Übungen zur Algebraischen Zahlentheorie 2

Sommersemester 2016

Prof. Dr. O. Venjakob O. Thomas Blatt 6, Ausarbeitung 2 Abgabe bis 24.6., 9.00 Uhr

Aufgabe 21. (4+3 Punkte.)

Es sei K der Zerfällungskörper von $X^3 - 2$ über \mathbb{Q} und $K_p = K\mathbb{Q}_p$.

- (i) Bestimme $G(K_p|\mathbb{Q}_p)$, $e(K_p|\mathbb{Q}_p)$ und $f(K_p|\mathbb{Q}_p)$ für $p \in \{2, 3, 5, 7, 31\}$.
- (ii) Beschreibe $N_{K_p|\mathbb{Q}_p}K_p^{\times} \leq \mathbb{Q}_p^{\times}$ für $p \in \{5,7,31\}$.

Aufgabe 22. (5+5 Punkte.)

Für einen Zahlkörper K nennen wir seine maximal abelsche und überall unverzweigte Erweiterung seinen $Hilbertschen\ Klassenk\"{o}rper$. Wir bezeichnen ihn mit H(K).

- (i) Zeige mit Klassenkörpertheorie, dass $G(H(K)|K) \cong Cl_K$.
- (ii) Zeige mit Klassenkörpertheorie, dass im Hilbertschen Klassenkörper von K jedes Ideal von \mathcal{O}_K ein Hauptideal wird.

(Ohne Beweis kann dabei folgender Satz von Furtwängler verwendet werden: Ist G eine endliche Gruppe, so ist die Verlagerung $G^{ab} \longrightarrow [G, G]^{ab}$ trivial.)

Aufgabe 23. (4+3+4+4+3+4 Punkte.)

- (i) Für $L = \mathbb{Q}_p(\mu_{p^n})$ ist $N_{L|\mathbb{Q}_p}L^{\times} = (p) \times U_{\mathbb{Q}_p}^{(n)}$.
 - (Folgere aus exp: $p^k \mathbb{Z}_p \longrightarrow U_{\mathbb{Q}_p}^{(k)}$, dass aus hohen Einheiten hohe Wurzeln gezogen werden können, was $U_{\mathbb{Q}_p}^{(n)} \leq N_{L|\mathbb{Q}_p} L^{\times}$ zeigt. Lokale Klassenkörpertheorie zeigt dann den Rest. Bei p=2 ist besondere Vorsicht geboten.)
- (ii) Folgere mittels lokaler Klassenkörpertheorie, dass die maximale abelsche Erweiterung von \mathbb{Q}_p gerade $\mathbb{Q}_p(\mu)$ ist, wobei μ die Menge aller Einheitswurzeln bezeichnet.
- (iii) Folgere hieraus, dass die maximale abelsche Erweiterung von \mathbb{Q} gerade $\mathbb{Q}(\mu)$ ist. (Ist $K|\mathbb{Q}$ abelsch, so existieren $n_p \in \mathbb{N}$ mit $K_p = K\mathbb{Q}_p \subseteq \mathbb{Q}_p(\mu_{n_p})$. Für $n = \prod_{p \text{ verzweigt}} p^{v_p(n_p)}$ lässt sich $\#G(K(\mu_n)|\mathbb{Q}) \leq [\mathbb{Q}(\mu_n):\mathbb{Q}]$ zeigen, was $K \subseteq \mathbb{Q}(\mu_n)$ impliziert.)
- (iv) Ist L|K eine unverzweigte Erweiterung lokaler Körper, so sind für $i \in \{0, -1\}$ und $n \in \mathbb{N}$ die Gruppen $\widehat{H}^i(G(L|K), U_L) = \widehat{H}^i(G(L|K), U_L^{(n)}) = 1$.
- (v) Bestimme $N_{\mathbb{Q}_p(\sqrt{p})|\mathbb{Q}_p}\mathbb{Q}_p(\sqrt{p})^{\times} \leq \mathbb{Q}_p^{\times}$.
- (vi) Sei I die von -1,5 und 26 erzeugte abgeschlossene Untergruppe von \mathbb{Q}_5^{\times} . Bestimme $K|\mathbb{Q}_5$ endlich abelsch mit $N_{K|\mathbb{Q}_5}K^{\times}=I$.

Aufgabe 24. (4+3+4 Punkte.)

Sei K ein Zahlkörper. Einen stetigen Homomorphismus $\chi\colon C_K\longrightarrow \mathbb{C}^\times$ nennen wir Hecke-Charakter, einen stetigen Homomorphismus $\chi\colon G(K^{\mathrm{ab}}|K)\longrightarrow \mathbb{C}^\times$ Galois-Charakter. Ohne Beweis darf verwendet werden, dass $\mathbb{A}_K^\times\longrightarrow G(K^{\mathrm{ab}}|K)$ surjektiv ist und der Kern gerade die von K^\times und der Zusammenhangskomponente der 1 von \mathbb{A}_K^\times erzeugte abgeschlossene Untergruppe ist.

- (i) Es gibt eine Eins-zu-Eins-Korrespondenz zwischen den Hecke-Charakteren endlicher Ordnung und den Galois-Charakteren endlicher Ordnung.
- (ii) Jeder Galois-Charakter hat endliche Ordnung.
- (iii) Beschreibe einen Isomorphismus $\mathbb{A}_{\mathbb{Q}}^{\times} \cong \mathbb{Q}^{\times} \times \widehat{\mathbb{Z}}^{\times} \times \mathbb{R}_{>0}$. Betrachte dazu die Abbildung $\operatorname{rat}((x_{\nu})_{\nu}) = x_{\infty}/|x_{\infty}|_{\infty} \cdot \prod_{n} p^{v_{p}(x_{p})}$.