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Abstract

Let G be a semisimple Lie group without compact factor and Γ < G a torsion-free, cocompact,
irreducible lattice. According to Selberg, periodic orbits of regular Weyl chamber flows live on maximal
flat periodic tori of the space of Weyl chambers. We prove that these flat periodic tori equidistribute
exponentially fast towards the quotient of the Haar measure. From the equidistribution formula, we
deduce a higher rank prime geodesic theorem. These counting and equidistribution results also hold in
the non cocompact, finite covolume case for G = SL(d,R) and Γ < SL(d,Z) a finite index subgroup.

1 Introduction

Let G be a semisimple, connected, real linear Lie group without compact factor. Let K be a maximal
compact subgroup, A be a maximal R-split torus, A+ ⊂ A a closed positive chamber such that the Cartan
decomposition G = KA+K holds. Denote by M := ZK(A) the centralizer of A in K, by a := Lie A the
Cartan subspace, by a+ the closed positive chamber in the Lie algebra and by a++ its interior.

Let Γ < G be a torsion-free, cocompact lattice. The double coset space Γ\G/M is called the space of
Weyl chambers of the symmetric space Γ\G/K. We study the counting and equidistribution of the compact
right A-orbits in the space of Weyl chambers.

1.1 Pioneering works on hyperbolic surfaces

In this case, G = PSL(2,R) is the isometry group of the Poincaré half-plane H2, the space of Weyl chamber
is the unit tangent bundle of the hyperbolic surface Γ\H2 and the right action of A on Γ\G/M corresponds
to the geodesic flow. Periodic orbits of the geodesic flow project in the surface to primitive closed geodesics.

Prime geodesic theorems In 1959, Huber [Hub59] proved a prime geodesic theorem for compact hyper-
bolic surfaces. He obtained an estimate of the number of primitive closed geodesics as their length grows
to infinity. More precisely, let N(T ) be the number of primitive closed geodesics of length less than T on a
hyperbolic surface. He proved that as T tends to infinity,

N(T ) ∼ eT /T.

This term is similar to the asymptotic x/ log x given by the prime number theorem1 for the number of primes
less than x. In 1969, using dynamical methods, Margulis [Mar69] extended the prime geodesic theorem to
negatively curved compact manifolds. He proved that the exponential growth rate of N(T ) is equal to the
topological entropy of the geodesic flow. Later on, relying on Selberg’s Trace formula, Hejhal [Hej76] and
Randol [Ran77] obtained a precise asymptotic development of the counting function in terms of the spectrum
of the Laplace-Beltrami operator. In 1980, Sarnak [Sar80] extended their precise asymptotic development to
finite area surfaces.

Let us state one of the various equivalent formulations of the prime geodesic theorem. For a closed geodesic
c on Γ\H2, denote by `(c) the length of this geodesic. Let c0 be the primitive closed geodesic underlying c.
Then as T → +∞ ∑

c0

⌊
T

`(c0)

⌋
`(c0) =

∑
c,`(c)≤T

`(c0) ∼ eT , (1)

1See Pollicott’s research statement §1.2 [Pol]
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where the first sum is over all primitive closed geodesics, the second sum is over all closed geodesics. This
sum is similar to the second Chebyshev function: the weighted sum of the logarithms of primes less than a
given number, where the weight is the highest power of the prime that does not exceed the given number.
The second Chebyshev function is essentially equivalent to the prime counting function and their asymptotic
behaviour is similar.

Equidistribution of closed geodesics Margulis in his 1970 thesis2 and Bowen [Bow72b], [Bow72a] inde-
pendently studied the spatial distribution of the closed orbits of the geodesic flow. They proved that closed
orbits uniformly equidistribute towards a measure of maximal entropy as their period tends to infinity. In
the second 1972 paper, Bowen proved the uniqueness of the measure of maximal entropy for the geodesic
flow. As a consequence, the measure of maximal entropy of the geodesic flow is equal to the quotient of the
Haar measure. Later, Zelditch [Zel92] generalized Bowen’s equidistribution theorem to finite area hyperbolic
surfaces.

Let us recall Bowen and Margulis’ result for a compact hyperbolic surface. For every (primitive) periodic
orbit c ⊂ Γ\PSL(2,R), denote by Pc the unique probability measure invariant under the geodesic flow
supported on c. For every T > 0, we denote by Gp(T ) the set of (primitive) periodic orbits of minimal period
less that T . Bowen and Margulis proved that for every bounded smooth function f ,

T

eT

∑
c∈Gp(T )

∫
f dPc −−−−→

T→∞

∫
f dmΓ,

where mΓ is the measure of maximal entropy, which also corresponds in our case to the quotient measure of
the Haar measure on Γ\PSL(2,R).

The following non exhaustive list [DeG77], [GW80], [PP83], [Rob03], [Nau05], [MMO14] provides some of
the many subsequent works tackling the counting and equidistribution problem in several different rank one
generalisations.

1.2 Main results

In this article, we focus on the higher rank case3 for G, meaning that dimRA ≥ 2.

Definition 1.1 (Maximal flat periodic tori). For any right A-orbit F in Γ\G/M , we define the set of periods
of F as

Λ(F ) := {Y ∈ a | zeY = z, ∀z ∈ F}.
A period Y in Λ(F ) is called regular if Y ∈ a++. When Λ(F ) is a lattice of a, we say F a maximal flat
periodic torus or a compact periodic A-orbit.

Denote by C(A) the set of maximal flat periodic tori in Γ\G/M . For every F ∈ C(A), we denote by LF
the quotient measure on F of Leba, the Lebesgue measure on a. Note that LF is not a probability measure.
Its total mass, denoted by vola(F ), is the Lebesgue measure of any fundamental domain in a of the lattice
Λ(F ).

Main counting result We use vol to denote the Haar measure on G whose quotient on the symmetric
space X := G/K equals the measure induced by the Riemannian metric. Denote by ‖ ‖ the Euclidean
norm on a coming from the Killing form on g and by Ba the balls for this norm. For every T > 0, set
B++

a (0, T ) := Ba(0, T ) ∩ a++ and DT := K exp
(
Ba(0, T )

)
K, which is the preimage by the quotient map

G→ X of the ball of radius T centered at eK in the symmetric space X.

Theorem 1.2. Let G be a semisimple, connected, real linear Lie group without compact factor and Γ < G
be a torsion-free, cocompact irreducible lattice or G = SL(d,R) with d ≥ 2 and Γ < SL(d,Z) a finite index
subgroup. Then there exist constants CG > 0 and u > 0 such that for T > 0∑

F∈C(A)

|Λ(F ) ∩B++
a (0, T )| vola(F ) = vol(DT )(CG +O(e−uT )). (2)

We deduce this counting result from the subsequent equidistribution statement.

2See Parry’s review [Par]
3more precisely, we do not have restrictions on the rank of G
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Main equidistribution result Denote by π : G → Γ\G/M the projection and by m̃Γ the quotient
measure of the Haar measure vol. We normalise m̃Γ to obtain a probability measure that we denote by mΓ.
We obtain a higher rank version of the Bowen-Margulis equidistribution formula with an exponential rate of
convergence.

Theorem 1.3. Under the same hypothesis and for the same constants CG > 0 and u > 0 as in the previous
Theorem 1.2, for all T > 0 and every Lipschitz function f on Γ\G/M we have

1

vol(DT )

∑
F∈C(A)

|Λ(F ) ∩B++
a (0, T )|

∫
F

f dLF = CG

∫
Γ\G/M

f dmΓ +O(e−uT |f |Lip). (3)

The asymptotic behaviour of the main term as T tends to infinity is vol(DT ) ∼ C0T
dimA−1

2 eδ0T , where
δ0 > 0 is determined by the root system of g, the Lie algebra of G and C0 > 0 is given by the Borel–Harish-
Chandra formula.

a ' R2

a+

C ∩ {aT ≤ ϕ ≤ bT}

B++
a (0, T )

Figure 1: This is a positive Weyl chamber for SL(3,R) and T > 0 is large. In blue, our counting re-
gion B++

a (0, T ). In green, Deitmar-Gon-Spilioti’s [DGS19] counting region. In red, Guedes Bonthonneau–
Guillarmou–Weich’s [GBGW21] counting region where C is a convex cone strictly inside a++ delimitted by
the red dashed lines, 0 < a < b are real numbers and ϕ is a linear form strictly positive in a+.

Remark 1.4. Note that in the rank one case, any flat periodic torus F corresponds to a primitive closed
geodesic. Furthermore, both vola(F ) and its smallest regular period correspond to the length of the geodesic.
Therefore Theorem 1.2 is a higher rank version of the prime geodesic theorem (1).

1. In the compact case, Spatzier in his thesis [Spa83] computed, using the root spaces of the Lie algebra of
G, the topological entropy of every regular Weyl chamber flows: right action of exp(RY ) on Γ\G/M , where
Y ∈ a++ is non zero. Furthermore, δ0, the exponential growth rate of vol(DT ), is a sharp upper bound of the
topological entropy of regular Weyl chamber flow. He also proved that δ0 is equal to the exponential growth
rate of the sum over maximal flat periodic tori of the smallest regular period less than t of vola(F ), as t goes
to infinity. Knieper [Kni05] studied the equidistribution of periodic orbits of regular Weyl chamber flows in
the same setting. He obtained an equidistribution formula towards the measure of maximal entropy of the
most chaotic regular Weyl chamber flow, whose topological entropy is δ0.

1.1 In the finite volume case, Oh [Oh04] proved that the number of maximal flat periodic tori of bounded
volume is always finite.

2. In the compact case, Deitmar [Dei04] used a Selberg trace formula and methods from analytical
number theory to prove a similar version of Theorem 1.2. He later on generalized this counting result to the
non compact finite volume case SL(3,Z)\SL(3,R), in a joint work with Gon and Spilioti in [DGS19], with a
different summation region in the Weyl chamber, the one in green in Figure 1.

3. Recently and for the compact case, Guedes Bonthonneau–Guillarmou–Weich [GBGW21, Theorem
2, equation (0.3)] obtained an equidistribution formula. The region where they count the multiplicity of
periodic tori is defined using any convex non-degenerate closed cone C strictly inside a++, any choice of
positive numbers 0 < a < b and any linear form ϕ that takes positive values in a+ as shown in red in Figure
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1. They take a different approach, relying on the spectral properties of the A-action via their previous study
of Ruelle-Taylor resonances with Hilgert [GBGHW20].

4. Because our counting region is different (shown in blue in Figure 1), our first asymptotic term is new
in higher rank. It would be interesting to see whether we could generalise our methods to the regions in red
and green to recover the results of [Dei04], [GBGW21].

None of the above works provides estimates on the speed of convergence. The decay rate u in Theorem
1.3 only depends on a parameter n(G,Γ) from spectral gaps, so it is uniform over all congruence subgroups.

5. For the non-compact, finite volume case SL(3,Z)\SL(3,R), Einsiedler–Lindenstrauss–Michel–Venkatesh
in [ELMV11] use the classification of diagonal invariant measures and subconvexity estimates to deduce an
equidistribution result for the following collection of tori. They take sets of flat periodic tori of the same vol-
ume and prove that the sum of Lebesgue measures on those tori, normalised by the total mass, equidistributes
towards the quotient measure of the Haar measure as the volume goes to infinity.

6. By using a dictionary between closed geodesic orbits of hyperbolic surfaces and objects coming from
number theory, [Sar82] could deduce counting results on class numbers of totally real quadratic orders. Later,
[DGS19] did the same for SL(3,Z). It would be interesting to use a dictionary between compact periodic
A-orbits and number theory to deduce a number-theoretic version of Theorem 1.2.

1.3 On the proof of the main theorem

The proof of the equidistribution result in the cocompact case follows Roblin’s proof [Rob03] closely, where
he proved counting and equidistribution results for some infinite covolume hyperbolic manifolds. We replace
all the ingredients from hyperbolic geometry with their higher rank counterparts, such as Hopf coordinates,
Patterson-Sullivan measures, the angular distribution of lattice points. One significant difference in higher
rank cases is that we need to carefully treat the boundary of the Weyl chamber, while in the hyperbolic case,
it is just a point.

For the non-cocompact case of finite index subgroups Γ < SL(d,Z), we first prove the equidistribution
(Theorem 1.3) on compact sets of Γ\G/M . Then we prove the non-escape of mass for compact periodic A-
orbits. The critical observation is that there exist two large compact sets ΩT ,Ω

′
T ⊂ Γ\G/M depending on the

parameter T . For any compact periodic A-orbit F with a regular period of length less than T , the measure
of F outside the compact set, F ∩ ΩcT , is bounded by its measure inside the compact set, F ∩ (ΩT \ Ω′T ).
Equidistribution is known for functions supported on ΩT . Therefore we bound the mass outside the compact
set ΩT of the measure in Theorem 1.3 (an average of measures on compact periodic A-orbits with a regular
period of length less than T ) by the Haar measure of ΩT \ Ω′T ⊂ (Ω′T )c, which decays exponentially fast as
T goes to infinity due to the choice of Ω′T .

Organization of the paper

In Section 2, we gather the basic facts and preliminaries about semisimple real Lie groups, the Furstenberg
boundary, Hopf coordinates, higher rank Patterson-Sullivan measure, volume estimates and the angular
distribution of lattice points.

In Section 3, we prove a lemma comparing the angular part of an element in G with its contracting and
repelling fixed points in the Furstenberg boundary. In Section 4, we relate loxodromic elements and periodic
tori.

In Section 5 and 6, we prove Theorem 1.3 for cocompact lattices and for Γ < SLd(Z) acting on G/M
freely, respectively.

In Appendix A, we introduce the language of orbifolds to treat the general case of finite index subgroups
of SLd(Z).

In Appendix B, we follow the works of Gorodnik-Nevo [GN12a] [GN12b] and explain why their results
work in our setting.

Notation. In the paper, given two real functions f and g, we write f � g or f = O(g) if there exists a
constant C > 0 only depending on G,Γ such that f ≤ Cg. We write f � g if f � g and g � f .
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2 Background

In the whole article, G is a semisimple, connected, real linear Lie group,
without compact factor.

Classical references for this section are [Thi07], [GJT98], [Hel01]. One also may refer to the exposition in
[DG21].

Let K be a maximal compact subgroup of G. Then X = G/K is a globally symmetric space of non-
compact type and G = Isom0(X). We fix a base point o ∈ X such that K = StabG(o). For every x ∈ X, we
denote by Kx := StabG(x). Note that for any hx ∈ G such that hxo = x, then Kx = hxKh

−1
x , independently

of the choice of hx.

Geometric Weyl chambers Denote by g (resp. k) the Lie algebra of G (resp. K) and consider the Cartan
decomposition in the Lie algebra g = k ⊕ p. Let a ⊂ p be a Cartan subspace of g. Then A := exp(a) is a
maximal R-split torus of G. Denote by M := ZK(A) the centralizer of A in K. The real rank of G, denoted
by rG, is equal to dimR a. We say that G is higher rank when rG ≥ 2.

For any linear form α on a, set gα := {v ∈ g | ∀u ∈ a, [u, v] = α(u)v}. The set of restricted roots is
denoted by Σ := {α ∈ a∗ \ {0} | gα 6= {0}}. The kernel of each restricted root is a hyperplane of a. The
Weyl chambers of a are the connected components of a \ ∪α∈Σ ker(α). We choose a positive Weyl chamber
by fixing such a connected component and denote it (resp. its closure) by a++ (resp. a+). In the Lie group,
we denote by A++ := exp(a++) (resp. A+ := exp(a+)). Denote by NK(A) the normalizer of A in K. The
group NK(A)/M is the Weyl group, denoted by W. The Weyl group also acts on the Lie algebra a by the
adjoint action, which acts transitively on the set of connected components of a \ ∪α∈Σ ker(α).

A geometric Weyl chamber is a subset of X of the form g.(A+o), where g ∈ G. The base point of the
geometric Weyl chamber gA+o is the point go ∈ X. In [DG21, §2], we obtained the following identifications
between the space of Weyl chambers and the set of geometric Weyl chambers of X,

G/M ' G.(A+o). (4)

Cartan projection

Definition 2.1. For any g ∈ G, we define, by Cartan decomposition, a unique element a(g) ∈ a+ such that
g ∈ K exp(a(g))K. The map a : G→ a+ is called the Cartan projection.

The Cartan projection allows to define an a+-valued function on X × X, denoted by da. For every
x, y ∈ X, any choice hx, hy ∈ G such that hxo = x and hyo = y, we set

da(x, y) := a(h−1
x hy).

This function does not depend on the choice of hx and hy up to right multiplication by K. By [Hel01,
Chapter V, Lemma 5.4], we endow a with a scalar product coming from the Killing form on g. We denote
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by ‖.‖ the associated norm on a and define the G-invariant riemannian distance on X

dX(x, y) := ‖da(x, y)‖.

The following fact is standard for symmetric spaces of non-compact type.

Fact 2.2. For every x, y ∈ X, there is a geometric Weyl chamber based on x containing y. If furthermore,
da(x, y) ∈ a++, such a geometric Weyl chamber is defined by a unique element hxyM ∈ G/M such that

hxyo = x and hxye
da(x,y)o = y.

Proof. Fix x, y ∈ X and choose hx, hy ∈ G such that hxo = x and hyo = y. By Cartan decomposition of
h−1
x hy and Definition 2.1, there exists k, l ∈ K such that

h−1
x hy = keda(x,y)l−1.

Set hxy := hxk. Since K fixes o, we deduce that hxyo = x and hxye
da(x,y)o = y.

For all k′, l′ ∈ K, the elements hxk
′ and hyl

′ also respectively send o to x and y. Note that we have another
Cartan decomposition of (hxk

′)−1hyl
′ given by (k′)−1k eda(x,y) l−1l′. Applying the same construction, we

still recognize that hxk
′(k′)−1k = hxy. Hence hxy does not depend on the choice of representatives hx and

hy, and it depends on the choice of k, l ∈ K in the Cartan decomposition.
It remains to show that hxy is unique up to right multiplication by elements of M when da(x, y) ∈ a++.

In this case, the elements k, l ∈ K given by Cartan decomposition are defined up to right multiplication by
elements in M . Hence the fact.

Jordan projection Denote by Σ+ the subset of roots which take positive values in the positive Weyl
chamber. It allows to define the following nilpotent subalgebras n := ⊕α∈Σ+gα and n− = ⊕α∈Σ+g−α.
Denote by N := exp(n) and N− := exp(n−) two maximal unipotent subgroups of G.

By Jordan decomposition, every element g ∈ G admits a unique decomposition g = geghgu where ge, gh
and gu commute and such that ge (resp. gh, gu) is conjugated to an element in K (resp. A+, N). The
element ge (resp. gh, gu) is called the elliptic part (resp. hyperbolic part, unipotent part) of g.

Definition 2.3. For any element g ∈ G, there is a unique element λ(g) ∈ a+ such that the hyperbolic part
gh is conjugated to exp(λ(g)) ∈ A+. The map λ : G→ a+ is called the Jordan projection.
Any element g ∈ G such that λ(g) ∈ a++ is called loxodromic.
Denote by Glox the set of loxodromic elements of G and for any subset S ⊂ G, denote by Slox := S ∩Glox.

Equivalently (Cf. §4 [Dan21]), loxodromic elements are conjugated in G to elements in A++M .

Asymptotic Weyl chambers Denote by P := MAN and by F := G/P the Furstenberg boundary. We
recall the interpretation of F in terms of asymptotic Weyl chambers.

Following the exposition in [DG21], we introduce the following equivalence relation between geometric
Weyl chambers:

g1A
+o ∼ g2A

+o⇐⇒ sup
a∈A++

dX(g1ao, g2ao) < +∞.

Equivalence classes for this relation are called asymptotic Weyl chambers. Denote by η0 (resp. ζ0) the
asymptotic Weyl chamber of A+o (resp. (A+)−1o). The set of asymptotic Weyl chambers identifies with the
Furstenberg boundary (see for instance [DG21, Fact 2.5] for a proof),

F '
(
G.(A+o)/ ∼

)
' K/M ' K.η0. (5)

Remark that ζ0 = kιη0 where kι ∈ NK(A) satisfies kιA
+k−1

ι = (A+)−1. Furthermore, StabG(η0) = P and
StabG(ζ0) = MAN−.

In the remainder of the article, we identify G.(A+o)/ ∼ with F and G.(A+o) with G/M . We prove that
a geometric Weyl chamber is uniquely determined by its base point in X and the asymptotic Weyl chamber
it represents.
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Fact 2.4. The following G-equivariant map is a diffeomorphism:

G/M
∼−→ X ×F

gM 7−→ (go, gη0).

For every (x, ξ) ∈ X×F , we denote by gx,ξM ∈ G/M the geometric Weyl chamber of base point x asymptotic
to ξ.

Proof. Note that M ∈ G/M corresponds to the geometric Weyl chamber A+o, of base point o and asymptotic
Weyl chamber η0. Since StabG(o) = K and StabK(η0) = M , we deduce that the map is injective.

