Übungen zur Elementaren Zahlentheorie

Wintersemester 2015/16

Prof. Dr. K. Wingberg O. Thomas

Blatt 11 Abgabe bis 14.1.2016, 11:00h

Aufgabe 41. (6 Punkte)

Sei K ein quadratischer Zahlkörper. Für jedes nicht-triviale gebrochene Ideal $\mathfrak{a} \subset K$ gibt es eindeutig bestimmte Zahlen $v_{\mathfrak{p}}(\mathfrak{a}) \in \mathbb{Z}$, sodass

$$\mathfrak{a}=\prod_{\mathfrak{p}}\mathfrak{p}^{v_{\mathfrak{p}}(\mathfrak{a})},$$

wobei \mathfrak{p} alle Primideale $\neq 0$ von \mathcal{O}_K durchläuft und $v_{\mathfrak{p}}(\mathfrak{a}) = 0$ für alle bis auf endlich viele \mathfrak{p} .

Aufgabe 42. (6 Punkte)

Sei $d \in \mathbb{Z}$ quadratfrei, $K = \mathbb{Q}(\sqrt{d})$ und $\alpha \in K \setminus \mathbb{Q}$. Setze $\Lambda_{\alpha} = \{a + b\alpha \mid a, b \in \mathbb{Z}\}$ und $R_{\alpha} = \{x \in K \mid x\Lambda_{\alpha} \subseteq \Lambda_{\alpha}\}$. Dann ist R_{α} ein Ring, der in \mathcal{O}_{K} enthalten ist.

Aufgabe 43. (6 Punkte)

Finde alle Lösungen von $y^2=x^3-2$ in den ganzen Zahlen. Folgere, dass 26 die einzige natürliche Zahl n ist, für die n-1 eine Quadratzahl und n+1 eine Kubikzahl ist.

Aufgabe 44. (3+3 Punkte)

- (i) Ist p>3 prim, so ist Φ_3 genau dann irreduzibel modulo p, wenn p eine Primitivwurzel modulo 3 ist.
- (ii) Φ_{12} ist reduzibel modulo jeder Primzahl.