Übungen zur Algebraischen Geometrie II

Sommersemester 2015

Prof. Dr. K. Wingberg O. Thomas

Blatt 8 Abgabe bis 10.06.2015, 14:00h

Sei X ein topologischer Raum, $\mathfrak{U}=(U_i)_{i\in I}$ eine offene Überdeckung von X und \mathcal{F} eine Garbe abelscher Gruppen auf X. Die Menge I sei total geordnet. Für Indizes $i_0,\ldots,i_k\in I$ schreibe U_{i_0,\ldots,i_k} statt $U_{i_0}\cap\cdots\cap U_{i_k}$. Setze jetzt für $k\geq 0$

$$C^{k}(\mathfrak{U},\mathcal{F}) = \prod_{i_{0} < \dots < i_{k}} \mathcal{F}(U_{i_{0},\dots,i_{k}})$$

und definiere für $\alpha \in C^k(\mathfrak{U}, \mathcal{F})$ das Element $da \in C^{k+1}(\mathfrak{U}, \mathcal{F})$ via

$$(d\alpha)_{i_0,\dots,i_{k+1}} = \sum_{j=0}^{k+1} (-1)^j \alpha_{i_0,\dots,i_{j-1},i_{j+1},\dots,i_{k+1}} |_{U_{i_0,\dots,i_{k+1}}}.$$

Oft schreiben wir auch $\alpha_{i_0,\dots,\widehat{i_j},\dots,i_{k+1}}$ statt $\alpha_{i_0,\dots,i_{j-1},i_{j+1},\dots,i_{k+1}}$.

Aufgabe 29. (3.2 Punkte)

- (i) $d \circ d \colon C^k(\mathfrak{U}, \mathcal{F}) \longrightarrow C^{k+2}(\mathfrak{U}, \mathcal{F})$ ist für $k \geq 0$ die Nullabbildung.
- (ii) $\check{H}^k(\mathfrak{U},-)\colon \mathcal{F}\mapsto \frac{\ker d\colon C^k(\mathfrak{U},\mathcal{F})\longrightarrow C^{k+1}(\mathfrak{U},\mathcal{F})}{\operatorname{im} d\colon C^{k-1}(\mathfrak{U},\mathcal{F})\longrightarrow C^k(\mathfrak{U},\mathcal{F})}$ ist für $k\geq 0$ ein Funktor mit Werten in der Kategorie abelscher Gruppen.
- (iii) $\check{H}^0(\mathfrak{U}, -) \cong \Gamma(X, -).$

Aufgabe 30. (3-2 Punkte)

- (i) Gibt es einen Index $i \in I$ mit $U_i = X$, so ist $\check{H}^k(\mathfrak{U}, -) = 0$ für $k \geq 1$.
- (ii) Es gibt nicht immer die Möglichkeit, der Familie $\check{H}^{\bullet}(\mathfrak{U},-)$ die Struktur eines δ -Funktors zu geben.
- (iii) Finde einen Raum X und zwei Überdeckungen $\mathfrak U$ und $\mathfrak V$, sodass $\check H^{\bullet}(\mathfrak U,-)\not\cong\check H^{\bullet}(\mathfrak V,-).$

Aufgabe 31. (6 Punkte)

Sei $X = \operatorname{Spec} R$ ein affines Schema, \mathcal{F} ein quasikohärenter \mathcal{O}_X -Modul und \mathfrak{U} eine Überdeckung von X durch offene Mengen der Form $U_i = D(g_i)$ mit $g_i \in R$. Dann ist $\check{H}^k(\mathfrak{U}, \mathcal{F}) = 0$ für $k \geq 1$.

Aufgabe 32. (6 Punkte)

Sei X ein topologischer Raum und $\mathfrak U$ eine Überdeckung von X. Für $V\subseteq X$ offen bezeichne mit $\iota_V\colon V\longrightarrow X$ die Inklusion und setze

$$\mathscr{C}^k(\mathfrak{U},\mathcal{F}) = \prod_{i_0 < \dots < i_k} (\iota_{U_{i_0,\dots,i_k}})_* \mathcal{F}|_{U_{i_0,\dots,i_k}}.$$

Es gibt einen in \mathcal{F} funktoriellen Garbenmorphismus $\varepsilon \colon \mathcal{F} \longrightarrow \mathscr{C}^0(\mathfrak{U}, \mathcal{F})$ und in \mathcal{F} funktorielle Garbenmorphismen $d \colon \mathscr{C}^k(\mathfrak{U}, \mathcal{F}) \longrightarrow \mathscr{C}^{k+1}(\mathfrak{U}, \mathcal{F})$, sodass die folgende Sequenz exakt ist:

$$0 \longrightarrow \mathcal{F} \stackrel{\varepsilon}{\longrightarrow} \mathscr{C}^0(\mathfrak{U},\mathcal{F}) \stackrel{d}{\longrightarrow} \mathscr{C}^1(\mathfrak{U},\mathcal{F}) \stackrel{d}{\longrightarrow} \mathscr{C}^1(\mathfrak{U},\mathcal{F}) \longrightarrow \dots$$