Let us prove that the map is surjective. Fix x ∈ X and ξ ∈ F . Choose a representative hx ∈ G such that
hxo = x. By the identification F ' K/M ' K.η0 in (5) there exists kx,ξM ∈ K/M , such that kx,ξη0 = h−1

x ξ.
Hence, by G-equivariance and since kx,ξo = o we deduce that hxkx,ξM ∈ G/M maps to (x, ξ).

By G-equivariance, we only need to prove that the map is a diffeomorphism at M . By Bruhat decom-
position (Cf. [Hel01, Chapter IX, Cor. 1.8, Cor. 1.9 ]), g = n ⊕ m ⊕ a ⊕ n− and Tη0F = n−. By Isawasa
decomposition (Cf. [Hel01, Chapter IX, Thm 1.3]) G = NAK, we deduce that ToX ' n ⊕ a. Hence
TMG/M = n⊕ a⊕ n− ' ToX × Tη0F .

Busemann and Iwasawa cocycle For every ξ ∈ F and g ∈ G, consider, by Iwasawa decomposition
KAN , the unique element σ(g, ξ) ∈ a, called the Iwasawa cocycle, such that if kξ ∈ K satisfies kξη0 = ξ,
then

gkξ ∈ K exp(σ(g, ξ))N. (6)

The cocycle relation holds (Cf. [BQ16, Lemma 5.29]) i.e. for all g1, g2 ∈ G and ξ ∈ F , then

σ(g1g2, ξ) = σ(g1, g2ξ) + σ(g2, ξ). (7)

Note that restricted to K × F , the Iwasawa cocycle is the zero function, i.e. for every k ∈ K and ξ ∈ F ,
then σ(k, ξ) = 0. This motivates the following Definition of the Busemann cocycle for two points of X and
an asymptotic Weyl chamber.

Definition 2.5. For every x, y ∈ X and ξ ∈ F , we define the Busemann cocycle by

βξ(x, y) := σ(h−1
x hy, h

−1
y ξ)

independently of the choice of hx, hy ∈ G such that hxo = x and hyo = y.

Remark that for every x, y ∈ X and ξ ∈ F , for all g ∈ G and all z ∈ X,

βξ(x, y) = βgξ(gx, gy) (8)

βξ(x, y) = βξ(x, z) + βξ(z, y). (9)

The first equation is the G-invariance of the formula, whereas the second is due to the cocycle relation of the
Iwasawa cocycle.

Transverse points in F The subset of ordered transverse pairs of F × F is defined by the G-orbit

F (2) := {(gη0, gζ0) | g ∈ G}. (10)

We say that ξ, η ∈ F are opposite or transverse if (ξ, η) ∈ F (2).
In terms of asymptotic Weyl chambers, ξ, η ∈ F are opposite when there exists a geometric Weyl chamber

g.(A+o) asymptotic to ξ such that g.((A+)−1o) is asymptotic to η. Note that (Cf. §3.2 [Thi07]) we have the
following identifications

F (2) ' G/AM.
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Definition 2.6. For every (ξ, η) ∈ F (2), for any choice gξ,η ∈ G such that gξ,η(η0, ζ0) = (ξ, η), we denote by

(ξη)X := gξ,η.(Ao)

the associated maximal flat in the symmetric space X.
For every (x, ξ) ∈ X × F , we denote by ξ⊥x ∈ F the unique opposite point to ξ such that x ∈ (ξξ⊥x )X .

Equivalently, ξ⊥x := gx,ξζ0, where gx,ξM ∈ G/M corresponds (Cf. Fact 2.4) to the geometric Weyl chamber
of base point x asymptotic to ξ.

Remark 2.7. Note that (ζ0)⊥o = η0 and vice-versa.

Hopf coordinates Let H be the Hopf coordinate map of G/M (Cf. [Thi07, Chapter 8, §8.G.2] or [DG21])

H : G/M → F (2) × a

gM 7→ (gη0, gζ0, σ(g, η0)).

Hopf coordinates are left G-equivariant and right A-equivariant in the following sense:

(i) the left action of G on G/M reads in those coordinates equivariantly on F (2) and using the Iwasawa
cocycle as follows. For all h ∈ G and (ξ, η, Y ) ∈ F (2) × a,

h(ξ, η, Y ) = (hξ, hη, Y + σ(h, ξ)). (11)

(ii) the right action of A on G/M reads for all (ξ, η, Y ) ∈ F (2) × a and a ∈ A by keeping the first two
coordinates constant and translating the last one by log(a)

H(H−1(ξ, η, Y )a) = (ξ, η, Y + log(a)).

Using the geometric Weyl chamber interpretation and the Busemann cocycle notations, the Hopf map
reads the same as in Roblin’s work [Rob03]:

X ×F −→ F (2) × a

(x, ξ) 7−→ (ξ, ξ⊥x , βξ(o, x)).
(12)

This translated map is also left G-equivariant in the sense that for every g ∈ G and every (x, ξ) ∈ X × F ,
using the cocycle relation (8), the element (gx, gξ) has Hopf coordinates

(gξ, gξ⊥x , βgξ(o, go) + βξ(o, x)).

Note that βgξ(o, go) = σ(g, ξ), therefore the notations are consistent.

2.1 The Furstenberg boundary

Representations of a semisimple Lie group Let us first recall a few facts about representations of a
semisimple Lie group. Let (V, ρ) be a representation of G into a real vector space of finite dimension. For
every real character χ : a→ R, we denote by

Vχ := {v ∈ V | ρ(u)v = χ(u)v, ∀u ∈ a}

the associated vector space. The set of restricted weights is the subset

Σ(ρ) := {χ | Vχ 6= {0}}.

They are partially ordered using the positive Weyl chamber as follows.

(χ1 ≤ χ2)⇔ (χ1(u) ≤ χ2(u), ∀u ∈ a+).

When the representation ρ is irreducible, the set of restricted weights admits a maximum, called the maximal
restricted weight. The irreducible representation ρ is proximal when the subspace of the maximal restricted
weight is a line.
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Restricted weights of the fundamental representations For the adjoint representation, the set of
restricted weights coincides with the set of restricted roots Σ. Denote by Σ+ the set of positive restricted
roots and by Π ⊂ Σ+ the set of simple roots. Tits ([BQ16, Lemma 6.32]) proved that for every α ∈ Π, there
exists an irreducible and proximal representation (ρα, V

α) of G such that the restricted weights are in{
χα, χα − α, χα − α−

∑
β∈Π

nββ

∣∣∣∣ nβ ∈ Z+

}
. (13)

Furthermore, the maximal weights (χα)α∈Π of these representations form a basis of a∗.

Distances in the projective space For every α ∈ Π, we choose a Euclidean norm ‖.‖ on V α such that
the elements in ρα(A) (resp. ρα(K)) are symmetric (resp. unitary). Note that ‖ρα(a)‖ = exp(χα(log a)) for
all a ∈ A+. Abusing notation, we denote by ‖.‖ the induced Euclidean norm on V α ∧ V α. Remark that for
all a ∈ A+,

‖ ∧2 ρα(a)‖ = exp((2χα − α) log a). (14)

We define the distance in the projective space for all x, y ∈ P(V α) as follows,

d(x, y) :=
‖vx ∧ vy‖
‖vx‖.‖vy‖

(15)

independently of the choice of vx, vy ∈ V such that x = Rvx and y = Rvy. For all x ∈ P(V α) and ε ∈ (0, 1],
denote by B(x, ε) the ball centered at x of radius ε for this distance.

Denote by xα+ ∈ P(V α) the projective point corresponding to the eigenspace for the maximal restricted
weight χα. Since ρα(A) are symmetric endomorphisms for the Euclidean norm on V α, the orthogonal
hyperplane to xα+ is ρα(A)-invariant and abusing notations we write

(xα+)⊥ = ⊕χ∈Σ(ρα)\{χα}V
α
χ .

For all projective point y ∈ P(V α), we denote by y⊥ ⊂ V α the orthogonal hyperplane and by ϕy ∈ (V α)∗ a
linear form such that kerϕy = y⊥. For all x, y ∈ P(V α), we define (independently of the choice of non-zero
vx ∈ x)

δ(y, x) :=
|ϕy(vx)|
‖ϕy‖.‖vx‖

. (16)

By properties of the norms and distances on the projective space, the previous function is symmetric and for
all x, y ∈ P(V α),

δ(y, x) = δ(x, y) = d(y⊥, x) = d(y, x⊥). (17)

Hence d(xα+, (x
α
+)⊥) = 1. For all ε > 0, denote by Vε((xα+)⊥){ := {yα ∈ P(V α) | δ(yα, xα+) ≥ ε}. We prove

the following dynamical lemma.

Lemma 2.8. Let ε > 0 and a ∈ A+. Assume there exists α ∈ Π such that α(log a) ≥ −2 log(ε). Then
ρα(a)Vε((xα+)⊥){ ⊂ B(xα+, ε).

Proof. We use the notations in §14.1 [BQ16]. Let α ∈ Π such that α(log a) ≥ −2 log(ε). Recall (14) that
‖∧2 ρα(a)‖ = exp((2χα−α) log a) and ‖ρα(a)‖ = exp(χα(log a)). We compute the gap between the first and
second eigenvalues of ρα(a),

γ1,2(ρα(a)) :=
‖ ∧2 ρα(a)‖
‖ρα(a)‖2

= e−α(log a).

By assumption, e−α(log a) < ε2, hence γ1,2(ρα(a)) < ε2. Then we apply Lemma 14.2 (iii) in [BQ16], for every

y ∈ Vε((xα+)⊥){,
d(ρα(a)y, xα+)δ(xα+, y) < γ1,2(ρα(a)).

By definition δ(y, xα+) ≥ ε, hence d(ρα(a)y, xα+) < ε and we deduce that ρα(a)Vε((xα+)⊥){ ⊂ B(xα+, ε).
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Distances and balls in F Using the fundamental representations (ρα)α∈Π, Tits (Cf. [BQ16, Lemma
6.32]) also proved that the following map is an embedding:

F −→
∏
α∈Π

P(V α)

ξ = kη0 7−→ (xα(ξ))α∈Π := (ρα(k)xα+)α∈Π.

We thus define the following distance on F for all ξ, η ∈ F

d(ξ, η) := sup
α∈Π

d(xα(ξ), xα(η)). (18)

For all ξ ∈ F and ε ∈ (0, 1), we denote the balls for this distance by

B(ξ, ε) := {η ∈ F | d(ξ, η) < ε}. (19)

Fact 2.9. The distance d is equivalent to the Riemanian distance on F induced from the embedding on the
product space Πα∈ΠP(V α).

Proof. Recall that two distances d, d′ on a space X are equivalent if d � d′ i.e. there exists C > 1 such that
for all x, y in X, we have

1

C
d′(x, y) ≤ d(x, y) ≤ Cd′(x, y).

On the projective space P(V α), for each point Rv, its tangent space is given by v⊥, the hyperplane
orthogonal to v with respect to the Euclidean norm and we obtain a Riemannian metric by restricting the
Euclidean norm to v⊥. Denote by dα the induced Riemannian distance on P(V α). The distance dα between
two lines is given by their angle in [0, π/2]. Since the distance d between two lines defined in (15) is the sine
of the angle given by dα, we deduce that d � dα.

Let us now construct a Riemanian distance dP on the product space Πα∈ΠP(V α) using the Riemanian
metric of the product space. Recall that on any product space (X×Y, g) where (X, g1) and (Y, g2) are endowed
with Riemanian metrics g1 and g2, the product Riemanian metric is given for all (x, y; v, w) ∈ T(x,y)X × Y
where (x, v) ∈ TxX and (y, w) ∈ TyY , by

g(x, y; v, w) = g1(x, v) + g2(y, w).

The Riemanian distance d associated to this product Riemannian metric g satisfies

max{d1, d2} ≤ d ≤ d1 + d2.

Since for every α ∈ Π, the distances dα and d are equivalent, we deduce that the Riemanian product
distance dP is equivalent to the maximal metric i.e. dP � d := supα∈Π d. Using Tits’ embedding of F in
to the product space Πα∈ΠP(V α), we deduce that the induced metric is non-degenerate on F . Hence, the
Riemannian distance on F induced by dP is equivalent to the maximal distance d.

Similarly, noting that (ζ0)⊥o = η0, we set

δ(ξ, η) := inf
α∈Π

δ(xα(ξ), xα(η⊥o )) = inf
α∈Π

d(xα(ξ), xα(η⊥o )⊥). (20)

For all ξ ∈ F and ε ∈ (0, 1), we denote the balls for δ by

Vε(ξ) := {η ∈ F | δ(η, ξ) < ε}. (21)

Using the above notations given for the balls in F for δ and d and their K-invariance, we upgrade the
dynamical Lemma 2.8 to elements in G whose Cartan projection is far from the walls of the Weyl chambers.

Lemma 2.10. For all g ∈ G, choose k, l ∈ K by Cartan decomposition such that g = k exp(a(g))l−1. Let
ε > 0 and assume that d(a(g), ∂a+)� −2 log ε, then gVε(lζ0){ ⊂ B(kη0, ε).
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Proof. Note that α(v) � d(v, kerα) for all v ∈ a+. Hence by taking the infimum over α ∈ Π, then using that
infα∈Π d(v, kerα) = d(v,∪α∈Π kerα) and finally, because a+ is a salient cone, ∂a+ = a+ ∩

(
∪α∈Π kerα

)
, we

deduce that for all v ∈ a+,
d(v, ∂a+) � inf

α∈Π
α(v).

Now using the underlying constant in �, we may assume that, infα∈Π α(a(g)) ≥ −2 log ε. Apply the dy-
namical Lemma 2.8 simultaneously for all α ∈ Π, using Remark 2.7 that (ζ0)⊥o = η0, we deduce that
ea(g)Vε(ζ0){ ⊂ B(η0, ε). Finally, we deduce the Lemma by invariance of left K-action on both d and δ.

Action of G on F We want to understand how the left action of G on F distorts the balls for δ and d.
Let Ca > 1 be a positive constant such that for all v ∈ a,

1√
Ca

‖v‖ ≤ sup
α∈Π
|χα(v)| ≤

√
Ca‖v‖.

This constant gives the comparison of the sup-norm induced by the dual basis (χα)α∈Π with the Euclidean
norm ‖ ‖ on a.

Lemma 2.11. There exist C0, C1 > 0 such that for all g in G and ξ, η in F , we have the following inequalities:

(i) d(gξ, gη) ≤ C1e
C0dX(o,go)d(ξ, η),

(ii) δ(gξ, gη) ≤ C1e
C0dX(o,go)δ(ξ, η),

(iii) ‖σ(g, ξ)− σ(g, η)‖ ≤ C1e
C0dX(o,go)d(ξ, η),

(iv) ‖σ(g, ξ)‖ ≤ CadX(o, go).

Furthermore, for every x, y ∈ X and ξ ∈ F , (iv) is the same as

(iv’) ‖βξ(x, y)‖ ≤ CadX(x, y).

In particular, for all x ∈ X we set Cx := C1e
C0dX(o,x). Then for all hx ∈ G such that hxo = x and all ξ ∈ F

and every r ∈ (0, C−1
x ), the inequalities given by (i) and (ii) imply

(i’) B(hxξ, C
−1
x r) ⊂ hxB(ξ, r) ⊂ B(hxξ, Cxr),

(ii’) VC−1
x r(hxξ) ⊂ hxVr(ξ) ⊂ VCxr(hxξ).

Proof. For each V α, by (13.1) in [BQ16], we have

d(xα(gξ), xα(gη)) ≤ ‖ρα(g)‖2‖ρα(g−1)‖2d(xα(ξ), xα(η)).

By (18) and ‖ρα(g)‖ = ‖ρα exp(a(g))‖ = exp(χα(a(g))), we obtain the first inequality for C0 = 4Ca.
For (ii), we first prove that (xα((gη)⊥o ))⊥ = ρα(g)xα(η⊥o )⊥. There exist k1, k ∈ K such that η = k1η0 and

gk1 = kan ∈ KAN . Then due to k preserving o and the Euclidean metric on V α, we obtain

(xα((gη)⊥o ))⊥ = (xα((kη0)⊥o ))⊥ = ρα(k)(xα((η0)⊥o ))⊥.

Due to AN preserving (xα((η0)⊥o ))⊥ = (xα(ζ0))⊥, we deduce that ρα(k)(xα((η0)⊥o ))⊥ = ρα(gk1)(xα((η0)⊥o ))⊥.
Therefore, we obtain (xα((gη)⊥o ))⊥ = ρα(g)(xα(η⊥o ))⊥. Then for all ξ, η ∈ F ,

δ(xα(gξ), xα((gη)⊥o )) = d(xα(gξ), xα((gη)⊥o )⊥) = d(ρα(g)xα(ξ)⊥, ρα(g)xα(η⊥o )⊥)

≤ ‖ρα(g)‖2‖ρα(g)−1‖2 d(xα(ξ), xα(η⊥o )⊥).

Therefore, since ‖ρα(g)‖‖ρα(g)−1‖ ≤ exp(2 sup(χα(a(g)), χα(ιa(g)))) and C0 = 4Ca, we deduce that

δ(gξ, gη) = inf
α∈Π

δ(xα(gξ), xα((gη)⊥o )) ≤ C1e
C0‖a(g)‖δ(ξ, η).

(iii) is given in [BQ16, Lemma 13.1].
(iv), see [DG21, Lemma 3.12] for a similar statement, and it is also a direct consequence of [BQ16, Lemma

6.33 (ii), Corollary 8.20].
Finally (iv’) is a consequence of the formulas βξ(x, y) = σ(h−1

x hy, h
−1
y ξ) and dX(x, y) = ‖a(h−1

x hy)‖
independently of the choice of hx, hy ∈ G such that hxo = x and hyo = y.
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2.2 Disintegration of the Haar measure

Patterson–Sullivan measures were generalized to the higher rank setting in [Alb99], [Qui02]. We follow
Thirion’s [Thi07, Chapter 9 §9.e] construction of higher rank Patterson–Sullivan measures on the space of
Weyl chambers for SL(d,R), which also works in our more general setting.

We start by his so-called Patterson densities. For x ∈ X, let Kx be the stabilizer group of x in G. Let µx
be the unique Kx invariant probability measure on the Furstenberg boundary F . Then we have for g ∈ G
and x ∈ X

g∗µx = µgx, (22)

where g∗µx is the pushforward of µx under the g action. This relation holds because the stabilizer of g∗µx is
given by gKxg

−1 = Kgx. Let ρ = 1
2

∑
α∈Σ α be the half of the sum of positive roots with multiplicities. By

[Qui02, Lemma 6.3] or [Hel00, I 5.1], we have for g in G

dg∗µo
dµo

(ξ) = e−ρσ(g−1,ξ), (23)

which is a G quasi-invariant measure. Then we will introduce the Gromov product to obtain a G-invariant
measure on F (2).

Definition 2.12. For a pair (ξ, η) ∈ F (2), we associate it with the unique element in the Lie algebra a such
that for all weights χα

χα(ξ|η)o := − log δ(xα(ξ), xα(η⊥o )) = − log
|ϕ(v)|
‖ϕ‖‖v‖

,

where v ∈ V α − {0} is a representative of xα(ξ) and ϕ is a non zero linear form such that kerϕ = xα(η⊥o )⊥.

Since the δ function (17) takes value in (0, 1], then χα(ξ|η)o ∈ [0,+∞). This definition already appears in
[BPS19, Section 8.10], [Sam15, Section 4] for semisimple Lie groups and [Thi07] for SLd(R). Our definition
of δ seems different from the one in [BPS19], [Sam15]. By using the correspondence between linear forms
and hyperplanes for Euclidean spaces, we can verify that they are the same. An important property is that
[Sam15, Lemma 4.12]: for all g ∈ G and (ξ, η) ∈ F (2), we have

(gξ|gη)o − (ξ|η)o = ισ(g, ξ) + σ(g, η), (24)

where ι is the inverse involution on a. We also define the Gromov product at other points x in X by
G-invariance, by setting

(ξ|η)x = (h−1
x ξ|h−1

x η)o,

where hx is some element such that hxo = x. Since by (24), the Gromov product at o is left K-invariant,
this definition is independent of the choice of hx. For all x ∈ X and (ξ, η) ∈ F (2), we define the (0, 1]-valued
function

fx(ξ, η) = exp(−ρ(ξ|η)x).

We define measures νx on F (2) by

dνx(ξ, η) =
dµx(ξ)dµx(η)

fx(ξ, η)
. (25)

Proposition 2.13. For all x ∈ X, the measure νx is G-invariant and equal to νo. We denote it by ν.

In the hyperbolic case, the measures µx are called Patterson-Sullivan and ν ⊗ LebR is the Bowen-Margulis-
Sullivan measure. In the SLd(R) case, Thirion [Thi07] gave a construction of this measure and proved those
properties. We include a proof for completeness.

Proof. By (24), for all x ∈ X, all (ξ, η) ∈ F (2) and every hx ∈ G such that hxo = x

fx(ξ, η) = fo(h
−1
x ξ, h−1

x η) = fo(ξ, η) exp(−ρ(ισ(h−1
x , ξ) + σ(h−1

x , η))

On the other hand,
dµx
dµo

(ξ) =
d(hx)∗µo

dµo
(ξ) = e−ρσ(h−1

x ,ξ).
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We obtain the same formula for η. Combing the above two equations and using that ρισ(h−1
x , ξ) = ρσ(h−1

x , ξ),
we obtain that

νx = νo.

