3 (Tate Duality). For any (ϕ,Γ)-module D over RL
K the cup

product
H i(D)×H2−i(D∨(ω))→ H2(R(ω))

is a perfect pairing.

Proof. We can use Shapiro’s lemma and Thm. 2.9 to reduce to the case
K = Qp.

Applying the slope filtration theorem to D and using Lemma 5.1 it suffices
to show the theorem for pure modules. So we conclude that D is pure of rank
d. Since µ(D) = −µ(D∨(ω)) (note that ω does not change the ϕ-action).
We can now proof the theorem by induction on s = deg(D).

If s = 0, D is étale and the Tate duality follows from usual Tate duality
(see Thm. 2.6).

Let s > 0 and assume the theorem holds for any pure (ϕ,Γ)-module D̃
satisfying 0 ≤ deg(D̃) < s. Now by the Euler-Poincaré formula we have
that dimLH

1(D(|x|−1)) ≥ −χ(D(|x|−1) ≥ d ≥ 1. Therefore there exists
a nontrivial extension 0 → D(|x|−1) → E → RL

Qp → 0. Tensoring with
RL

Qp(|x|) gives us the exact sequence

0→ D −→ E
α−→ RL

Qp(|x|)→ 0.

Since deg(RL
Qp(|x|)) = −1, we have that deg(E) = s − 1 by Lemma 1.4 (i)

and therefore µ(E) = s−1
d+1 < µ(D). Applying the slope filtration theorem

to E gives us a chain 0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E of pure, saturated
(ϕ,Γ)-submodules, which satisfy µ(E1) < µ(E2/E1) < . . . µ(E/El−1).
We claim that for all of these quotients we have that
deg(E1), deg(E2/E1), . . . , deg(El/El−1) < s. We consider the exact sequence

0→ E1 ∩D −→ E1
α−→ E1/(E1 ∩D)→ 0

and will show now that deg(E1) ≥ 0.
Since D is pure of positive slope one has deg(E1 ∩D) > 0 or E1 ∩D = 0.

We can view E1/(E1 ∩D) as a submodule of RL
Qp(|x|) via the map α. Hence

by Lemma 1.4 (iv) we have deg(E1/(E1 ∩D)) ≥ −1 = deg(RL
Qp(|x|)), since

(RL
Qp(|x|)) is pure. Then by Lemma 1.4 (i) and since the underlying valuation

is discrete, we have that deg(E1) = deg(E1 ∩D) + deg(E1/(E1 ∩D)) ≥ 0, if
E1 ∩D 6= 0.

In case E1 ∩ D = 0 we get that E1 ∼= E1/(E1 ∩ D) ⊆ RL
Qp(|x|). But if

deg(E1) < 0, we even get that deg(E1) ≤ −1. But from the above we have
that deg(E1) ≥ −1, so deg(E1) = deg(RL

Qp(|x|)) and hence by
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Lemma 1.4 (iv) we get that RL
Qp(|x|) ∼= E1. But this implies E = D ⊕ E1 is

nonsplit, which is a contradiction.
Hence we can assume deg(E1) ≥ 0 and therefore µ(E1) ≥ 0. By the

slope filtration theorem we then also have µ(Ej/Ej−1) ≥ 0 for all j. So all
summands in the sum ∑l

j=1 deg(Ej/Ej−1) = deg(E) = s− 1 are nonnegative
and therefore each summand satisfies deg(Ej/Ej−1) < s. Hence the Tate
dualtity is true for Ej/Ej−1 for all j by the induction hypothesis. And then
by Lemma 5.1 the Tate duality is true for E. Since by Lemma 5.2 Tate
duality is true for RL

Qp(|x|), again by theorem 5.1 we get that Tate duality
holds for D, which finishes the induction.
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