By definition of the Gromov product, we have for all g ∈ G

fx(gξ, gη) = fg−1x(ξ, η).

By equation (22) and using that νg−1x = νx,

dνx(gξ, gη) =
dµx(gξ)dµx(gη)

fx(gξ, gη)
=

dµg−1x(ξ)dµg−1x(η)

fg−1x(ξ, η)
= dνg−1x(ξ, η) = dνx(ξ, η).

Hence νx is G-invariant.

Bochi, Potrie and Sambarino proved that the Gromov product (ξ|η)o in norm is almost the same as the
distance between o and the maximal flat (ξη)X ⊂ X.

Lemma 2.14. [BPS19, Proposition 8.12] There exist C3 > 1, C ′ > 0 such that for any (ξ, η) ∈ F (2), we
have

1

C3
‖(ξ|η)o‖ ≤ dX(o, (ξη)X) ≤ C3‖(ξ|η)o‖+ C ′.

By G-invariance, we deduce that for every x ∈ X and (ξ, η) ∈ F (2)

1

C3
‖(ξ|η)x‖ ≤ dX(x, (ξη)X) ≤ C3‖(ξ|η)x‖+ C ′.

With this G-invariant measure ν on F (2), now we can disintegrate the Haar measure on G/M along Hopf
coordinates.

Proposition 2.15. The product measure ν ⊗ Leb on F (2) × a is a disintegration in Hopf coordinates of a
Haar measure on G/M .

Proof. The product measure ν ⊗Leb is G-invariant by Proposition 2.13 and the Hopf coordinates. So it is a
Haar measure on G/M .

2.3 Cartan regular isometries

Recall that by Cartan decomposition, for every element g ∈ G there exist k, l ∈ K and a unique element
a(g) ∈ a+ such that g = k exp(a(g))l−1. Note that k and l are defined up to right multiplication by elements
in ZK(exp(a(g))).

Definition 2.16. For all x ∈ X, we denote by ax : G → a+ the map that assigns to every g ∈ G the
a+-distance between x and gx, i.e. ax(g) := da(x, gx). We say that g is x-cartan regular if ax(g) ∈ a++.

Let g be an x-cartan regular element, consider h, h′ ∈ G such that ho = h′o = x with heax(g)o = gx and
h′eax(g−1)o = g−1x. We set g+

x := hη0 and g−x := h′η0. In particular, when x = o, we can take h = k and
h′ = lkι.

Note that every g ∈ G we have ax(g) = a(h−1
x ghx), independently of the choice of hx ∈ G such that

hxo = x. Furthermore, provided that g is x-cartan regular,

g±x = hx(h−1
x ghx)±o . (26)

Remark that (x, g+
x ) ∈ X × F (resp. (x, g−x )) is the unique geometric Weyl chamber based on x containing

gx (resp. g−1x). In the PSL(2,R) case, an element g is x-cartan regular when gx 6= x, then g+
x ∈ ∂H2 (resp.

g−x ) is the asymptotic endpoint of the half geodesic based on x going through gx (resp. g−1x).

Lemma 2.17. For all g ∈ G, every x, y ∈ X, the following bound holds:

‖ax(g)− ay(g)‖ ≤ 2dX(x, y).
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Proof. By [Kas08, Lemma 2.3] in our choice of notations: for all h, h′ ∈ G we have the following inequalities,
‖a(hh′) − a(h)‖ ≤ ‖a(h′)‖ and ‖a(h′h) − a(h)‖ ≤ ‖a(h′)‖. Let x, y ∈ X and choose hx, hy ∈ G such that
hxo = x and hyo = y. We compare the Cartan projection of h = h−1

y ghy to the Cartan projection of its
conjugate by h′ = h−1

y hx, using that ‖a(h′)‖ = ‖a(h′−1)‖ we get

‖ax(g)− ay(g)‖ ≤ 2‖a(h−1
y hx)‖.

Since ‖a(h−1
y hx)‖ = dX(x, y), we deduce the Lemma.

2.4 Volume growths and decay

We introduce here some subsets on G. They will be used to obtain the main term and the exponentially
decaying error term in our main Theorems 1.2, 1.3.

For t > 1, let
Dt := K exp(Ba(0, t))K,

and its subset of Cartan-regular elements

Dreg
t := K exp(Ba(0, t) ∩ a++)K.

For 0 < s < t, let
Ds
t := {g ∈ Dt | a(g) ∈ Ba(∂a+, s)}

be the set of elements in Dt whose Cartan projection have distance at most s to the boundary of the Weyl
chamber.

For all x ∈ X, we define similar sets
Dt(x) := hxDth

−1
x ,

Dreg
t (x) := hxD

reg
t h−1

x ,

Ds
t (x) := hxD

s
th
−1
x .

These sets are independent of the choice of hx.
For a subset S of G, its volume is defined as its Haar measure mG(S). Recall volume estimates from

[Kni97], [Hel00, Thm 5.8], [GOS09, Thm 6.1]. There exist C0 > 0 and δ0 > 0 such that as t→∞, we have

vol(Dt) ∼ C0t
dimA−1

2 eδ0t, (27)

where δ0 := 2 maxY ∈Ba(0,1) ρ(Y ) and ρ is equal to the half of the sum of positive roots with multiplicities.

Lemma 2.18 (Prop. 7.1 [GN10]). The function t 7→ log vol(Dt) is uniformly locally Lipschitz for t > 1.

This means that there exists C > 0 such that for all 0 < ε < 1, we have

vol(Dt+ε) ≤ eCε vol(Dt).

Lemma 2.19. There exists εG > 0 such that for every 0 < ε < εG, there exists κ(ε) > 0 such that for t > 1

vol(Dεt
t )

vol(Dt)
= O(vol(Dt)

−κ(ε)). (28)

Proof. The proof is similar to Lemma 9.2 and 9.4 in [GW07]. Let a+(s, t) = {v ∈ a+∩Ba(0, t), d(v, ∂a+) ≤ s}.
Then by Harish-Chandra’s formula (see [Hel00, Chapter I Theorem 5.8]), we have

vol(Ds
t ) =

∫
a+(s,t)

ξ(v)dv,

where
ξ(v) =

∏
α∈Σ+

sinh(α(v))mα � e2ρ(v),
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and 2ρ =
∑
α∈Σ+ mαα where mα = dim gα. By Lemma 9.2 in [GW07], if ε smaller than some constant εG,

then by the strict convexity of a+
1 , there exists κ′(ε) > 0 such that

max
v∈a+(ε,1)

2ρ(v) ≤ δ0 − κ′(ε).

So by Harish-Chandra’s formula, we have vol(Dεt
t ) � tdimAe(δ0−κ′(ε))t. Due to the asymptotic of vol(Dt)

(27), the proof is complete.

Lemma 2.20. Let Γ be a lattice in G, then for all t > 1,

|Γ ∩Dεt
t |

vol(Dt)
= O(vol(Dt)

−κ(ε)).

Proof. Let ε′ > 0 be a small constant such that the ball contered at e with radius ε′ satisfies B(e, ε′)2∩Γ = {e}.
Then we have

|Γ ∩Dεt
t | ≤

vol(B(e, ε′)Dεt
t )

vol(B(e, ε′))
.

By [Kas08, Lemma 2.3], we have for h′ ∈ B(e, ε′) and h ∈ Dεt
t ,

‖a(h′h)− a(h)‖ ≤ ‖a(h′)‖ ≤ `ε′,

for some ` > 0. Therefore the product set

B(e, ε′)Dεt
t ⊂ Dεt+`ε′

t+`ε′ .

Hence we have

|Γ ∩Dεt
t | ≤

vol(Dεt+`ε′

t+`ε′ )

vol(B(e, ε′))
,

which is O(vol(Dt)
1−κ(ε)) due to Lemma 2.18 and (2.19).

As a corollary, we have

Lemma 2.21. For 0 < ε < εG/2, t > 1 and x ∈ X with dX(o, x) < min{ ε
2(1−2ε) ,

κ(2ε)
4(1−κ(2ε))}t, we have

|Γ ∩Dεt
t (x)|

vol(Dt)
= O(vol(Dt)

−κ(2ε)/2).

Proof. By Lemma 2.17, we have
‖ao(γ)− ax(γ)‖ ≤ 2dX(x, o).

Therefore by Lemma 2.20 with 2ε we obtain

|Γ ∩Dεt
t (x)| ≤ |Γ ∩Dεt+2dX(x,o)

t+2dX(x,o) | � vol(Dt+2dX(x,o))
1−κ(2ε),

where we use the hypothesis that εt+ 2dX(x, o) ≤ 2ε(t+ 2dX(x, o)).
By hypothesis, we have

(1− κ(2ε))(t+ 2dX(o, x)) ≤ (1− κ(2ε)/2)t.

Then by vol(Dt) ∈ [1/C,C]eδ0tt
dimA−1

2 , we have

vol(Dt+2dX(x,o))
1−κ(2ε) = O(vol(Dt)

1−κ(2ε)/2).

The proof is complete.
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2.5 Angular distribution of Lattice points

Theorem 2.22. Let G be a connected, real linear, semisimple Lie group of non-compact type. Let Γ < G
be an irreducible lattice. There exist κ > 0 and C4 > 0. Let x ∈ X and (Bt(x))t>0 be Dt(x)reg.Then
for all Lipschitz test functions ψ ∈ Lip(F × F), there exists E(t, ψ, x) = O(Lip(ψ)Cx vol(Dt)

−κ) when
t > C4dX(o, x) such that

1

vol(Bt)

∑
γ∈Bt(x)∩Γ

ψ(γ+
x , γ

−
x ) =

1

vol(Γ\G)

∫
F×F

ψdµx ⊗ µx + E(t, ψ, x).

This is due to Gorodnik-Nevo in [GN12a]. We include the proof of this version for Lipschitz functions in
the appendix. As a corollary, combined with Lemma 2.21 we have

Lemma 2.23. There exist C5 > 0 and C > 0 such that if t > C5dX(o, x), then

|Γ ∩Dt(x)|
vol(Dt)

≤ C.

Proof. Due to the definition Cx = C1e
C0dX(o,x), we know that if t� dX(o, x), then by taking ψ = 1 Theorem

2.22 implies that
|Γ ∩Dreg

t (x)| � vol(Dt).

For the part |Γ ∩ (Dt(x) − Dreg
t (x))|, if t � dX(o, x), then we can use Lemma 2.21 to bound it. Combing

these two parts, we obtain the lemma.

3 A configuration for being loxodromic

Recall Definition 2.3 that the elements in G of Jordan projection in a++ are called loxodromic. Equiv-
alently, loxodromic elements are conjugated to elements in A++M . Let g ∈ Glox be a loxodromic element,
choose hg ∈ G such that h−1

g ghg ∈ exp(λ(g))M . Note that ghgM = hge
λ(g)M . Denote by g+ := hgη0 (resp.

g− := hgζ0) the attracting (resp. repelling) fixed points in F for the action of g. They are independent of
the choice of hg. Hence for every Y ∈ a, in Hopf coordinates

g(g+, g−, Y ) = (g+, g−, Y + λ(g)). (29)

3.1 Distances on G/M

Denote by d1 the left G-invariant and right K-invariant Riemannian distance on G/M .

Distance for the Hopf coordinates For every pair (ξ+, ξ−, v), (η+, η−, w) ∈ F (2) × a, we define

d2

(
(ξ+, ξ−, v), (η+, η−, w)

)
:= sup(d(ξ+, η+),d(ξ−, η−), ‖v − w‖). (30)

Due to the Definitions (18), the distance d2 is not left G-invariant even though it is left K-invariant. Abus-
ing notations, for every z1, z2 ∈ G, we also denote by d2(z1M, z2M) := d2

(
H(z1M),H(z2M)

)
. For all

(ξ+, ξ−, v) ∈ F (2) × a, all r ∈ (0, 1
2δ(ξ

+, ξ−)), the ball of radius r for d2 centered in that element is

B(ξ+, r)×B(ξ−, r)×Ba(v, r).

Lemma 3.1. For g ∈ G and z1, z2 in G, we have

d2(gz1M, gz2M) ≤ sup
(
C1e

C0‖a(g)‖, 1
)
d2(z1M, z2M).
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Proof. We write down z1M and z2M in Hopf coordinates, we denote by (ξ+
i , ξ

−
i , vi) := H(ziM) for i = 1, 2.

By (11) and Lemma 2.11 (i),(ii),(iii), we have

d2(gz1M, gz2M) = d2((gξ+
1 , gξ

−
1 , v1 + σ(g, ξ+

1 )), (gξ+
2 , gξ

−
2 , v2 + σ(g, ξ+

2 ))

= sup
(
d(gξ+

1 , gξ
+
2 ),d(gξ−1 , gξ

−
2 ), ‖v1 − v2 + σ(g, ξ+

1 )− σ(g, ξ+
2 )‖

)
≤ sup

(
C1e

C0‖a(g)‖d(ξ+
1 , ξ

+
2 ), C1e

C0‖a(g)‖d(ξ−1 , ξ
−
2 ), C1e

C0‖a(g)‖d(ξ+
1 , ξ

+
2 ) + ‖v1 − v2‖

)
≤ sup

(
C1e

C0‖a(g)‖, 1
)
d2(z1M, z2M).

The proof is complete.

Local equivalence Denote by B1(zM, r) ⊂ G/M the ball of radius r centered on zM , for the distance d1.

Lemma 3.2. There exist a neighbourhood O of eM and C2 > 0 such that for every z1, z2 ∈ O,

1

C2
d2(z1, z2) ≤ d1(z1, z2) ≤ C2d2(z1, z2).

The main idea is to use the fact that two Riemannian metrics on a manifold are locally equivalent. We
have already constructed a Riemannian metric dF on F and proved that it is equivalent to the supreme
distance d defined in (18).

On the product space F × F × a, we have the product distance d2 from d on F and da on a. We also
have the product Riemannian distance from dF on F and da on a, which is denoted by d3. Due to dF and d
equivalent, d2 and d3 are equivalent. Now we can use a lemma about comparing Riemannian distances. We
call two distances d, d′ locally equivalent if for any x ∈M , there exists an open set V containing x such that
d, d′ restricted to V are equivalent.

Lemma 3.3. Let d and d′ be two Riemannian distances on the same open manifold M . Then d and d′ is
locally equivalent.

The proof is classic and we skip it here.

Proof of Lemma 3.2. Applying Lemma 3.3 to d1, d3, we obtain Lemma 3.2 by noticing d2 and d3 are equiv-
alent.

We will upgrade Lemma 3.2 to a version with base point eM replaced by any gM . We first obtain an
expanding rate estimate of the action of G on G/M with respect to the distance d2.

Definition 3.4. For x ∈ X, let
Cx = 8C2C1 exp(C0dX(o, x)). (31)

Fix
ε0 > 0 (32)

such that O contains both balls centered at eM of radius ε0 with respect to d1, d2 repsectively.

Lemma 3.5. For x ∈ X and z1, z2 ∈ G/M with x = π(z1), if d2(z1, z2) < ε0/Cx or d1(z1, z2) < ε0, then

d1(z1, z2) ≤ Cxd2(z1, z2)/4.

Proof. We take hx such that h−1
x z1 = eM . Then we have either

d2(h−1
x z1, h

−1
x z2) ≤ Cxd2(z1, z2) < ε0,

(due to Lemma 3.1) or d1(h−1
x z1, h

−1
x z2) = d1(z1, z2) < ε0. Due to the choice of ε0, we can apply Lemma 3.2

and 3.1 to obtain

d1(z1, z2) = d1(h−1
x z1, h

−1
x z2) ≤ C2d2(h−1

x z1, h
−1
x z2) ≤ Cxd2(z1, z2)/4.

The proof is complete.
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3.2 Corridors of maximal flats

Recall from Definition 2.6, for every point y ∈ X and every ξ ∈ F , we denote by ξ⊥y ∈ F the opposite

element such that y ∈
(
ξξ⊥y

)
X

.

Definition 3.6. Let x ∈ X and r > 0. We denote by F (2)(x, r) the open corridor of maximal flats at distance
r of x

F (2)(x, r) := {(ξ, η) ∈ F (2) | dX(x, (ξη)X) < r}. (33)

We denote by F̃ (2)(x, r) the set of Weyl chambers based in BX(x, r)

F̃ (2)(x, r) :=
{(
ξ, ξ⊥y , βξ(o, y)

)
∈ F (2) × a

∣∣∣ y ∈ BX(x, r)
}
. (34)

By (12), we obtain

Fact 3.7. For all x ∈ X and r > 0, F̃ (2)(x, r) is the preimage of BX(x, r) by the projection G/M → G/K.

Lemma 3.8. Let x ∈ X and min{ ε02 ,
log 2
C0
} > r > 0. Then for every ε ∈ (0, C−1

x r), all (ξ+, ξ−) ∈ F (2)(x, r),

B(ξ+, ε)×B(ξ−, ε) ⊂ F (2)(x, 2r).

Proof. We can find a point z ∈ (ξ+, ξ−, a) (maximal flat of ξ+, ξ−) such that dX(π(z), x) < r. For (ξ, η) ∈
B(ξ+, ε)×B(ξ−, ε), we can find z′ ∈ (ξ, η, a) with the same a coordinate as z. Then

d2(z, z′) = d(ξ, ξ+) + d(η, ξ−) < 2ε < ε0/Cx.

We can apply Lemma 3.5 to z, z′ and we obtain

dX(π(z), π(z′)) ≤ d1(z, z′) ≤ Cπ(z)d2(z, z′)/4.

We have
Cπ(z) = 8C2C1e

C0dX(o,π(z)) ≤ CxeC0r ≤ 2Cx.

Therefore
dX(x, π(z′)) ≤ dX(x, π(z)) + dX(π(z), π(z′)) < r + 2Cx(2ε)/4 ≤ 2r.

Hence (ξ, η) ∈ F (2)(x, 2r).

Lemma 3.9. Let g ∈ G and x ∈ X. Assume there is a transverse pair (ξ+, ξ−) ∈ F (2) of fixed points for the
action of g on F . Then there exists w in the Weyl group W such that

‖w(λ(g))− ax(g)‖ ≤ 2dX(x, (ξ+ξ−)X).

Proof. For every transverse pair (ξ+, ξ−), there exists, up to right multiplication by elements of AM , an
h ∈ G such that h(η0, ζ0) = (ξ+, ξ−).

By assumption, ξ+ and ξ− are fixed by g, i.e. gh ∈ hAM . By Cartan decomposition, there exists w ∈ W
such that for every p ∈ hAMo, we have ap(g) = w(λ(g)).

Since hAMo = hAo, which is equal to the flat (ξ+ξ−)X . It then follows from Lemma 2.17 that for every
p ∈ (ξ+ξ−)X

‖w(λ(g))− ax(g)‖ = ‖ap(g)− ax(g)‖ ≤ 2dX(x, p).

Taking the infimum over the points in the flat (ξ+ξ−)X yields the upper bound.
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3.3 The configuration

Recall that for all x ∈ X, we defined the constant Cx = 8C2C1e
C0dX(o,x).

Definition 3.10. Denote by r0 the unique zero in (0, 1) of the real valued function r 7→ − log r−max{C3, 2}r.
For all ε > 0 and x ∈ X we define some function

t0(x, ε)� 2 logCx − 2 log(ε),

where the constant underlying � is the same as in Lemma 2.10.

Proposition 3.11. For all x ∈ X and r ∈ (0, r0) and ε ∈ (0,min{C−1
x r, ε0}), every γ ∈ G satisfying the

following conditions is loxodromic.

(i) ax(γ) ∈ a++ and d(ax(γ), ∂a+) ≥ t0(x, ε),

(ii) (γ+
x , γ

−
x ) ∈ F (2) are transverse and dX

(
x, (γ+

x γ
−
x )X

)
< r.

Furthermore, its attracting and repelling point satisfy γ± ∈ B(γ±x , ε).

Proof. There exist kγ+
x
, lγ−x ∈ hxK (as h and h′kι in Definition 2.16), defined up to right multiplication by

elements of M and independent of the choice of representative hx ∈ G such that γ = kγ+
x
eax(γ)l−1

γ−x
. Apply

Lemma 2.10, to the element h−1
x γhx = h−1

x kγ+
x
eax(γ)(h−1

x lγ−x )−1 ∈ KA++K,

h−1
x γhx VC−1

x ε(h
−1
x γ−x ){ ⊂ B(h−1

x γ+
x , C

−1
x ε).

We multiply by hx on the left γhxVC−1
x ε(h

−1
x γ−x ){ ⊂ hxB(h−1

x γ+
x , C

−1
x ε). Using the properties of Cx > 0

(Lemma 2.11), we deduce the following inclusions

• hxB(h−1
x γ+

x , C
−1
x ε) ⊂ B(γ+

x , ε),

• Vε(γ−x ){ ⊂ hxVC−1
x ε(h

−1
x γ−x ){.

Hence γVε(γ−x ){ ⊂ B(γ+
x , ε). Recall that ι is the opposition involution and kι ∈ NK(A) such that ι = −Ad(kι),

then
γ−1 = lγ−x kι e

ιax(γ) (kγ+
x
kι)
−1.

Since ιax(g) is at distance at most t0 from ∂a+ and (γ−1)±x = γ∓x , we deduce that γ−1Vε(γ+
x ){ ⊂ B(γ−x , ε).

Due to dX(o, ((h−1
x γ+

x )(h−1
x γ−x ))X) = dX(x, (γ+

x γ
−
x )X) < r, by Lemma 2.14 and Definition 2.12, we obtain

δ(h−1
x γ+

x , h
−1
x γ−x ) ≥ e−C3r.

Then by Lemma 2.11, we have

δ(γ+
x , γ

−
x ) ≥ C−1

x δ(h−1
x γ+

x , h
−1
x γ−x ) ≥ C−1

x e−C3r.

Due to the choice of ε, r, we have C−1
x e−C3r > 2ε. Hence we have B(γ±x , ε) ⊂ Vε(γ∓x ){. Then we deduce that

γ (resp. γ−1) has an attracting fixed point ξ+ ∈ B(γ+
x , ε) (resp. ξ− ∈ B(γ−x , ε)).

Since γ admits a fixed maximal flat (ξ+ξ−)X , we apply Lemma 3.9,

‖w(λ(γ))− ax(γ)‖ ≤ 2dX(x, (ξ+ξ−)X),

for some w in the Weyl group. By hypothesis ε < C−1
x r, Lemma 3.8 implies that B(γ+

x , ε) × B(γ−x , ε) ⊂
F (2)(x, 2r). Hence w(λ(γ)) ∈ B(ax(γ), 4r). Using that r < r0 and ε < C−1

x r, we get a lower bound
t0(x, ε) > −2 log r > 4r. We deduce that B(ax(γ), 4r) ⊂ a++, therefore w = id and γ is loxodromic.

Finally, because the bassin of attraction of γ+ (resp. γ−) is a dense open set of F , there are points in
B(γ+

x , ε) (resp. B(γ−x , ε)) that γ (resp. γ−1) will attract to γ+ (resp. γ−). Since F is Hausdorff for d, we
deduce that γ+ = ξ+ (resp. γ− = ξ−).
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4 Loxodromic elements and periodic tori

In this part, we give a relation between conjugacy classes of loxodromic elements and periodic tori. We
denote in brackets the Γ-conjugacy classes of elements in Γ. Set Glox the set of Γ-conjugacy classes of
loxodromic elements and

Glox(t) := {[γ] ∈ [Γlox] | λ(γ) ∈ Ba(0, t)}. (35)

For every loxodromic element γ ∈ Γlox denote by Lγ the measure of G/M supported on the A-orbit of Hopf
coordinates (γ+, γ−; a) such that its disintegration in Hopf coordinates is given by

Lγ := Dγ+ ⊗Dγ− ⊗ Leba, (36)

where Dγ± is the Dirac measure at γ±. Note that the quotient in Γ\G/M of the A-orbit (γ+, γ−; a) only
depends on [γ]. Denote by F[γ] the quotient of this A-orbit in Γ\G/M . By (29), that is γ(γ+, γ−, Y ) =
(γ+, γ−, Y +λ(γ)) for every Y ∈ a, we obtain λ(γ) ∈ Λ(F[γ]). If we take gγ an element such that (γ+, γ−, 0) =
g(η0, ζ0, 0), then the formula also implies g−1

γ γgγ ∈ exp(λ(γ))M . With this gγ , the orbit F can be written as
F[γ] = ΓgγAM .

In this subsection, we always suppose that Γ < G is a cocompact lattice of G. We have a lemma by
Selberg

Lemma 4.1. Let Γ be a cocompact lattice. Let F be a right A-orbit in Γ\G/M . If Λ(F ) ∩ a++ 6= ∅, then F
is a compact periodic A-orbit.

Proof. We can write F = ΓgAM . For Y ∈ Λ(F ) ∩ a++, by ΓgM = Γg exp(Y )M , we know there exists
a loxodromic element γ ∈ Γ such that γg = g exp(Y )mY . By Selberg’s lemma in [Sel60] or [PR72], we
know that Γγ\Gγ is compact with Gγ and Γγ the centralizer of γ in G and Γ, respectively. Since γ is
loxodromic, so Gγ is a conjugation of a maximal torus. Now gAMg−1 commutes with γ, so Gγ = gAMg−1.
Then Γγ\Gγ = (Γ ∩ Gγ)\Gγ compact implies that ΓgAM = ΓGγg is compact in Γ\G. So F is compact in
Γ\G/M .

Let G(A) := {(Y, F )| F ∈ C(A), Y ∈ Λ(F ) ∩ a++}.

Lemma 4.2. Let Γ be a cocompact lattice. If the action of Γ on G/M is free, then we have well defined maps

Ψ : Glox → G(A), [γ] 7→ (λ(γ), F[γ])

and
Φ : G(A)→ Glox, (Y, F ) 7→ [γY ].

We also have Ψ ◦ Φ = IdG(A) and Φ ◦Ψ = IdGlox .

Proof. For a compact periodic A-orbit F , we can write it as ΓgAM with some g ∈ G. For Y ∈ Λ(F ) ∩ a++,
there exists a γY ∈ Γ such that γY g = g exp(Y )mY for some mY ∈ M . This γY is unique. Otherwise, we
have γ′Y g = g exp(Y )m′Y with m′Y 6= mY , then γ−1

Y γ′Y = gm−1
Y m′Y g

−1. This element γ−1
Y γ′Y in Γ fixes gM in

G/M and is not identity, which contradicts that Γ acts on G/M freely.
This g is unique up to left multiplication by Γ and right multiplication by AM . This defines a Γ-conjuage

class [γY ] in Glox, characterised by g−1γY g ∈ exp(Y )M . So the map Φ is well-defined.
For [γ] in Glox, we have already associated it to a unique periodic orbit F[γ], that is F[γ] = ΓgγAM with

gγ such that g−1
γ γgγ ∈ exp(λ(γ))M . Due to λ(γ) ∈ F[γ], by Lemma 4.1, this orbit F[γ] is a compact periodic

A-orbit.
For Ψ ◦ Φ, due to g−1γY g ∈ exp(Y )M , we know that we can take gγY = g and then Ψ ◦ Φ(Y, F ) =

Ψ([γY ]) = (Y, F ).
For Φ ◦Ψ, from g−1

γ γgγ ∈ exp(λ(γ))M , we know that Φ ◦Ψ([γ]) = Φ(λ(γ), F[γ]) = γ.
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5 Equidistribution of flats

For every loxodromic element γ ∈ Γlox, denote by Lγ the quotient measure on Γ\G/M of Lγ (Cf. (36)).
Note that L[γ] is supported on F[γ] and is equal to the measure LF[γ]

given in the introduction. It is also
given by the following construction: we push on F[γ], the restriction of Leba to any fundamental domain in
a of the periods Λ(F[γ]), by right A-action of the exponential of such a fundamental domain, starting from
any base point on F[γ]. The construction is independent of both the choice of the fundamental domain and
the base point on F[γ].

By Lemma 4.2, there is a bijection between Glox and G(A). By summing over the compact periodic orbits
F ∈ C(A) first, then summing over Y ∈ Λ(F ) ∩B++

a (0, t), we deduce that

1

vol(Dt)

∑
[γ]∈Glox(t)

L[γ] =
1

vol(Dt)

∑
F∈C(A)

|Λ(F ) ∩B++
a (0, t)|LF , (37)

the measure on the right hand side is exactly the measure in the Theorem 1.3. This formula is also a higher
rank analogue of the first part of (1). Set

Mt
Γ :=

vol(Γ\G)

vol(Dt)

∑
[γ]∈Glox(t)

L[γ].

Let mG/M be the Haar measure on G/M , given by ν ⊗ Leba from Proposition 2.15. Let mΓ\G/M be the
quotient measure on Γ\G/M . The main theorem 1.3 is equivalent to the following one if Γ is torsion free or
if it acts on G/M freely.

Theorem 5.1. Let Γ < G be a cocompact irreducible lattice which acts freely on G/M . Then there exists
u > 0 such that for any Lipschitz function f on Γ\G/M , as t→∞∫

f dMt
Γ =

∫
f dmΓ\G/M +O(e−ut|f |Lip), (38)

where the Lipschitz norm is with respect to the Riemannian distance d1 on Γ\G/M .

Remark 5.2. The constant CG equals ‖mΓ\G/M‖/ vol(Γ\G), which comes from the choice of mG/M = ν⊗Leba
and only depends on G.

We can separate a Lipschitz function as the sum of its positive part and its negative part. So it is sufficient
to prove Theorem 5.1 for non negative Lipschitz functions.

We are going to prove Theorem 5.1 in this section. Before starting the argument, we fix the parameters
which will be used later. They come from Proposition 3.11. Choose u1 > 0 small than min{εG, 1}/10, where
εG is the constant from Lemma 2.19. Set

ε := e−u1t and t1 := 3u1t. (39)

Consider the decay rate function u 7→ κ(u) > 0 satisfying Lemma 2.19 and the decay coefficient κ > 0 given
in Theorem 2.22. Set

u2 :=
1

2 dim(G/AM)
min{δ0κ(6u1), δ0κ, u1} and r := e−u2t. (40)

In this part we use Lip2 to denote Lipschitz norm with respect to the product distance d2 on G/M or
the product distance on F (2), according to which space the function lives on.

We lift everything to G/M and prove a local version on G/M in Section 5.1 and 5.2. Then in Section 5.3,
we use the partition of unity to obtain a global version (Theorem 5.1) on Γ\G/M .

5.1 Local convergence on corridors

Recall the notation ax(γ) := da(x, γx) = a(h−1
x γhx). For every γ ∈ Γ such that ax(γ) ∈ a++, the

geometric Weyl chamber based on x containing γx (resp. γ−1x) determines γ+
x ∈ F (resp. γ−x ).
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For x ∈ X and t > 0, we define the following measures on F × F :

νtx,1 :=
vol(Γ\G)

vol(Dt)

∑
γ∈Γ∩Dregt (x)

Dγ+
x
⊗Dγ−x

, (41)

νtx,2 :=
vol(Γ\G)

vol(Dt)

∑
γ∈Γlox∩Dregt (x)

Dγ+ ⊗Dγ− . (42)

Recall that (µx)x∈X denotes the Patterson-Sullivan density given in Proposition 2.13 and ν is the associ-
ated conformal measure on F (2). Let Lip+

c (F (2)(x, r)) be the space of positive compactly supported Lipschitz
functions on F (2)(x, r).

Lemma 5.3. Let Γ be an irreducible lattice in G. Fix x ∈ X. Then for every test function ψ ∈ Lip+
c (F (2)(x, r))

for every t > C4dX(o, x), there exists a function E(t, ψ, x) such that

e−C3r

∫
ψdν − E(t, ψ, x) ≤

∫
ψdνtx,1 ≤

∫
ψdν + E(t, ψ, x) (43)

where E(x, ψ, t) = O(CxLip(ψ) vol(Dt)
−κ) when t→∞.

Proof. By Theorem 2.22, we obtain the main term with the measure µx⊗µx. Since (ξ, η) ∈ F (2)(x, r), so by
Lemma 2.14, we obtain

1 ≤ fx(ξ, η)−1 ≤ eC3r.

Using the relation dν(ξ, η) = dµx(ξ)dµx(η)
fx(ξ,η) , we deduce that

∫
ψdµx ⊗ µx ≤

∫
ψdν ≤ eC3r

∫
ψdµx ⊗ µx. Hence

the Lemma.

Lemma 5.4. Let Γ be a lattice in G. Fix x ∈ X, for every t ≥ 2 logCx
u1

, for every test function ψ ∈
Lip+

c (F (2)(x, r)),∣∣∣∣ ∫ ψdνtx,2 −
∫
ψdνtx,1

∣∣∣∣ ≤ εLip2(ψ)
|Γ ∩Dt(x)| vol(Γ\G)

vol(Dt)
+ 3‖ψ‖∞

|Γ ∩Dt1
t (x)| vol(Γ\G)

vol(Dt)
,

where ε and t1 are given in (39).

Proof. We split the difference between vol(Dt)
vol(Γ\G)

∫
ψdνtx,1 and vol(Dt)

vol(Γ\G)

∫
ψdνtx,2,∑

γ∈Γ∩Dregt (x)

ψ(γ+
x , γ

−
x )−

∑
γ∈Γlox∩Dregt (x)

ψ(γ+, γ−) =
∑

γ∈Γ∩Dregt (x)

ψ(γ+
x , γ

−
x )−

∑
γ∈Γlox∩Dregt (x)

ψ(γ+
x , γ

−
x )

+
∑

γ∈Γlox∩Dregt (x)

ψ(γ+
x , γ

−
x )− ψ(γ+, γ−).

For the first term on the right hand side, note that Γlox ⊂ Γ, hence∑
γ∈Γ∩Dregt (x)

ψ(γ+
x , γ

−
x )−

∑
γ∈Γlox∩Dregt (x)

ψ(γ+
x , γ

−
x ) =

∑
γ∈(Γ\Γlox)∩Dregt (x)

ψ(γ+
x , γ

−
x ).

Note that t ≥ t1 = 3u1t > 0 since u1 ≤ 1/10, hence we have the following inclusion

Dreg
t (x) ⊂ Dt1

t (x) t
(
Dt(x) \Dt1

t (x)
)
.

Using that t ≥ 2 logCx
u1

, we deduce that t1 = 3u1t ≥ t0 := 2 logCx − 2 log ε = 2 logCx + 2u1t. Apply

Proposition 3.11 to every every γ ∈ Dt(x) \ Dt1
t (x) such that (γ+

x , γ
−
x ) ∈ F (2)(x, r). Any such element is

loxodromic i.e. Dt(x) \Dt1
t (x) ⊂ Glox. Hence Γ ∩

(
Dt(x) \Dt1

t (x)
)
⊂ Γlox is a set of loxodromic elements.

So the non-loxodromic must lie in
(
Γ \ Γlox

)
∩Dreg

t (x) ⊂ Dt1
t (x). We deduce the following upper bound.∣∣∣∣ ∑

γ∈(Γ\Γlox)∩Dregt (x)

ψ(γ+
x , γ

−
x )

∣∣∣∣ ≤ ‖ψ‖∞|Γ ∩Dt1
t (x)|. (44)
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For the lower term, we split the sum over the partition Γlox ∩ (Dt(x) \Dt1
t (x)) and Γlox ∩Dt1

t (x).∑
γ∈Γlox∩Dregt (x)

ψ(γ+
x , γ

−
x )− ψ(γ+, γ−) =

∑
γ∈Γlox

γ∈Dt(x)\Dt1t (x)

ψ(γ+
x , γ

−
x )− ψ(γ+, γ−)

+
∑

γ∈Γlox∩Dt1t (x)∩Dregt (x)

ψ(γ+
x , γ

−
x )− ψ(γ+, γ−).

We bound the lower term.∣∣∣∣ ∑
γ∈Γlox∩Dt1t (x)∩Dregt (x)

ψ(γ+
x , γ

−
x )− ψ(γ+, γ−)

∣∣∣∣ ≤ 2‖ψ‖∞|Γ ∩Dt1
t (x)|. (45)

By Proposition 3.11, the elements γ ∈ Γ ∩ (Dt(x) \ Dt1
t (x)) with (γ+

x , γ
−
x ) ∈ F (2)(x, r) are loxodromic and

their attractive and repelling points are at distance at most ε of respectively γ±x . Using that ψ is Lipschitz
and supported on F (2)(x, r), we bound above the last term.∣∣∣∣ ∑

γ∈Γ∩(Dt(x)\Dt1t (x))

ψ(γ+
x , γ

−
x )− ψ(γ+, γ−)

∣∣∣∣ ≤ εLip2(ψ) |Γ ∩Dt(x)|. (46)

Finally, we use the triangular inequality, regroup the terms (44), (45) and (46), then multiply everything by
vol(Γ\G)
vol(Dt)

to obtain the main upper bound.

5.2 From corridors to Weyl chambers

Lemma 5.5. Let ψ̃ ∈ Lip+
c (F̃ (2)(x, r)) be a compactly supported nonnegative, Lipschitz function and set

ψ :=

∫
a

ψ̃(., . ; v)dv.

Then ψ ∈ Lip+
c (F (2)(x, r)) and the following norm bounds hold:

(a) Lip2(ψ) ≤ 2(2r)dim aLip2(ψ̃).

(b) ‖ψ‖∞ ≤ (2r)dim a‖ψ̃‖∞.

For x ∈ X and t > 0, we define the following measure on F (2) × a by

Mt
x,2 :=

vol(Γ\G)

vol(Dt)

∑
γ∈Γlox∩Dregt (x)

Lγ = νtx,2 ⊗ Leba. (47)

Lemma 5.6. Let Γ be an irreducible lattice in G. Fix x ∈ X, for every t ≥ max{ 2 logCx
u1

, C4dX(o, x)}, for

every test function ψ̃ ∈ Lip+
c (F̃ (2)(x, r)),

∣∣∣∣ ∫ ψ̃ dMt
x,2 −

∫
ψ̃ dmG/M

∣∣∣∣ ≤ C3r

∫
ψ̃dmG/M +

(2r)dim a

(
E(t, ψ̃, x) + 2εLip2(ψ̃)

|Γ ∩Dt(x)| vol(Γ\G)

vol(Dt)
+ 3‖ψ̃‖∞

|Γ ∩Dt1
t (x)| vol(Γ\G)

vol(Dt)

)
,

where E(x, ψ̃, t) = O(CxLip(ψ̃) vol(Dt)
−κ) as introduced in Lemma 5.3 and ε, t1 are given in (39).
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Proof. We set ψ(ξ+, ξ−) :=
∫
a
ψ̃(ξ+, ξ−; v)dv. Using Fubini’s theorem on the a coordinate and Proposition

2.15 that mG/M = ν ⊗ Leba, we deduce that∫
ψ̃dMt

x,2 =

∫
ψdνtx,2 and

∫
ψ̃dmG/M =

∫
ψdν.

We only need to bound
∫
ψdνtx,2 −

∫
ψdν. By definition of these measures,∫

ψdνtx,2 −
∫
ψdν =

∫
ψdνtx,1 −

∫
ψdν +

∫
ψdνtx,2 −

∫
ψdνtx,1.

Using Lemma 5.4 on the last term on the right, then Lemma 5.3, the convexity inequality e−r − 1 ≥ −r and
nonnegativity of ψ to the other term, we deduce the following bound.∣∣∣∣ ∫ ψdνtx,2 −

∫
ψdν

∣∣∣∣ ≤ C3r

∫
ψdν + E(t, ψ, x)

+ εLip2(ψ)
|Γ ∩Dt(x)| vol(Γ\G)

vol(Dt)
+ 3‖ψ‖∞

|Γ ∩Dt1
t (x)| vol(Γ\G)

vol(Dt)
.

By Lemma 5.5 (a) (b), the Lipschitz constants and norms between ψ and ψ̃ satisfy Lip2(ψ) ≤ 2(2r)dim aLip2(ψ̃)

and ‖ψ‖∞ ≤ (2r)dim a‖ψ̃‖∞. We deduce the domination E(t, ψ, x) = (2r)dim aO(Lip2(ψ̃)Cx vol(Dt)
−κ) and

abusing notation we write
E(t, ψ, x) = (2r)dim aE(t, ψ̃, x).

Replacing the Lipschitz constants and norms in the upper bound by abuse of notation on E(t, ψ, x) and lastly
applying Fubini on the first term yields∣∣∣∣ ∫ ψdνtx,2 −

∫
ψdν

∣∣∣∣ ≤ C3r

∫
ψ̃dmG/M +

(2r)dim a

(
E(t, ψ̃, x) + 2εLip2(ψ̃)

|Γ ∩Dt(x)| vol(Γ\G)

vol(Dt)
+ 3‖ψ̃‖∞

|Γ ∩Dt1
t (x)| vol(Γ\G)

vol(Dt)

)
.

From now on, to the end of this section, we suppose that Γ is a cocompact irreducible lattice in G which
acts freely on G/M . The measure in equidistribution is denoted by

Mt :=
vol(Γ\G)

vol(Dt)

∑
γ∈Γlox

‖λ(γ)‖≤t

Lγ . (48)

Lemma 5.7. There exists C > 0. Fix x ∈ X, for every test function ψ̃ ∈ Lip+
c (F̃ (2)(x, r)),

(1− Cr)
∫
ψ̃dMt−2r

x,2 ≤
∫
ψ̃dMt ≤ (1 + Cr)

∫
ψ̃dMt+2r

x,2 + ‖ψ̃‖∞
|Γ ∩D2r

t+2r(x)| vol(Γ\G)

vol(Dt)
. (49)

Proof. By Lemma 3.9, for every loxodromic element g ∈ Glox such that (g+, g−) ∈ F (2)(x, r) then

‖λ(g)− ax(g)‖ ≤ 2r.

Hence using triangular inequality we deduce the inclusions

Γlox ∩Dreg
t−2r(x) ∩ {γ| (γ+, γ−) ∈ F (2)(x, r)} ⊂{

γ ∈ Γlox
∣∣ ‖λ(γ)‖ ≤ t and (γ+, γ−) ∈ F (2)(x, r)

}
⊂ (Γlox ∩Dreg

t+2r(x)) ∪ (Γ ∩D2r
t+2r(x)),

here the set Γ ∩D2r
t+2r(x) is used to contain all the γ in the middle set with ax(γ) singular. By integrating

ψ̃ over Lγ , summing and using that ψ̃ is supported on F̃ (2)(x, r), we deduce

vol(Dt−2r)

vol(Γ\G)

∫
ψ̃dMt−2r

x,2 ≤ vol(Dt)

vol(Γ\G)

∫
ψ̃dMt ≤ vol(Dt+2r)

vol(Γ\G)

∫
ψ̃dMt+2r

x,2 + ‖ψ̃‖∞|Γ ∩D2r
t+2r(x)|. (50)

Finally, we multiply by vol(Γ\G)
vol(Dt)

, apply the local Lipschitz property of t 7→ log(vol(Dt)) (Lemma 2.18).
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5.3 Proof of the equidistribution

Fix a nonnegative test function ψ̃Γ ∈ Lip+
c (Γ\G/M). We want to prove the following convergence and

dominate its rate ∫
ψ̃ΓdMt

Γ −−−−→
t→+∞

∫
ψ̃ΓdmΓ\G/M .

For balls B(z, s) with z ∈ G/M and s > 0, they will be balls with respect to the Riemannian distance d1.

Lemma 5.8. Recall ε0 from Lemma 3.5. For 0 < s < min{ε0, (log 2)/C0} and any z ∈ G/M and x = π(z) ∈
X, we have

B(z, s) ⊂ F̃ (2)(x, s)

and for ϕ̃ supported on B(z, s)
Lip2ϕ̃ ≤ CxLipϕ̃.

Proof. By Lemma 3.7, we have the first part.
By Lemma 3.5, we have for z1, z2 ∈ B(z, s)

d1(z1, z2) ≤ Cπ(z1)d2(z1, z2)/4.

Now due to the definition of Cx, we have Cπ(z1) ≤ Cπ(z) exp(C0dX(π(z), π(z1)) ≤ 2Cπ(z). Therefore

d1(z1, z2) ≤ Cxd2(z1, z2).

Then use the definition of Lipschitz norm.

Partition of unity By applying Vitali’s covering lemma to the collection {B(y, r/10)}y∈Γ\G/M , there exists
a finite set {yi}i∈I such that B(yi, r/10) are pairwisely disjoint and ∪i∈IB(yi, r/2) is a covering of Γ\G/M .
By disjointness, we know |I| � r−dim(G/M). Fix a partition of unity of 1

r -Lipschitz functions associated to

the open cover ∪i∈IB(yi, r). For the function ψ̃Γ on Γ\G/M , we can write it as ψ̃Γ =
∑
i∈I ψ̃Γ,i using the

partition of unity. For each yi, we can find a lift zi in G/M such that d(o, zi) is less than the diameter of
Γ\G/M . By Lemma 5.8, we know that for xi = π(zi) ∈ X

B(zi, r) ⊂ F̃ (2)(xi, r).

We can take t large such that r = e−u2t is smaller then the injectivity radius of Γ\G/M . Then the two balls

B(zi, r) and B(yi, r) are homeomorphic. Let ψ̃i be the lift of ψ̃Γ,i on B(zi, r).

Furthermore, for every i ∈ I, the function ψ̃i is Lipschitz and satisfies the following norm bounds:

(p1) Lip2(ψ̃i) ≤ CxLipψ̃i ≤ Cx(Lipψ̃Γ + 1
r‖ψ̃Γ‖∞) ≤ Cx

r |ψ̃Γ|Lip,

(p2) ‖ψ̃i‖∞ ≤ ‖ψ̃Γ‖∞,

(p3)
∑
i∈I ‖ψ̃i‖1 ≤ ‖ψ̃Γ‖1,

where the first inequality is due to Lemma 5.8.

Local domination For every i ∈ I, due to Lemma 5.6 and 5.7, we have

±
(∫

ψ̃idMt −
∫
ψ̃idmG/M

)
≤ r(C3 + C)

∫
ψ̃idmG/M +

(2r)dim a

(
E(t± 2r, ψ̃i, xi) + 2εLip2(ψ̃i)

|Γ ∩Dt±2r(xi)| vol(Γ\G)

vol(Dt±2r)
+ 4‖ψ̃i‖∞

|Γ ∩Dt1
t±2r(xi)| vol(Γ\G)

vol(Dt±2r)

)
.

Let’s estimate the error term in the lower part. By Lemma 5.3, (p1) and Lemma 2.18, we have

E(t± 2r, ψ̃i, xi) = O(CxiLip2(ψ̃i) vol(Dt)
−κ) = O

(
C2
xi

r
vol(Dt)

−κ|ψ̃Γ|Lip
)
.
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By compactness, the xi are in a bounded set, therefore the {Cxi}i∈I are uniformly bounded. Hence

E(t± 2r, ψ̃i, xi) = O

(
vol(Dt)

−κ

r
|ψ̃Γ|Lip

)
. (51)

By Lemma 2.23 and (p1), we have

2εLip2(ψ̃i)
|Γ ∩Dt±2r(xi)| vol(Γ\G)

vol(Dt±2r)
= O

(
ε

r
|ψ̃Γ|Lip

)
. (52)

Using that t1 = 3u1t, we get by applying Lemma 2.21 and (p2),

3‖ψ̃i‖∞
|Γ ∩Dt1

t±2r(xi)| vol(Γ\G)

vol(Dt±2r)
= O

(
‖ψ̃Γ‖∞ vol(Dt)

−κ(6u1)
)

= O

(
vol(Dt)

−κ(6u1)

r
|ψ̃Γ|Lip

)
. (53)

Global domination By the partition of unity, we have∫
ψ̃ΓdMt

Γ =
∑
i

∫
ψ̃Γ,idMt

Γ =
∑
i

∫
ψ̃idMt

and ∫
ψ̃ΓdmΓ\G/M =

∑
i

∫
ψ̃Γ,idmΓ\G/M =

∑
i

∫
ψ̃idmG/M .

Therefore, by local dominations, |I| � r−dim(G/M) and (51)-(53), we obtain∫
ψ̃ΓdMt

Γ −
∫
ψ̃ΓdmΓ\G/M = O

(
r
∑
i∈I
‖ψ̃i‖1

+ r−dim(G/AM)

(
vol(Dt)

−κ

r
|ψ̃Γ|Lip +

ε

r
|ψ̃Γ|Lip +

vol(Dt)
−κ(6u1)

r
|ψ̃Γ|Lip

))
.

Using (p3) and ‖ψ̃Γ‖1 ≤ ‖mΓ\G/M‖ |ψ̃Γ|Lip, we deduce that∫
ψ̃ΓdMt

Γ −
∫
ψ̃ΓdmΓ\G/M = O

((
r +

vol(Dt)
−κ + ε+ vol(Dt)

−κ(6u1)

rdim(G/AM)+1

)
|ψ̃Γ|Lip

)
.

Recall the choice of parameter in (40) where ε = e−u1t and r = e−u2t. Collecting all the error terms
together, we obtain that there exists u > 0 such that∣∣∣ ∫ ψ̃ΓdMt

Γ −
∫
ψ̃ΓdmΓ\G/M

∣∣∣ = O(e−ut|ψ̃Γ|Lip).

6 Finite index subgroups of SLd(Z)

In this section, G = SL(d,R) where d ≥ 2 and Γ1 < Γ0 = SL(d,Z) is a finite
index subgroup of Γ0 which acts freely on G/M . We use Γ to denote both
Γ1 and Γ0 before section 6.2. Starting from Section 6.2, we only use Γ to
denote Γ1.

Let us start with examples of finite index subgroups of Γ0 that act freely on G/M . For every prime
number p ≥ 3, we claim that the finite index subgroup Γ1 := ker(Γ0 → SL(d,Z/pZ)) acts freely on G/M .
Indeed, assume γ1 fixes an element G/M , then γ1 is conjugated in G to an element m in the sign group M .
Its projection to SL(d,Z/pZ) has the same eigenvalues given by the projection of m. Since γ1 projects to the
identity and p ≥ 3, we deduce that m is trivial.

26



Torus in linear algebraic groups We recall some concepts from linear algebraic groups. For more
details please see [Bor91] and [BH62]. A subgroup T of GL(d,C) is a torus, if T is diagonalizable over C and
isomorphic to (C∗)n. Let k be a subfield of C. We say that T is a k-torus if it is defined over k i.e. if T as
an algebraic subvariety of GL(d,C) is defined by polynomial equations with coefficients in k. Denote by Tk
the k-points of T . A k torus T is k-split (here we only need k = Q or R) if T can be diagonalized to (C∗)n
by a matrix with coefficients in k. Let T be a Q-torus T , then by [BH62, Thm 9.4, Lem 8.4] the following
conditions are equivalent:

• TZ\TR is compact.

• T is Q-anisotropic i.e. all the Q characters from TQ to Q∗ are trivial.

• T contains no non-trivial Q-split subtorus.

Systole of elements in Γ\G For g ∈ G, let s(g) be the systole of the lattice Zdg in Rd i.e.

s(g) := min
v∈Zdg\{0}

{‖v‖}.

Note that the systole is preserved by right multiplication by K since the norm on Rd is Euclidean. Now Γ
preserves Zd and the right action of the sign group M also preserves any lattice Zdg for all g ∈ G. Hence,
this definition extends to ΓgM in Γ\G/M . For R > 0, let

Ω(R) := {ΓgM ∈ Γ\G/M | 1/s(g) ≤ R}.

Then the Mahler criteria implies that Ω(R) is compact. The union of Ω(R) for R > 0 is the full space Γ\G/M
and {Ω(R), R > 0} is an increasing family of compact sets.

Siegel domains In [BH62, Section 4], Borel and Harish-Chandra define Siegel domains for the KAN
decomposition. We take the inverse of groups in their statement.

Let G = NAK be the Iwasawa decomposition, where N is the upper triangular maximal unipotent
subgroup.

Definition 6.1. [BH62] For all s > 0 and u > 0, set Ns := {n ∈ N | ‖n‖ ≤ s} and Au := {a ∈ A| aj/aj+1 >
u}. A Siegel domain is a subset of G of the form NsAuK, it is a standard Siegel domains if s > 1/2 and
0 < u <

√
3/2.

In [BH62, Proposition 4.5], they prove that when NsAuK is standard, then

G = Γ0NsAuK,

which in some sense means that a standard Siegel domain is almost a fundamental domain for the left
action of Γ0 on G. Furthermore, for any standard Siegel domain, the number of elements γ ∈ Γ0 such that
γNsAuK ∩NsAuK 6= ∅ is finite.

From now on, we will denote by n(g), a(g), k(g) the N,A,K components of g in the Iwasawa decomposition
NAK. Note that a(g) = exp(−σ(g−1, η0)).

We give a relation between the systole and the Iwasawa cocycle in Siegel domains.

Lemma 6.2. For all 0 < u ≤ 1 and g ∈ NAuK, we have

ad(g)ud−1 ≤ s(g) ≤ ad(g).

Proof. Using first the definition of the systole, then that the row vector ed is right N -invariant and finally
that the norm on Rd is K-invariant, we deduce the upper bound of the systole

s(g) ≤ ‖edg‖ = ‖eda(g)‖ = ad(g).

For the lower bound, it suffices to prove that for every v ∈ Zd \ {0},

ad(g)ud−1 ≤ ‖vg‖.
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First by K-invariance, ‖vg‖ = ‖v n(g)a(g)‖. Let us write the coefficients of the row vector v = (v1, · · · , vd).
Assume that the j-th coefficient vj is the first non-zero coordinate, where 1 ≤ j ≤ d. Then v n(g)a(g) is a row
vector with all its first j−1 coefficients equal to zero and its j-th coefficient is (v n(g)a(g))j = vjnjj(g)aj(g).
Using first that njj(g) = 1 and ‖v n(g)a(g)‖ ≥ |(v n(g)a(g))j |, then that a(g) ∈ Au and |vj | is a non-zero
positive integer, we deduce that

‖vg‖ ≥ |vj |aj(g) ≥ ad(g)ud−j .

Finally for every v ∈ Zd \ {0}, then d − j ≤ d − 1 and since u ∈ (0, 1), we deduce that ad(g)ud−1 ≤ ‖vg‖,
hence the lower bound for the systole.

Injectivity radius We find a lower bound of the injectivity radius in every point of Ω(R) ⊂ Γ1\G/M . For
every point z ∈ Γ1\G/M , denote by inj(z), the injectivity radius with respect to the Riemannian metric d1,
i.e. the largest radius for which the exponential map at z is a diffeomorphism.

Lemma 6.3. There exists C7 > 1 such that for all large enough R > 2, every z ∈ Ω(R),

inj(z) ≥ R−C7 .

Furthermore, there exists a representative h ∈ G such that z = Γ1hM and

dX(o, ho) ≤ C7 logR.

Proof. We first construct h. Let z ∈ Ω(R) and we start with a representative g ∈ G such that z = Γ1gM . We
choose h0 ∈ NsAuK a representative in the coset Γ0g, where NsAuK is a standard Siegel domain (Definition
6.1) with u ∈ (0, 1). Note that s(h0) = s(z) > 1/R by hypothesis, then by the above Lemma 6.2, we deduce

that ad(h0) ≥ 1/R. Since a(h0) ∈ Au, then aj(h0) ≥ ud−j

R for all 1 ≤ j ≤ d. Hence

ud−1

R
≤ a1(h0) = a2(h0)−1...ad(h0)−1 ≤ Rd−2u−(d−2)(d−1)/2

from which we deduce that aj(h0) ≤ Rd−2u−(j−1)−(d−2)(d−1)/2 for all 1 ≤ j ≤ d. Since NsAuK is standard,
with u ∈ (0, 1), one can write it as some negative power of R and deduce the following upper bound for a(h0)
that there is a positive constant C > 0 such that

‖a(h−1
0 )‖, ‖a(h0)‖ ≤ RC .

Now since Ns is bounded and for the operator norm ‖.‖ of the action on row vectors induced by the Euclidean
norm on Rd, we deduce that ‖h0‖ = ‖n(h0)a(h0)k(h0)‖ � RC , similarily for ‖h−1

0 ‖. Since Γ1 is a finite index
subgroup of Γ0, there exists a finite set {γj}j∈J such that Γ0 = ∪j∈JΓ1γj . Therefore there exists γj such
that Γ1g = Γ1γjh0. We set h := γjh0 and deduce that

‖h−1‖, ‖h‖ � RC . (54)

Let us compute the Cartan projection of h, using [Kas08, Lemma 2.3] and the compactness of Ns and
finiteness of {γj}j∈J ,

dX(o, ho)� dX(o, h0o) = ‖ao(h0)‖ � ‖ao(a(h0))‖ � logR.

Denote by |.|1 the Riemannian metric at e associated with the Riemannian distanced1. We choose r0 > 0
such that for all Y ∈ g of norm smaller than r0, the exponential map is a local diffeomorphism, so that we
have

‖ exp(Y )− e‖ � |Y |1 � d1(exp(Y ), e).

We prove that if the exponential map for the ball of radius r ∈ (0, r0) centered at z = Γ1hM is not injective,
then r � R−C

′
for some positive constant C ′. Assume there exist h1 6= h2 ∈ G such that Γ1h1M = Γ1h2M

and h1M,h2M ∈ B(hM, r). Abusing notations, since d1 comes from the left G-invariant and right K-
invariant Riemannian metric on G, we can assume that h1, h2 ∈ B(h, r). Then there exists (γ,m) ∈ Γ1×M ,
with γ 6= e such that γh1 = h2m i.e.

γ = h2mh
−1
1 .
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Note that because Γ1 acts freely on G/M , then γ cannot be conjugated to an element in the sign group,
therefore γ2 6= e. Since γ2 is a matrix with integer coefficient, we deduce on one hand the lower bound

‖h−1γ2h− e‖ = ‖h−1(γ2 − e)h‖ ≥ 1

‖h‖‖h−1‖
.

On the other hand, set g0 := h−1γh−m, so that h−1γh = g0 +m and deduce the upper bound

‖h−1γ2h− e‖ = ‖g2
0 + g0m+mg0‖ ≤ ‖g2

0‖+ 2‖g0‖.

By triangle inequality, ‖g0‖ = ‖h−1h2mh
−1
1 h−m‖ ≤ ‖h−1h2−e‖‖h−1

1 h‖+‖e−h−1
1 h‖. Now h1, h2 ∈ B(h, r),

therefore ‖g0‖ � r and
1

‖h‖‖h−1‖
≤ ‖g0‖2 + 2‖g0‖ � r.

Finally, by (54), therefore r � R−C
′

for some constant C ′ > 0 and we deduce the lower bound for the
injectivity radius at z.

Action of the Weyl group

Lemma 6.4. There exists c > 0, such that for any η ∈ F , there exists w ∈ W such that

δ(wη, η0) > c.

Proof. In the SL(d,R) case, the Furstenberg boundary F is the space of complete flats of Rd. Therefore, there
exists a basis (vj)1≤j≤d of Rd such that η ∈ F is represented by (Rv1,Rv1 ∧ v2, · · · ,Rv1 ∧ · · · ∧ vd−1). The
Weyl group in the SL(d,R) case is isomorphic to the permutation group Sd. It consists in square matrices
(wij) ∈ K of coefficients wij = δτ(i)j where τ ∈ Sd. Left multiplication of (vji )1≤i,j≤d by an element of the
Weyl group permutes the columns, right multiplication by the transvection matrices in the upper triangular
unipotent group N correspond to operations on the lines of (vji )1≤i,j≤d. By Gaussian elimination, one can

assume that (vji )1≤i,j≤d, representative of wη for some w ∈ W, is lower triangular and the coefficient in the
diagonal is the highest in norm of the whole column i.e.

vjl = 0, for all l < j, and |vjj | = max
j≤l≤d

{|vjl |} for all 1 ≤ j ≤ d. (55)

On one hand, using that ∧jRd are the Tits representations for SL(d,R) and (ζ0)⊥o = η0 in (20), we compute

δ(wη, ζ0) = inf
1≤j≤d

d
(
Rv1 ∧ · · · ∧ vj , (Re1 ∧ · · · ∧ ej)⊥

)
= inf

j

|v1
1 · · · v

j
j |

‖v1 ∧ · · · ∧ vj‖
.

On the other hand, v1∧ ...∧vj =
∑

1≤l1<...<lj≤d
∑
τ∈Sj sign(τ)v

τ(1)
l1

...v
τ(j)
lj

el1 ∧ ...∧elj where sign(τ) ∈ {±1}
is the signature of the permutation τ . Hence for all 1 ≤ j ≤ d, by triangle inequality and (55)

‖v1 ∧ ... ∧ vj‖ ≤
(
d

j

)
j! |v1

1 ...v
j
j | ≤ d! |v1

1 ...v
j
j |.

We deduce that δ(wη, ζ0) ≥ (d!)−1. The Lemma then follows by left multiplication by kι of wη and ζ0, which
by K-invariance of δ does not change the inequality.

Lemma 6.5. For any g ∈ G, there exists w ∈ W such that for any b = wb′w−1 with b′ ∈ exp(−a++), we
have

log a(gb) = log b′ + log a(g) + v, (56)

where v is a vector of bounded length in a with the bound only depending on c in Lemma 6.4.
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Proof. Since NAK is a Iwasawa decomposition, we can compute the A part by the Iwasawa cocycle. We
have

log a(g) = −σ(g−1, ηo).

Then if we multiple on the right of g by an element b ∈ A, we obtain

log a(gb) = −σ(b−1g−1, ηo) = −σ(b−1, g−1ηo) + log a(g).

Due to b = wb′w−1 with w in the Weyl group and b′ in the negative Weyl chamber, then

log a(gb) = −σ((b′)−1, w−1g−1ηo) + log a(g).

By Lemma 6.4, there exists w such that δ(w−1g−1ηo, ζo) > c. By Lemma 14.2(i) and Lemma 6.33 in [BQ16],
we finish the proof.

6.1 Compact periodic diagonal orbits

The first difference with the cocompact case is that not every loxodromic element gives a periodic A-orbit
in the quotient Γ\G/M . So Selberg’s lemma is not true. There is a general sufficient condition in [PR72]. For
SLd(Z), we know exactly when it fails. Recall for γ loxodromic, we have defined an A-orbit F[γ] on Γ\G/M .

Lemma 6.6. Let γ ∈ Γ be a loxodromic element. Then for the following conditions:

1 The A-orbit F[γ] is compact periodic;

2 The characteristic polynomial pγ(x) = det(x− γ) of γ is irreducible on Q[x];

3 There exists no non-trivial subset I of {1, · · · , d} such that∑
i∈I

ti = 0,

where (t1, · · · , td) is the Jordan projection of γ;

we have that (1), (2) are equivalent and (3) implies (2).

Remark 6.7. Here we give an example when d = 4 that (1), (2) holds but (3) fails. We can find γ in SL4(Z)
by using the companion matrix such that pγ(x) = (x2 + (5−

√
2)x+ 1)(x2 + (5 +

√
2)x+ 1). This polynomial

pγ(x) is irreducible on Q[x] and has four different real roots. We can number them by their absolute values
as λ1 to λ4. Then its roots satisfy that log |λ1|+ log |λ4| = log |λ2|+ log |λ3| = 0.

Before proving Lemma 6.6, we need another lemma. Let Gγ be the centralizer of γ in G.

Lemma 6.8. Let γ be an element in Γ such that its characteristic polynomial pγ is irreducible. If β is an
element in Gγ with all eigenvalues rational, then β is identity or minus identity.

Proof. The element γ is diagonalizable in the splitting field of pγ , a Galois extension K of Q. There exists
a vector v1 ∈ Kd such that γv1 = λ1v1 with λ1 ∈ K. Since pγ is irreducible, the Galois group Gal(K/Q)
acts transitively on the roots of pγ . We can get eigenvalues λ2, · · · , λd and eigenvectors v2, · · · , vd as Galois
conjugates of λ1 and v1 with γvj = λjvj . The numbers λj are distinct, hence v1, · · · , vd form a basis.

Due to β commutes with γ, we have
βvj = µjvj

for some µj rational. Take σ in the Galois group Gal(K/Q), then βσ(vj) = µjσ(vj). The Galois group
Gal(K/Q) acts on the set {v1, · · · , vd} transitively (pγ irreducible), which implies that µj ’s are equal. Since
we are in SLd(R), we obtain the lemma.

Proof of Lemma 6.6. We first prove (3) implies (2): If pγ(x) is reducible then pγ(x) = p1(x)p2(x) with p1, p2

monic and constant terms of p1, p2 equaling ±1. Suppose the absolute values of roots of p1 are exp(ti) for
i ∈ I ⊂ {1, · · · , d}. Then we obtain

∑
i∈I ti = 0 with I non-trivial.
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Now we prove that (1) is equivalent to (1′), a condition about the centralizer of γ. Let Tγ be the centralizer
of γ in SL(d,C). The A-orbit F[γ] can be written as F[γ] = ΓgAM , and γ ∈ gAMg−1 due to the definition of
F[γ]. Because γ is loxodromic, the centralizer Gγ of γ in G equals gAMg−1, the real points of the maximal
R-split Q-torus Tγ . Now F[γ] is compact in Γ\G/M is equivalent to Γ∩Gγ\Gγ = Γγ\Gγ compact, where Γγ
is the centralizer of γ in Γ. Notice that Γγ\Gγ is a finite cover of (Γ0)γ\Gγ = (Tγ)Z\(Tγ)R for the Q-torus
Tγ . Then due to [BH62, Thm 9.4], (1) is equivalent to

1’ Tγ is a Q-anisotropic Q-torus.

Then we prove (2) implies (1′). Take a γ satisfying (2). If Tγ is not Q-anisotropic, then there exists a
Q-split subtorus [BH62, Lem 8.4]. Take β in the Q-points of this Q-split torus, then all the eigenvalues of
β is rational. Hence by Lemma 6.8, the element β must be ±Idd. There is no nontrivial Q-split subtorus of
Tγ . We obtain a contradiction. So Tγ is Q-anisotropic.

Finally, we prove (1′) implies (2). If pγ is reducible, suppose λ1, · · · , λ` with 1 ≤ ` < d is an orbit of the
Galois group Gal(K/Q) on the roots of pγ . Here K is the splitting field of pγ . Set vj ∈ Kd the corresponding
eigenvectors of λj , which is also an orbit of the Galois group Gal(K/Q). For any β in the Q points of Tγ ,
since λj ’s are different, we have for 1 ≤ j ≤ `

βvj = µjvj .

On the symmetric power Sym`Rd, we have

βv1 · · · v` = µ1 · · ·µ`(v1 · · · v`).

Now the vector v1 · · · v` is fixed under the Galois group, so it is rational, hence µ1 · · ·µ` is also rational. We
can define a Q character by χ(β) = µ1 · · ·µ`. Due to 1 ≤ ` < d, this Q character is non-trivial. So Tγ is not
Q-anisotropic.

Sparse set of loxodromic elements Let Γloxc be the subset of Γlox whose elements also satisfy the
condition (1) or (2) in Lemma 6.6.

Lemma 6.9. There exists 1 > κ1 > 0 such that for t > 1,

|(Γlox \ Γloxc ) ∩Dt| � vol(Dt)
1−κ1 .

Before proving this lemma, we need a result similar to Theorem 1.8 in [GN12b]. The proof is given in
Appendix 8.2.

Proposition 6.10. Let h be a polynomial on SLd(R) with Z coefficients and not vanishing identically on
SLd(R). Then there exists κh > 0 such that for t > 1

|{γ ∈ Γ ∩Dt, h(γ) = 0}| � vol(Dt)
1−κh .

Proof of Lemma 6.9. By Lemma 6.6, the number of elements γ’s not satisfying condition (1) is less than
that not satisfying condition (3). The condition (3) in Lemma 6.6 can be translate to equations: hi(γ) :=
det(1−∧iγ) det(1 + ∧iγ) = 0. Then by power saving of integer points in subvarieties (Proposition 6.10), we
obtain the result.

As a corollary, we can replace o by another point x in X, similar to Lemma 2.21.

Lemma 6.11. For x ∈ X with dX(x, o) ≤ κ1t
4(1−κ1) , we have

|(Γlox \ Γloxc ) ∩Dt(x)| � vol(Dt)
1−κ1/2.

Proof. By Lemma 2.17, we have

‖ao(γ)− ax(γ)‖ ≤ 2dX(x, o) ≤ κ1t

2(1− κ1)
.
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Therefore by Lemma 6.9 and vol(Dt) ∈ [1/C,C]eδ0tt
dimA−1

2 , we obtain

|{γ ∈ Γlox − Γloxc , ax(γ) ∈ Ba(0, t)}| ≤ |{γ ∈ Γlox − Γloxc , ao(γ) ∈ Ba(0, t+
κ1t

2(1− κ1)
)}|

� vol(Dt+
κ1t

2(1−κ1)
)1−κ1 � vol(Dt)

1−κ1/2.

The proof is complete.

6.2 Equidistribution for compactly supported functions

In order to make Γ\G/M a manifold, from now on we only consider Γ = Γ1. Similar to the cocompact
case, we also need to change the formulation to conjugacy classes of loxodromic elements. Let Gloxc be the
set of Γ conjugacy classes of Γloxc .

Lemma 6.12. There is a bijection between Gloxc and G(A).

Proof. The proof is almost the same as the proof of Lemma 4.2. We replace the use of Lemma 4.1 by Lemma
6.6. The only difference is that we obtain γY from (Y, F ), but we only know that γY is in Γlox. Due to
F = FγY compact, from Lemma 6.6, we know that indeed γY is in Γloxc .

By the previous lemma, we obtain

Mt
Γ :=

vol(Γ\G)

vol(Dt)

∑
F∈C(A)

|Λ(F ) ∩B++
a (0, t)|LF =

vol(Γ\G)

vol(Dt)

∑
[γ]∈Gloxc
‖λ(γ)‖≤t

Lγ .

We consider the lift of the measure Mt
Γ to G/M ,

Mt :=
vol(Γ\G)

vol(Dt)

∑
γ∈Γloxc
‖λ(γ)‖≤t

Lγ . (57)

The main result of this part is the equidistribution on large compact sets.

Proposition 6.13. There exist ζ > 0 and u > 0 such that for all t > 0 and all f ∈ Lipc(Ω(eζt)),∣∣∣∣Mt
Γ(f)−

∫
fdmΓ\G/M

∣∣∣∣� e−ut|f |Lip. (58)

Before starting the argument, we fix the parameters which will be used later. Choose u1 > 0 smaller than
min{εG, 1}/10, where εG is the constant from Lemma 2.19. Set

ε := e−u1t and t1 := 3u1t.

Consider the decay rate function u 7→ κ(u) > 0 satisfying (2.19), the decay coefficient κ > 0 given in Theorem
2.22 and κ1 given in Lemma 6.9. We set

u2 :=
1

4 dim(G/M)
min

{
δ0κ(6u1),

δ0κ

3
, u1, δ0κ1

}
, r := e−u2t. (59)

Consider the constant C7 coming from the injectivity radius Lemma 6.3, the constant C5 from the counting
Lemma 2.23 and C0 coming from the growth rate of Cx given in (31). Set the exponential decay rate of the
systole

ζ :=
1

C7
min

{
u2,

κ1

4(1− κ1)
,

1

C5
,

3u1

2(1− 6u1)
,

κ(6u1)

4(1− κ(6u1))
,
κδ0
6C0

,
u1

4C0

}
. (60)
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Equidistribution of Weyl chambers We define

Mt
x,3 :=

vol(Γ\G)

vol(Dt)

∑
γ∈Γloxc ∩D

reg
t (x)

Lγ . (61)

The following Lemma is a direct consequence of the definition of Mt
x,2 given in (47).

Lemma 6.14. For all t > 1, all x ∈ X and for every test function ψ̃ ∈ Lip+
c (F̃ (2)(x, r)),∣∣∣∣ ∫ ψ̃ dMt

x,3 −
∫
ψ̃ dMt

x,2

∣∣∣∣ ≤ |(Γlox \ Γloxc ) ∩Dt(x)| vol(Γ\G)

vol(Dt)
‖ψ̃‖∞.

The following statement and its proof is the same as Lemma 5.7 provided one replaces Mt
x,2 with Mt

x,3.

Lemma 6.15. There exists C > 0. Fix x ∈ X, for every test function ψ̃ ∈ Lip+
c (F̃ (2)(x, r)),

(1− Cr)
∫
ψ̃dMt−2r

x,3 ≤
∫
ψ̃dMt ≤ (1 + Cr)

∫
ψ̃dMt+2r

x,3 + ‖ψ̃‖∞
|Γ ∩D2r

t+2r(x)| vol(Γ\G)

vol(Dt)
. (62)

Partition of unity Then we only need to use a partition of unity to obtain the global version as in
Section 5.3. On the compact set Ω(eζt), by Vitali’s covering lemma, there exists a finite set {yi}i∈I in
Ω(eζt) such that the B(yi, r/10) are pairwise disjoint and ∪i∈IB(yi, r/2) covers Ω(eζt). By disjointness,
|I| � r−dim(G/M). By the injectivity radius Lemma 6.3 and choice of ζ in (60) such that C7ζ ≤ u2, the
balls B(yi, r) are diffeomorphic to balls of radius r in G/M . We can take a partition of unity of 1

r -Lipschitz
functions associated to the open cover B(yi, r). For each yi, by Lemma 6.3 we can find a lift zi ∈ G/M such
that

dX(o, xi) ≤ C7ζt, (63)

where xi = πX(zi). We have the same Lipschitz bounds on ψ̃i. By Lemma 5.8 and (p1)

suppψ̃i ⊂ B(zi, r) ⊂ F̃ (2)(x, r) and Lip2(ψ̃i) ≤ CxiLip(ψ̃i) ≤
Cxi
r
|ψ̃Γ|Lip.

Hence, by the above equation (63), then Lip2(ψ̃i)� eC0C7ζt

r |ψ̃Γ|Lip.

Local domination By using Lemma 5.6, 6.14 and 6.15, we obtain similar local domination:

±
(∫

ψ̃idMt −
∫
ψ̃idmG/M

)
≤ r(C3 + C)

∫
ψ̃idmG/M +

|(Γlox \ Γloxc ) ∩Dt(xi)| vol(Γ\G)

vol(Dt)
‖ψ̃i‖∞+

(2r)dim a

(
E(t± 2r, ψ̃i, xi) + 2εLip2(ψ̃i)

|Γ ∩Dt±2r(xi)| vol(Γ\G)

vol(Dt±2r)
+ 4‖ψ̃i‖∞

|Γ ∩Dt1
t±2r(xi)| vol(Γ\G)

vol(Dt±2r)

)
.

For the right term in the first line, by choice of ζ in (60) and Lemma 6.11, we deduce

|(Γlox \ Γloxc ) ∩Dt(xi)| vol(Γ\G)

vol(Dt)
� (vol(Dt))

−κ1/2.

The lower line contains terms similar to (51) (52) (53) that appear in the cocompact case. Now that xi
can be far from o, the constant Cxi can be big. However, by (63), this distance is bounded above by C7ζt,
which implies the following upper bound of C2

xi :

C2
xi = (8C2C1)2e2C0dX(xi,o) � e2C0C7ζt. (64)

Hence for the left-lower term, we deduce that

E(t± 2r, ψ̃i, xi) = O

(
C2
xi

r
vol(Dt)

−κ|ψ̃Γ|Lip
)

= O

(
e2C0C7ζt

r
vol(Dt)

−κ|ψ̃Γ|Lip
)
.
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For the mid-lower term similar to (52), by Lemma 2.23 and since C5C7ζ < 1 according to the choice of ζ

in (60), we deduce that |Γ∩Dt±2r(xi)|
vol(Dt±2r) ≤ C.

For the right-lower term similar to (53), using that C7ζ ≤ min{ 3u1

2(1−6u1) ,
κ(6u1)

4(1−κ(6u1))} as given in (60), the

hypothesis of Lemma 2.21 are satisfied. Hence
|Γ∩Dt1t±2r(xi)| vol(Γ\G)

vol(Dt±2r) � vol(Dt)
−κ(6u1).

Global domination Finally, by summing over the partition of unity and by |I| � r−dim(G/M), then
collecting the above estimates together, we deduce that∣∣∣∣ ∫ ψ̃ΓdMt

Γ −
∫
ψ̃ΓdmΓ\G/M

∣∣∣∣ � r‖ψ̃Γ‖1 +
|ψ̃Γ|Lip
rdim(G/M)

vol(Dt)
−κ12

+
|ψ̃Γ|Lip

rdim(G/AM)+1

(
e2C0C7ζt vol(Dt)

−κ + eC0C7ζtε+ vol(Dt)
−κ(6u1)

)
.

The proof of Proposition 6.13 is complete due to the choices of ζ and r = e−u2t in (59) and (60), where
ε = e−u1t.

6.3 Non-escape of mass

In order to prove the equidistribution for all bounded Lipschitz functions, we only remains to prove that
Mt

Γ(Ω(eϑt)c) tends to zero as t tends to infinity, where we set

ϑ = ζ/2.

Lemma 6.16 (non-escape of mass). There exists c4 > 0 such that

Mt
Γ(Ω(eϑt)c)� e−c4t.

Proof the main theorem for Γ < SLd(Z). Take a Lipschitz cutoff function φ supported on Ω(eζt) and equals
1 on Ω(eϑt). Let f1 = φf and f2 = (1− φ)f . Then f1 is supported on Ω(eζt) and f2 is supported on Ω(eϑt)c

and with the same Lipschitz bound as f . By applying Proposition 6.13 to f1 and Lemma 6.16, we obtain∣∣∣∣ ∫ fdMt
Γ −

∫
fdmΓ\G/M

∣∣∣∣ ≤ ∣∣∣∣ ∫ f1dMt
Γ −

∫
f1dmΓ\G/M

∣∣∣∣+

∣∣∣∣ ∫ f2dMt
Γ −

∫
f2dmΓ\G/M

∣∣∣∣
� e−ut|f1|Lip +mΓ\G/M ((Ω(eϑt)c)|f2|∞ +Mt

Γ((Ω(eϑt)c)|f2|∞ � e−u
′t|f |Lip,

here we need a volume estimate (see for example Proposition 7.1 in [KM99]), that is

mΓ\G/M (Ω(eϑt)c)� e−ct.

The proof is complete.

For 0 < t1 < t2 We define

Ω(t1, t2) := {Γg ∈ Γ\G/M, t1 < 1/s(g) ≤ t2} = Ω(t2) \ Ω(t1).

Let’s state our key observation.

Theorem 6.17. There exists C > 0. For t > C and γ ∈ Γloxc with ‖λ(γ)‖ ≤ t, then

Leb(F[γ] ∩ Ω(eϑt)c)� Leb(F[γ] ∩ Ω(eϑt/8, eϑt)).

From Theorem 6.17 to Lemma 6.16 . Take a Lipschitz function f such that f takes value in [0, 1], f equals
1 on Ω(eϑt/8, eϑt), the support of f is contained in the 1 neighbourhood of Ω(eϑt/8, eϑt) and |Lip(f)| ≤ 2.
Then we obtain

Mt
Γ(Ω(eϑt)c)�Mt

Γ(Ω(eϑt/8, eϑt)) ≤Mt
Γ(f).
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For an element in the support of f , we can write it as Γgh with g ∈ Ω(eϑt/8, eϑt) and h ∈ B(e, 1). Then due
to the region of h we have for v ∈ Zd

‖vgh‖ = ‖(vg)h‖ ∈ ‖vg‖[1/C ′, C ′]

for some C ′ > 1. Therefore the 1 neighbourhood of Ω(eϑt/8, eϑt) is contained in Ω(eζt) if t large. Applying
Proposition 6.13, we have ∣∣∣∣Mt

Γ(f)−
∫
f dmΓ\G/M

∣∣∣∣� e−ut|f |Lip.

Then by the choice of f , we obtain

Mt
Γ(Ω(eϑt)c)� mΓ\G/M (Ω(eϑt/8/C ′, C ′eϑt)) + e−ut � e−ct,

here we need a volume estimate mΓ\G/M (Ω(eϑt/8/C ′)c)� e−ct.

In order to prove Theorem 6.17, we start with a lemma between the systole of Zdg for Γg ∈ F and the
length of an element in Λ(F ). Since F itself is a torus, we can also interpret it as the relation between the
systole of the torus F with the cusp excursion of F on Γ\G.

Lemma 6.18. There exists Cd > 0. For γ ∈ Γloxc and F[γ] a compact periodic A-orbit in Γ\G/M , we have

F[γ] ⊂ Ω(exp(Cd‖λ(γ)‖)).

Remark 6.19. This lemma is inspired by the discriminant of compact A-orbit defined in [ELMV11]. Here we
give a direct relation without using the discriminant.

Proof. Take a point ΓgM ∈ F[γ], then there exists a ∈ AM such that a = g−1γg. The Jordan projection of
a is the same as γ, that is λ(a) = λ(γ).

Take a nonzero vector x ∈ Zdg. Then by Zdga = Zdγg = Zdg, we obtain

xa ∈ Zdg, · · · , xad−1 ∈ Zdg.

Now x, xa, · · · , xad−1 generates a sublattice in Zdg. There is no j such that xj = 0, otherwise the length of
xb for b ∈ A can be arbitrarily small, which contradicts the fact that F[γ] is compact. Hence its covolume
satisfies

vol(Rd/
〈
x, xa, · · · , xad−1

〉
) = |

∏
1≤j≤d

xj det(1, a, · · · , ad−1)|,

where in det(1, a, · · · , ad−1), the element aj is seen as a column vector. Now different coordinates of a are
different, so the determinant of the Vandermonde matrix in the above formula is nonzero. Hence the lattice
generated by x, xa, · · · , xad−1 has rank d and its covolume is greater than 1. Hence

1

|
∏

1≤j≤d xj |
≤ |det(1, a, · · · , ad−1)| ≤ exp(C‖λ(a)‖) = exp(C‖λ(γ)‖).

Therefore by the inequality of arithmetic and geometric means

max
b∈A

1

‖xb‖
� max

b∈A

1

|
∏

1≤j≤d(xb)j |1/d
=

1

|
∏

1≤j≤d xj |1/d
≤ exp(C‖λ(γ)‖/d).

Finally, we obtain
min
b∈A

s(Zdgb) ≥ min
x∈Zdg−{0},b∈A

‖xb‖ � exp(−C‖λ(γ)‖/d).

This lemma tells us that the compact periodicA-orbit appearing inMt
Γ is always contained in Ω(exp(Cdt)).

In order to prove Theorem 6.17, we need another lemma describing the growth of systole under the A action.
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Figure 2: This is a neighbourhood of the positive Weyl chamber. Two blue dashed lines are lines with the
fundamental weight χ(a) = log a1 + log a2 equal to t and ϑt. Two blue points are log a(g) and two red points
are log a(g) + log b′. The point log a(gb) has bounded distance to the red point.

Lemma 6.20. There exist C,C8 > 0. Let y be an element in Γ\G/M with 1/s(y) ∈ [eϑt, exp(Cdt)] and
t > C, there exists b ∈ A such that 1/s(yb) ∈ (eϑt/4, eϑt/2) and ‖ log b‖ ≤ C8t.

Remark 6.21. This lemma is similar to Proposition 4.1 in [TW03], where they also study the growth of systole
to prove that there exists a compact set which intersects each orbit of some maximal R-split torus.

The idea of the proof is that in the Siegel domain, the systole and a cocycle is comparable. Since this
cocycle is additive, we can estimate its value after A action, which in turn gives the estimate of systole.

Proof. We only give the proof for Γ0, since our definition of Siegel domain only works for Γ0. If we have an
element y in Γ\G/M , we can project it to y′ in Γ0\G/M and apply the lemma there to find a b. Then due
to the invariance of the systole under covering s(yb) = s(y′b), this b also works for y in the lemma.

For y in Γ0\G/M with 1/s(y) ∈ [eϑt, exp(Cdt)], with out loss of generality, we can find a g in a standard
Siegle domain Ns0Au0

K such that y = Γ0gM . Then by Lemma 6.2

ad(g)ud−1
0 ≤ s(g) ≤ ad(g). (65)

For log a ∈ a, we define a character

χ(log a) = log(a1 · · · ad−1) = − log ad.

By (65), we obtain that a(g) is in

{a ∈ A| log aj − log aj+1 ≥ log u0, 1 ≤ j ≤ d− 1, χ(log a) ∈ [ϑt, Cdt− (d− 1) log u0]}.

Using the affine coordinate, this is equivalent to say that log a(g) = v0 + Y , with v0 ∈ a, v0
j − v0

j+1 = log u0,
Y ∈ a++ and

χ(Y ) ∈ [ϑt, Cdt− (d− 1) log u0]− (d log u0)/2.

Applying (56) to this g, there exists w in W such that for all b′ in the negative Weyl chamber, the equation
(56) holds. We can take a b′ = exp(−sY ) with 0 < s < 1 such that

χ(Y − sY ) = ϑt/3.
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Then ‖ log b′‖ = ‖sY ‖ ≤ C8t if t is large with respect to log u0. Therefore, We have

log a(gb) = v0 + (1− s)Y + v = (v0 + v) + (1− s)Y

is in
{a ∈ A| log aj − log aj+1 ≥ log u, 1 ≤ j ≤ d− 1, χ(log a) ∈ [ϑt/3− C, ϑt/3 + C]},

with some 1 > u > 0 and C > 0 only depending on c in Lemma 6.4 and u0. By Lemma 6.2, we obtain that

ad(gb)u
d−1 ≤ s(gb) ≤ ad(gb).

When t is large, we obtain gb with 1/s(gb) ∈ (eϑt/4, eϑt/2).

Proof of Theorem 6.17. The compact periodic A-orbit F[γ] is isometric to the flat torus a/Λ(F[γ]). We use
the quotient Euclidean distance on F[γ] and a ball B(x, r) for x ∈ F[γ] and r > 0 will be a ball in F[γ] with
respect to this distance. We are working on the flat torus with a height function given by the inverse of the
systole, 1/s(x), which tells us how this flat torus is embedded in the large non compact space Γ\G/M .

We can find a maximal family of points {xj}j∈J ⊂ F[γ] in Ω(eϑt/4, eϑt/2) such that d(xj , xj′) ≥ C8t

for j 6= j′ and the union of balls ∪j∈JB(xj , 2C8t) covers F[γ] ∩Ω(eϑt)c. This is always possible, because

if the union of balls doesn’t cover F[γ] ∩ Ω(eϑt)c. Then take a point x not covered by the union, so x has

distance greater than 2C8t to {xj}j∈J . Using Lemma 6.18 and 6.20, we can find xb with xb ∈ Ω(eϑt/4, eϑt/2)
and d(x, xb) ≤ ‖ log b‖ ≤ C8t. This point xb has distance greater than C8t to {xj}j∈J . So we can add this
point. By this way we can find the desired family of points.

The Lebesgue measure is the quotient measure on the flat torus F[γ] ' a/Λ(F[γ]). Then due to covering,

Leb(F[γ] ∩ Ω(eϑt)c) ≤
∑
j∈J

Leb(B(xj , 2C8t))�
∑
j∈J

Leb(B(xj , ϑt/8)). (66)

The last inequality Leb(B(xj , 2C8t)) � Leb(B(xj , ϑt/8)) is due to that we can use a finite number of balls
of radius ϑt/8 to cover a ball of radius 2C8t in the flat torus and the number of balls needed doesn’t depend
on t. For any b ∈ A and v ∈ Rd, by ‖vb‖ ∈ ‖v‖{mini |bi|,maxi |bi|}, we obtain that for any x ∈ Γ\G/M

s(xb)/s(x) ∈ [e−‖ log b‖, e‖ log b‖].

For any y ∈ B(xj , ϑt/8), we can write it as y = xjb with b ∈ A and ‖ log b‖ ≤ ϑt/8. Therefore we know that
B(xj , ϑt/8) ⊂ Ω(eϑt/8, eϑt). The balls B(xj , ϑt/8) are disjoint by hypothesis that d(xj , xj′) ≥ C8t. Therefore∑

j∈J
Leb(B(xj , ϑt/8)) = Leb(∪j∈JB(xj , ϑt/8)) ≤ Leb(F[γ] ∩ Ω(eϑt/8, eϑt)). (67)

The proof is complete by (66) and (67).

7 Appendix A: Orbifolds and partitions of unity

Let Γ be any finite index subgroup of SLd(Z). Its left action on G/M is no longer assumed to be free and
the space Γ\G/M is now an orbifold. In Section 6, we used in the partition of unity argument that Γ\G/M
is a manifold. Our primary purpose is now to find a covering compatible with the orbifold structure (Lemma
7.6). The partition of unity constructed from this covering will allow us to complete the proof in this case.

We start with the definition of orbifolds, following [Thu97, Chap 13]. An orbifold O consists of the

underlying Hausdorff space XO and an orbifold atlas {(Ui, Ũi,Γi, ϕi)}i∈I such that different atlas’ should be
compatible and where

• each Ui is an open set of XO and their union covers XO,

• the family of sets {Ui}i∈I is closed under finite intersection,

• each set Ũi is an open subset of Rn,
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• Γi is a finite group of linear transformations which fixes Ũi,

• the map ϕi is a homeomorphism from Ui to the quotient Ũi/Γi.

Remark 7.1. If d is even, let p be the projection from SLd(R) to PSLd(R) = SLd(R)/{±id}. Then due
to −id ∈ M , as double cosets, the space Γ\SLd(R)/M is isomorphic to p(Γ)\PSLd(R)/p(M) and periodic
compact A-orbits are also isomorphic under the projection p. It is sufficient to prove equidistribution on
p(Γ)\PSLd(R)/p(M). We make the convention that if d is even, then we consider G = PSLd(R).

By [Thu97, Prop 13.2.1], since the finite group M acts properly discontinuous on Γ\G, the space O :=
Γ\G/M is an orbifold. Since the metric d1 on G is left G invariant and right K invariant, we use the quotient
metric on Γ\G/M denoted by d. For this orbifold, its singular locus is defined as

Σ(O) = {x ∈ O| Mx 6= {id}},

where the isotopy group Mx is the stabilizer of the group action M at a lift of x. Since M is abelian, the
isotopy group Mx is independent of the choice of the lift of x. This singular locus is the union of closed
subvarieties of O, which has zero measure (Newman’s theorem, see [Dre69] for a proof). If we are outside
this singular locus, we are in the normal covering situation. Similarly, we have another orbifold structure on
Γ\G/M coming from the action of Γ on G/M . The singular locus of the Γ action is the same as the singular
locus of M action due to the structure of the double coset. We use the same notation Σ(O).

Since the group M is much simpler, we will first find a good covering for the action of M on Γ\G, then
pass to Γ on G/M .

Lemma 7.2. Let F ∈ C(A) be a compact periodic A-orbit in O, then F ∩ Σ(O) = ∅.

Proof. Let x = ΓgM be a point in F , choose a lift Γg in Γ\G. By definition, we have

Mx := {m ∈M, Γgm = Γg}.

For every m ∈Mx, there exists γ ∈ Γ such that gm = γg, i.e. γ = gmg−1. Using that F ∈ C(A), we choose
for any period Y ∈ Λ(F ) ∩ a++ an element γY ∈ Γloxc such that γY = g exp(Y )mY g

−1. Now since M is
abelian, γ ∈ GγY the centralizer of γY in G and all its eigenvalues are rational. By Lemma 6.8, we deduce
that m = ±e. If d is even, then −e ∈ M and we use the convention in Remark 7.1 to deduce that Mx is
trivial for every x ∈ F .

To construct a covering of balls of radius � r, which is compatible with the orbifold structure, we study
the right action of the discrete abelian group M on the manifold Γ\G. The argument used to prove Lemma
6.3 gives a lower bound for the injectivity radius of Ω(R), seen as a compact subset of Γ\G.

Lemma 7.3. There exists C9 > 1 such that for all R > 2 and every z ∈ Ω(R) ⊂ Γ\G,

inj(z) ≥ R−C9 .

Furthermore, there exists a representative h ∈ G such that z = Γh and

dX(o, ho) ≤ C9 logR, and sup(‖h‖, ‖h−1‖) ≤ RC9 .

We start with a general lemma about the action of M ' (Z/2Z)d−1 on any manifold. For any point x in
the manifold, we denote by Mx := StabM (x).

Lemma 7.4. Let N be a complete Riemannian manifold such that M act on N isometrically. For any point
y ∈ N , if there exists m ∈ M \My and s ∈ (0, inj(y)/5) such that B(y, s)m ∩ B(y, s) 6= ∅, then there exists
z ∈ B(y, s) such that Mz ⊃ 〈My,m〉.

Proof. Consider y ∈ N , an element m ∈M \My and s > 0 as in the statement. Since B(y, s)m∩B(y, s) 6= ∅,
we deduce that d(y, ym) < 2s. By choice of s, the exponential at TyN identifies B(0, 5s) with B(y, 5s),
hence in this local chart, B(y, 2s) ⊂ B(y, 5s) identifies with some ball of radius 2s in B(0, 5s). Now m is an
isometry of order 2 of N , hence (ym, y)m = (y, ym). The action of m preserves geodesics on N , hence in
the local chart induced by the exponential at TyN , the element m reads as an isometry that preserves the
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geodesic segment [y, ym] and flips the endpoints. Therefore, the middle point z of this geodesic segment is
fixed by m i.e. m ∈Mz. Furthermore, z ∈ B(y, s) since d(y, z) = 1

2d(y, ym) < s.
Similarly, My acts isometrically in particular on the geodesic segment [y, ym]. Since M is abelian, the

action of My fixes the endpoints. Due to the hypothesis of injectivity radius, it fixes the whole geodesic
segment. In particular Mz ⊃My.

Since the group structure is simple, we use the action of M on Γ\G to obtain a covering that is compatible
with this action. Denote by C10 := 11d−1, which only depends on d.

Lemma 7.5. For all R > 2 and s ∈ (0, R−C9/C10), there exists a covering of Ω(R) ⊂ O consisting of balls
{B(xi,

si
10 )}i∈I such that si ∈ [s, C10s] and each larger ball Bi := B(xi, si) is compatible with the orbifold

structure. Meaning that for each ball Bi, there exists (B̃i,Mi) ⊂ Γ\G ×M where Mi is a subgroup of M ,

such that B̃i is Mi invariant and Bi is homeomorphic to B̃i/Mi.

Proof. In Γ\G, the injectivity radius can also be defined as: for y = Γg ∈ Γ\G,

inj(y) = sup
r0>r>0

{for any γ 6= e, γB(g, r) ∩B(g, r) = ∅},

where r0 is the injectivity radius of the group G. For all x ∈ Ω(R), by the lower bound for the injectivity
radius at x given in Lemma 6.3 and the above characterisation of injectivity radius,

for every y ∈ B(x,C10s/2), inj(y) ≥ C10s/2. (68)

Fix a point x ∈ Ω(R) ⊂ Γ\G/M and s ∈ (0, R−C9/C10). We define a family of radii rj = 11j−1 × 10s ∈
[s, C10s] for 1 ≤ j ≤ d − 1 and r0 = s. We construct, by induction, a compatible ball containing x. Denote
by y0 ∈ Γ\G a lift of x = y0M . If B(x, s)M ∩ Σ(O) = ∅, i.e. B(y0, r0)m ∩ B(y0, r0) = ∅ for all m ∈ M , we
add the ball B(x, r0/10) to the covering of O, with B(y0, r0) ∈ Γ\G and M0 := My0 is the trivial group of
M .

Assume we have constructed for some 0 ≤ k ≤ d − 1 a family of points y0, ..., yk ∈ Γ\G, a strictly
increasing family of sign subgroups M0 := My0 ⊂ ... ⊂Mk := Myk , such that

d(yj , y0) ≤ rj/10, for every j = 0 · · · , k − 1. (69)

Assume B(yk, rk)m∩B(yk, rk/10) = ∅ for all m ∈M \Mk and we add the ball B(ykM, rk) to the covering of
O, with B(yk, rk) ∈ Γ\G and isotopy group Mk. Otherwise, due to (68), we can apply the previous Lemma
7.4 to yk and rk > 0. We find yk+1 ∈ B(yk, rk) with Mk+1 = Myk+1

strictly containing Mk. By hypothesis,

d(yk+1, y0) ≤ d(yk+1, yk) + d(yk, y0) ≤ rk + rk/10 = rk+1/10.

By this way, we construct yk+1 and Mk+1 satisfying the hypothesis of induction.
Since M is finite, we must stop at some k, which means that B(yk, rk)m∩B(yk, rk) = ∅ for all m ∈M \Mk,

and we can add this ball to the covering.
We can do this for any x ∈ Ω(R), and the proof is complete.

Now we use the orbifold structure from the action of Γ on G/M . We use the double coset relation to do
this step.

Lemma 7.6. For all R > 2 and s ∈ (0, R−C9/2C10), there exists a covering of Ω(R) ⊂ O consisting of balls
{B(xi,

si
10 )}i∈I such that si ∈ [s, C10s] and each larger ball Bi := B(xi, si) is compatible with the orbifold

structure. That is for any B = Bi, there exists (B̃,ΓB) ⊂ G/M ×Γ, where ΓB is a finite subgroup of Γ, such

that B̃ is ΓB invariant and B homeomorphic to ΓB\B̃.

Proof. Once we have a ball B(w, r) = B(Γg, r) and Mw by Lemma 7.5. Since this ball intersects Ω(R) and
s small, we have Γg ∈ Ω(2R). By Lemma 7.3, we can take this g such that ‖g‖, ‖g−1‖ ≤ (2R)C9 . For each
m ∈Mw, there exists γm such that γmg = gm. Let Γg be the group generated by γm. Through the conjugate
action g, the group Γg is isomorphic to Mw. Consider the pair B(gM, r) and Γg.
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If there exists γ /∈ Γg such that γB(gM, r) ∩ B(gM, r) 6= ∅, then there exist g1, g2 ∈ B(g, r) such that
γg1M = g2M ∈ B(gM, r). We must have γg1 = g2m. But this means B(Γg, r) ∩B(Γg, r)m 6= ∅. So m is in
Mw and B(Γg, r)m = B(Γg, r). But now, by similar computation as in Lemma 6.3

‖γm − γ‖ = ‖gmg−1 − g2mg
−1
1 ‖ = ‖(g − g2)mg−1 + g2m(g−1 − g−1

1 )‖ ≤ 2r‖g‖‖g−1‖ ≤ 2C10sR
2C9 < 1

is small. By discreteness, we have γ = γm, contradicts to γ /∈ Γm.
Therefore for any γ /∈ Γg, we have γB(gM, r) ∩ B(gM, r) = ∅ and γ ∈ Γg preserves B(gM, r), due to γ

preserving the metric.

Once we have a family of balls B(xi, si/10) as in Lemma 7.6 which covers Ω(R), by Vitali’s covering
theorem for metric spaces, we can find a subcollection B(yj , sj/10) which are disjoint and the union of larger
balls B(yj , sj/2) covers the union of B(xi, si/10). In particular, the union of B(yj , sj/2) covers Ω(R) and
B(yj , sj) is compatible with orbifold structure.

Lemma 7.7. There exists a constant C > 0. With the same assumption of s,R as in Lemma 7.6 There
exists a partition of unity {ρj} subordinated to the open cover {B(yj , sj)} of Ω(R) with sj ∈ [s, C10s] such
that for any x, y ∈ B(yj , sj) ∩ Ω(R), we have

|ρj(x)− ρj(y)|/d(x, y) ≤ C

s
.

The number of balls B(yj , sj) is less than Cs− dimG.

The construction of a partition of unity subordinated to a covering is classic. We add the proof for
completeness.

Proof. On each ball B(yj , sj) we take the function

ρ̃j(x) = max{0, 1− 3d(x,B(yj , sj/2))/sj},

which takes value 1 on the ball B(yj , sj/2) and vanish outside of B(yj , sj) with Lipschitz norm bounded by
3/s. Let ρj = ρ̃j/

∑
j ρ̃j . This is a partition of unity with respect the covering B(yj , sj). Let us compute

their Lipschitz norms, for x, y in B(yj , sj) ∩ Ω(R)

|ρj(x)− ρj(y)|/d(x, y) = | ρ̃j(x)− ρ̃j(y)∑
ρ̃l(x)

− ρ̃j(y)

∑
l ρ̃l(x)− ρ̃l(y)

(
∑
ρ̃l(x))(

∑
ρ̃l(y))

|/d(x, y)

≤ 3

s

1∑
ρ̃l(x)

+
3#{yl, x or y ∈ B(yl, sl)}

s

1

(
∑
ρ̃l(x))(

∑
ρ̃l(y))

.

Due to x, y ∈ Ω(R) ⊂ ∪lB(yl, sj/2), we obtain that
∑
l ρ̃l(x),

∑
l ρ̃l(y) ≥ 1. Since different yl’s have distance

at least s/10 to each other, by homegenity of the space, the number of yl such x ∈ B(yl, sl) is uniformly
bounded. Therefore we obtain the lemma.

For any ψΓ Lipschtiz function supported on Ω(R), let ψj = ψΓρj . Then ψΓ =
∑
ψj . For each ψj , by

Lemma 7.7, we obtain |ψj |Lip � 1/s|ψΓ|Lip. Take its lift ψ̃j on B̃j . Then since singular locus has zero

measure, and outside the singular locus Σ(O) it is a regular covering and Bj ' B̃j/ΓBj , we obtain∫
ψjdmΓ\G/M =

1

|ΓB |

∫
ψ̃jdmG/M . (70)

Due to F ∈ C(A) not intersecting singular locus (Lemma 7.2), Mt being Γ invariant and Bj ' B̃j/ΓBj , we
obtain ∫

ψjdMt
Γ =

1

|ΓB |

∫
ψ̃jdMt. (71)

Proof of Theorem 1.3 for general Γ < SLd(Z). With (70), (71) and Lemma 7.3, we can redo the argument
as in Section 6.2 to obtain the equidistribution for compactly supported functions on the orbifold Γ\G/M .
Then we use this equidistribution result to do the same argument as in Section 6.3 to finish the proof.
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We also need a version of Lemma 6.12 in this case

Lemma 7.8. There is a bijection between Gloxc and G(A).

Proof. The proof is almost the same as the proof of Lemma 4.2 and 6.12. The main difference is that we
may have two different γY , γ

′
Y satisfying

γY g = geYmY , γ
′
Y g = geYm′Y .

Take γ = γ−1
Y γ′Y , then γ commutes with γY and all its eigenvalues are ±1. By Lemma 6.8, we know that

γ = ±id. By convention in Remark 7.1, we obtain that γ is trivial.

Remark 7.9. The same construction of the covering and the partition of unity for orbifolds Γ\G/M also works
if G is R-split, in which case the group M is isomorphic to {±1}r for some r ∈ N. But we need to prove
similar Lemma 7.2 and Lemma 7.8, which rely on Lemma 6.8. If we have s similar version of Lemma 6.8 for
a cocompact irreducible lattice Γ in a R-split group G, then Theorem 1.3 also works without the torsion-free
assumption.

8 Appendix B

8.1 Proof of Theorem 2.22

We give a proof of Theorem 2.22 by redoing the proof of Theorem 7.1 in [GN12a] for Lipschitz functions.
Here we have one notation issue, the quotient Γ is on the right G/Γ to be consistent with [GN12a]. Fix
notation mG and dmG/Γ = dmG/V (Γ), which is a probablity measure.

Recall the quantitative mean ergodic theorem on L2(G/Γ), which is the main engine to obtain equidistri-
bution. For an absolutely continuous probability measure β on G, let π(β)f =

∫
π(g)fdβ(g). By Theorem

4.5 in [GN12a], we have ∥∥∥∥π(β)f −
∫
f

∥∥∥∥
2

≤ Cq‖β‖1/n(G,Γ)
q ‖f‖2, (72)

where n(G,Γ) is an integer depending on G, Γ and q is any constant in [1, 2) such that ‖β‖q < ∞. We will
explain in Remark 8.7 why Theorem 4.5 in [GN12a] works in our case.

Let
εinj > 0

be a constant such that if ε < εinj , then the map Oε to OεΓ is injective from G to G/Γ.
We will prove this version

Theorem 8.1. Let G be a connected, real linear, semisimple Lie group of non-compact type. Let Γ < G be an
irreducible lattice. There exist κ > 0 and C6 > 0 only depending on n(G,Γ) and G. Let x ∈ X and (Bt)t>0 be
D++
t .Then for all Lipschitz test functions ψ ∈ Lip(F (2)), there exists E(t, ψ) = O(Lip(ψ) vol(Dt)

−κ) when
t > C6| log εinj | such that

1

vol(Bt)

∑
γ∈Bt∩Γ

ψ(γ+
o , γ

−
o ) =

1

vol(Γ\G)

∫
F×F

ψdµo ⊗ µo + E(t, ψ),

where all the implied constants only depending on G and n(G,Γ).

Proof of Theorem 2.22. Due to (26) γ+
x = hx(h−1

x γhx)+
o , we apply Theorem 8.1 to the lattice h−1

x Γhx and
the Lipschitz function ψ′(·, ·) := ψ(hx·, hx·). This is the reason that we need a uniformed version for lattices
h−1
x Γhx and we made dependence of constants in Theorem 8.1 more transparent. The constant n(G, h−1

x Γhx)
is the same as n(G,Γ) due to invariance of the Haar measure. For εinj of h−1

x Γhx, we have

inf
γ∈Γ−{e}

dG(o, h−1
x γhx) ≥ e−CdX(o,x) inf

γ∈Γ−{e}
dG(o, γ).

By Lemma 2.11, the action of hx on F is Cx Lipschitz. From these, we obtain Theorem 2.22.
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Step 1: The first step is to transfer the counting problem to integrals, which can be treated by the mean
ergodic theorem.

Let Oε be a neighborhood of identitity in G with radius ε. Let Ãδ = {exp(a), a ∈ a++, d(a, ∂a++) ≥ δ}.

Lemma 8.2 (Effective Cartan decomposition, Proposition 7.3 in [GN12a], first appeared in [GOS10]). There

exist δ > 0 and l0, ε1 > 0. If ε < ε1, then for g = k1ak2 ∈ KÃδK, we have

OεgOε ⊂ (Ol0ε ∩K)k1M(Ol0ε ∩A)ak2(Ol0εK).

For ease of notation, when there is no confusion, we will use k1, a, k2 to denote elements come from the
Cartan decomposition g = k1ak2. Let D̃δ

t = {g ∈ G, a ∈ Ãδ, d(gK,K) ≤ t}. Notice that by identifying F
with K/M , we have k1M = γ+

o and k−1
2 M = γ−o . Let

ρt(g) = 1D̃δt
(a)ψ(k1, k2),

where ψ(k1, k2) = ψ(k1M,k−1
2 M) = ψ(g+

o , g
−
o ).

We introduce two auxiliary functions, which is the replacement of Lipschitz well-roundness of sets in
[GN12a]. Recall

Lip ψ = max

{
|ψ|∞, sup

x6=y

|ψ(x)− ψ(y)|
d(x, y)

}
.

Let

ρ+
t,ε(g) = 1

D̃
δ−l0ε
t+2ε

(g)(ψ(k1, k2) + (Lipψ)l0ε)

ρ−t,ε(g) = 1
D̃
δ+l0ε
t−2ε

(g) max{ψ(k1, k2)− (Lipψ)l0ε, 0}.

From the definition, we know ρ−t,ε ≤ ρt ≤ ρ+
t,ε.

Lemma 8.3. For g ∈ OεγOε with ε ≤ ε1 we obtain

ρ−t,ε(g) ≤ ρt(γ) ≤ ρ+
t,ε(g). (73)

Proof. If ρ−t,ε(g) 6= 0, then g ∈ D̃δ+l0ε
t−2ε . By γ ∈ OεgOε and Lemma 8.2, we obtain

a(γ) ∈ (Ol0ε ∩A)a(g) ∩Dt ⊂ D̃δ
t .

So 1D̃δt
(a(γ)) = 1. By Lemma 8.2 and Lipschitz property of ψ, we obtain

ψ(k1(γ), k2(γ)) ≥ ψ(k1(g), k2(g))− (Lipψ)l0ε.

This proves the left hand side. For the other side, the proof is similar.

Take 1ε = 1
mG(Oε)1Oε be the normalized characteristic function of Oε. Let ϕε(gΓ) =

∑
γ∈Γ 1ε(gγ). The

counting is connected to integral by the following.

Lemma 8.4. For h in Oε with ε ≤ ε1, we have∫
ϕε(g

−1hΓ)ρ−t,ε(g)dmG(g) ≤
∑
γ∈Γ

ρt(γ) ≤
∫
ϕε(g

−1hΓ)ρ+
t,ε(g)dmG(g). (74)

Proof. By using (73), the proof is almost the same as Lemma 2.1 in [GN12a].

Step 2: This step will estimate the error terms in the mean ergodic theorem.

We want to apply the mean ergodic theorem to probability measures
ρ±t,ε∫
ρ±t,ε

. Before doing so, we need to

compute some integrals. The computation is a bit tedious. This step is to verify similar stable mean
ergodic theorems, the main consequence is (76) and (78).

Let’s first compute the difference.
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Lemma 8.5. We have ∫
ρ+
t,εdmG −

∫
ρ−t,εdmG �

(
ε

∫
ψ + l0ε(Lipψ)

)
mG(Dt). (75)

Proof. ∫
ρ+
t,εdmG −

∫
ρ−t,εdmG

≤ mG

(
D̃δ−l0ε
t+2ε

)(∫
ψ + l0ε(Lipψ)

)
−mG

(
D̃δ+l0ε
t−2ε

)(∫
ψ − l0ε(Lipψ)

)
=

(
mG

(
D̃δ−l0ε
t+2ε

)
−mG

(
D̃δ+l0ε
t−2ε

))∫
ψ + l0ε(Lipψ)

(
mG

(
D̃δ−l0ε
t+2ε

)
+mG

(
D̃δ+l0ε
t−2ε

))
�
(
ε

∫
ψ + l0ε(Lipψ)

)
mG(Dt),

where the last inequality is from the proof of Proposition 7.4 in [GN12a] about volume estimate and Lemma
2.18.

Let ρ̃±t,ε = ρ±t,ε/
∫
ρ±t,ε.

Lemma 8.6. There exists t1 > 0 which only depends on G, δ, ε1 such that the following holds. For ε <
min{

∫
ψ/2l0Lipψ, ε1}, t > t1 and f ∈ L2(G/Γ)

‖π(ρ̃−t,ε)f −
∫
f‖2 ≤ E(t)‖f‖2, (76)

with

E(t) = (
C

mG(Dt)q−1

(Lipψ)q

(
∫
ψ)q

)κ2 , (77)

κ2 = 1/qn(G,Γ) and C > 0 only depending on G.
For ε ≤ ε1, t > t1 and f ∈ L2(G/Γ)

‖π(ρ̃+
t,ε)f −

∫
f‖2 ≤ E(t)‖f‖2. (78)

The main difference is that for ρ+
t,ε, we don’t need an extra condition of ε depending on ψ.

Proof. We compute the integral of ρ−t,ε. We have∫
ρ−t,εdmG ≥ mG(D̃δ+l0ε

t−2ε )(

∫
ψ − (Lipψ)l0ε).

Due to Lemma 2.19, we have mG(Dδ+l0ε
t−2ε ) = O(mG(Dt−2ε)

1−ζ1) for some ζ1 > 0, and Lemma 2.18, we obtain

mG(D̃δ+l0ε
t−2ε ) ≥ e−Cε(1− CmG(Dt)

−ζ1)mG(Dt).

Hence if t > t1 depending on C, δ, ε1, then∫
ρ−t,εdmG � mG(Dt)(

∫
ψ − (Lipψ)l0ε).

Therefore if ε ≤
∫
ψ/2l0(Lipψ), ε1, we obtain∫

ρ−t,εdmG � mG(Dt)

∫
ψ. (79)
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Similarly for the integral of ρ+
t,ε, we obtain if t > t1 and ε ≤ ε1, then by Lemma 2.19

mG(D̃δ−l0ε
t+2ε ) ≥ mG(D̃δ

t ) ≥ mG(Dt)− CmG(Dt)
1−ζ1 . (80)

Therefore ∫
ρ+
t,εdmG ≥

∫
ρtdmG ≥ (mG(Dt)− CmG(Dt)

1−ζ1)

∫
ψ � mG(Dt)

∫
ψ. (81)

After these preparation, we can start to compute the integral appears in error term of mean ergodic
theorem. By (79), we obtain when t > t1 and ε ≤

∫
ψ/2l0(Lipψ)

‖ρ−t,ε‖qq/(
∫
ρ−t,ε)

q �
∫
|ρt|q/(mG(Dt)

∫
ψ)q ≤ 1

mG(Dt)q−1
(Lipψ)q/(

∫
ψ)q.

For ρ+
t,ε, by (81) and (80) we have

‖ρ+
t,ε‖qq/(

∫
ρ+
t,ε)

q � 1

mG(Dt)q−1

∫
(ψ + (Lipψ)l0ε)

q/(

∫
ψ)q.

We obtain if t > t1,

‖ρ+
t,ε‖qq/(

∫
ρ+
t,ε)

q � 1

mG(Dt)q−1
(Lipψ)q/(

∫
ψ)q. (82)

Applying the above formulas for ρ̃±t,ε, combined with mean ergodic estimate (72), we obtain the lemma.

Step 3: The mean ergodic theorem only gives an estimate of L2 norm, but what we need is an estimate
at some points. So we need to use the Chebyshev inequality. The remaining work is to collect the error
terms. This part is similar to the proof of Theorem 1.9 in [GN12a].

Proof of Theorem 8.1 . Applying (78) to f = ϕε, by Chebyshev’s inequality, we obtain for any η > 0

mG/Γ{h |π(ρ̃+
t,ε)(ϕε)(hΓ)−

∫
ϕε| > η} ≤ (

E(t)‖ϕε‖L2

η
)2. (83)

If (E(t)‖ϕε‖L2/η)2 < mG/Γ(Oε)/2 = mG(Oε)/2V (Γ), (here we need ‖ϕε‖2L2(G/Γ) = mG(Oε)/V (Γ).) we will

take η = 2E(t)
mG(Oε) , there exists h ∈ Oε, such that

π(ρ̃+
t,ε)(ϕε)(hΓ) < η +

∫
ϕε.

Then by Lemma 8.4, ∑
γ∩D̃δt

ψ(k1(γ), k2(γ)) ≤ π(ρ̃+
t,ε)(ϕε)(hΓ)

∫
ρ+
t,ε ≤ (η +

1

V (Γ)
)

∫
ρ+
t,ε

=

∫
ρt

V (Γ)
(1 + ηV (Γ)) +O(ε(Lipψ)mG(Dt)),

where the last inequality is due to (75). Therefore∑
γ∩D̃δt

ψ(k1(γ), k2(γ))∫
ρt

− 1

V (Γ)
≤ E(t)

2mG(Oε)
+ ε

Lipψ∫
ψ

1

V (Γ)
� E(t)

εd0
+ ε

Lipψ∫
ψ
,

where d0 is the dimension of group G. By (80), we also have

|
∫
ρt −mG(Dt)

∫
ψ| =

∫
ψ|mG(D̃δ

t )−mG(Dt)| ≤ δmG(Dt)
1−ζ1

∫
ψ,
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and the trivial bound

|Γ ∩Dδ
t | ≤

mG(OεinjDδ
t )

mG(Oεinj )
� mG(D

δ+l0εinj
t+εinj )ε−dimGinj � mG(Dt)

1−ζ1ε−dimGinj ,

therefore ∑
γ∩Dt

ψ(k1(γ), k2(γ))− mG(Dt)

V (Γ)

∫
ψ

� mG(Dt)(LipψmG(Dt)
−ζ1ε−dimGinj +

∫
ψ

(
mG(Dt)

−ζ1 +
E(t)

εd0
+ ε

Lipψ∫
ψ

)
).

(84)

We can take C6 large enough such that the term mG(Dt)
−ζ1ε−dimGinj is exponentially small on t.

In order to optimize the error term, we take

ε = (E(t)

∫
ψ/Lipψ)1/(1+d0),

then the error term in the above formula is

E(t)1/(1+d0)(
Lipψ∫
ψ

)d0/(1+d0) � mG(Dt)
−ζ(

Lipψ∫
ψ

)(d0+qκ2)/(1+d0) ≤ mG(Dt)
−ζ(

Lipψ∫
ψ

),

where the last equality is due to (77) and qκ2 = 1/n(G,Γ) ≤ 1, and where ζ = (q − 1)κ2/(1 + d0). Here ε
should be less than ε1, εinj , but

ε ≤
(

C

mG(Dt)(q−1)κ2

∫
ψ

Lipψ

)1/(1+d0)

≤
(

C

mG(Dt)(q−1)κ2

)1/(1+d0)

. (85)

The condition on ε is satisfied if t is greater than some t2 > 0 and C6| log εinj |. Therefore by (84), we obtain
one part of Theorem 8.1 for t > t0 = max{t1, t2}, with t0 not depending on ψ.

For ρ−t,ε, we can obtain the same bound with extra condition that ε <
∫
ψ/2l0Lipψ, that is if t is large.

Otherwise, we have ε ≥
∫
ψ/2l0Lipψ, by (85), which implies

Lipψ � mG(Dt)
ζ2

∫
ψ, (86)

with ζ2 = (q − 1)κ2/d0. Therefore by non-negativeness of ψ

mG(Dt)

V (Γ)

(∫
ψ − CmG(Dt)

−ζ2Lipψ

)
≤ 0 ≤

∑
γ∩Dt

ψ(k1(γ), k2(γ)).

By taking

κ = min{ζ, ζ1/2, ζ2} = min{ζ1/2,
(q − 1)

q(1 + d0)n(G,Γ)
},

the proof is complete.

Remark 8.7. We need to check the condition in Theorem 4.5 in [GN12a]. For real linear algebraic semisimple
Lie groups, we don’t need that the group is simply connected. This condition is only needed for the p-adic
case if we look into the proof of Theorem 4.5. Then the crucial condition is that the representation of G on
L2

0(G/Γ) is Lp+ and the rate n(G,Γ) in (72) equals 1 if p = 2 and 2dp/4e if p > 2. In [Oh02], an explicit
estimate on p is given for some cases. If G is a connected real linear algebraic semisimple Lie group and Γ is
an irreducible lattice, the condition should be true.

In Kelmer-Sarnak [KS09], they explained this for G = G1 × · · ·Gr with each Gj simple Lie groups and
centre free. There are two steps for proving this. If r = 1 and the real rank of G is 1, then the spectral gap
is true. Otherwise, due to Margulis superrigidity theorem, Γ is commensurate to a congruence lattice. We
have a strong spectral gap (deep result from number theory); that is, each simple factor Gj has a spectral
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gap on L2
0(G/Γ). Once we have the spectral gap, we can compute the matrix coefficients for each irreducible

subrepresentation, which will be in Lp for some bounded p, due to the works of many people. From congruence
lattice to commersurable lattice, need the Lemma 3.1 of Kleinbock-Margulis [KM99]. We still need to prove
L2

0(G/Γ) is Lp+ from the property of its subrepresentations.
In [KM99], Theorem 3.4, they use a strong spectral gap to obtain an estimate of matrix coefficients for

smooth vectors, which implies that L2
0(G/Γ) is Lp for some p. The idea is that if we know an irreducible

representation is Lp, then Howe’s work tells us the matrix coefficients decay exponentially, and the constants
only depend on the group and p for K-finite vectors. Then since we know a strong spectral gap, we can obtain
each irreducible subrepresentation of L2

0(G/Γ) is strong Lp for some finite p. Howe’s work gives a uniform
estimate of matrix coefficients of all the irreducible representations. We can obtain a matrix coefficients
estimate of L2

0(G/Γ) from its irreducible subrepresentations.
For specialists, they know well. But for us, the step from subrepresentations in Lp to L2

0(G/Γ) in Lp is
highly nontrivial.

Now the condition in Corollary 3.5 in [KM99] is that G is a connected algebraic semisimple Lie group
centre free without compact factor and Γ is an irreducible lattice. If we can remove centre-free, then we are
satisfied.

If we have another group G1 with non trivial center. Then we consider G := G1/Z1 = π(G1), which is
centre-free, where Z1 the center of G1. Let Γ1 be an irreducible lattice of G1. Let Γ2 = Γ1Z1 and Γ = π(Γ2).
Then G1/Γ2 ' G/Γ and L2

0(G1/Γ2) ' L2
0(G/Γ). Now for each simple factor of G, by Theorem 1.12 in

[KM99], it has no almost invariant vector on L2
0(G/Γ). So for simple factors of G1, it will also have no almost

invariant vector on L2
0(G1/Γ2). Since Γ1 is a finite index subgroup of Γ2, by Lemma 3.1 in [KM99], for each

simple factor of G1, it has also no almost invariant vector in L2
0(G1/Γ1). Therefore, we can use Theorem 3.4

in [KM99] to deduce the desired version.

Remark 8.8. Theorem 8.1 is exactly Theorem 7.2 in [GN12a] with an explicit error term, where no proof
of Theorem 7.2 is given. But we cannot obtain this Theorem directly from Theorem 7.1 for Lipschitz well-
rounded sets in [GN12a] by approximating Lipschitz functions by level sets because the level sets of a Lipschitz
function may not be uniformly Lipschitz well rounded. For one-dimensional cases, (i.e. SL2(R), Lipschitz
function on SO(2)), we can take a Lipschitz function ψ as the distance to a Cantor set. Then the level sets
{ψ < 1/n} approximate the Cantor set. Each set is Lipschitz well-rounded, but the constant in Lipschitz
well-rounded blow up as n tends to infinity because the number of intervals in {ψ < 1/n} goes to infinite.

8.2 Integer points on subvarieties

For the proof of Proposition 6.10, we need Corollary 1.11 from [GN12a].

Lemma 8.9. Let Γ(p) = {γ ∈ Γ, γ ≡ Id (modp)} for prime p. There exists ε > 0 such that for all primes
p, γ ∈ Γ and t > 1, we have

|{γΓ(p) ∩Dt}| =
vol(Dt)

[Γ : Γ(p)] vol(Γ\G)
+O(vol(Dt)e

−εt).

Proof. Recall Lipschitz well-roundness in [GN12a, Definiton 1.1]: there exist C > 0, ε1 > 0 and t1 > 0 such
that for 0 < ε < ε1 and t > t1, we have

vol(OεDtOε) ≤ (1 + Cε) vol(∩u,v∈OεuDtv),

where Oε is the ball B(e, ε) in G. This is true for Dt. Because of Lemma 2.18 we have

vol(OεDtOε) ≤ vol(Dt+`ε) ≤ (1 + Cε) vol(Dt−`ε) ≤ (1 + Cε) vol(∩u,v∈OεuDtv).

We can use Theorem 4.5 [GN12a] and Lipschitz well-roundness of Dt to verify conditions in Corollary
1.11 [GN12a]. Then Corollary 1.11 [GN12a] implies the result.

Proof of Proposition 6.10. If we replace Dt by the ball Bt = {γ ∈ SLd(Z), |tr(γtγ)| < et}, this proposition is
Theorem 1.8 in [GN12b]. Since there is no detailed proof of Theorem 1.8 in [GN12b], we give a proof for Dt

for completeness. The idea of proof is similar, the main difference is in the estimate of the number of fibres.
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Let p be a prime number to be chosen later depending on t. Let πp be the map from SLd(Z) to SLd(Z/pZ).
Then {γ ∈ SLd(Z) ∩ Dt, h(γ) = 0} is a subset in the preimage π−1

p {γ ∈ SLd(Z/pZ), h(γ) = 0}. This can
be seen as a fibre space, each fibre is given by γΓ(p) for some γ ∈ Γ with h(πp(γ)) = 0. We only need to
estimate the number of fibres and the size of each fibre.

For the size of each fibre, Lemma 8.9 gives us an asymptotic.
For the number of fibre, we have

|{γ ∈ SLd(Z/pZ), h(γ) = 0}| � pdim−1, (87)

if h does not vanish on SLd(Z/pZ), which is true if p is greater than the coefficients of h. Here dim is the
dimension of SLd. This bound can be obtained from [LW54, Lemma 1] or Lemma 1 [Tao]. The constant in
the upper bound only depends on the degree of h and d.

Therefore, by Lemma 8.9 and (87), we obtain

|{γ ∈ SLd(Z) ∩Dt, h(γ) = 0}| � pdim−1

(
vol(Dt)

[Γ : Γ(p)] vol(Γ\G)
+O(vol(Dt)e

−εt)

)
≤ vol(Dt)

(
1

p vol(Γ\G)
+O(pdim−1e−εt)

)
.

By the Bertrand–Chebyshev Theorem, there is always a prime p in the interval (n, 2n) with n > 1. So we
can take a prime p of size eεt/dim. The proof is complete.
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PhD thesis, Tours, 2007.

[Thu97] W. P. Thurston. Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton
Mathematical Series. Princeton University Press, Princeton, NJ, 1997.

[TW03] G. Tomanov and B. Weiss. Closed orbits for actions of maximal tori on homogeneous spaces.
Duke Mathematical Journal, 119(2):367–392, 2003.

[Zel92] S. Zelditch. Selberg trace formulae and equidistribution theorems for closed geodesics and
Laplace eigenfunctions: finite area surfaces. Memoirs of the American Mathematical Society,
96(465):vi+102, 1992.

Institut für Mathematik, Universität Zürich, 8057 Zürich
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