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Weyl chamber flows

G semisimple Lie group of non-compact type,

A maximal torus, a := Lie(A) the Cartan subspace,

a+ closed positive Weyl chamber, a++ its interior.

M the compact subgroup such that AM = ZG (A).

SL(n,R)
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
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SOn−1
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
Γ ⊂ G a torsion free, Zariski dense, discrete subgroup.

Weyl chamber flow

For all non zero θ ∈ a+, denote by φtθ(ΓgM) := ΓgetθM the Weyl chamber flow

φtθ : Γ\G/M x. The flow φtθ is a regular Weyl chamber flow when θ ∈ a++.

Γ lattice: Howe-Moore(79) mixing, Moore (87) exponential rate

G = SO(n, 1)0 (... Dal’bo 2000, Kim 2006)

Geodesic flow acting on T 1Γ\Hn is topologically mixing on its non-wandering set.
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Mixing condition

Theorem (D-Glorieux 20)

Let G be a connected, real linear, semisimple Lie group of non-compact type and

Γ < G discrete, Zariski dense. The following holds.

(a) If φtθ has a non-diverging orbit, then θ ∈ B(Γ).

(b) A regular Weyl chamber flow φtθ is topologically mixing on Ω if and only if θ is in

the interior of B(Γ).

B(Γ) ⊂ a+ is the Benoist cone of Γ, it was introduced in 1997, it is a closed, convex

cone of non-empty interior when Γ is Zariski dense. Quint, Thirion (2007) for

Ping-Pong groups, Sambarino (2014) for Hitchin, Edwards-Lee-Oh (2020) Anosov

groups obtain mixing rates.

Definition

Ω is the smallest closed, A-invariant subset of Γ\G/M containing the periodic orbits

of regular Weyl chamber flows.

Conze-Guivarc’h (2000) gave a construction for SL(n,R), they proved that there are

dense A-orbits in Ω.
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Benoist cone

Jordan decomposition
g =

commuting

parts

ge
elliptic ⊂ max.

compact subgp

gh
hyperbolic

⊂ conjugate of A

gu
unipotent ⊂ max

unip subgp

Definition

Jordan projection, g ∈ G 7→ λ(g) ∈ a+ unique element such that gh ∼ eλ(g).

When λ(g) ∈ a++, we say that g is loxodromic.

Benoist cone B(Γ) := ∪γ∈ΓR+λ(γ).

Theorem (Benoist 97’)

When Γ is Zariski dense, B(Γ) is a convex cone of non-empty interior.

Loxodromics of Γ

γ = hγmγeλ(γ)h−1
γ

λ(Γ) ∩ a++ ⊂ B(Γ)
Periodic orbits in Γ\G/M
γhγ = hγmγeλ(γ) ∈ hγeλ(g)M

When Γ is a lattice, B(Γ) = a+.

Non-wandering set

Ω := {wA | θ ∈ λ(Γ) ∩ a++ and φtθ(w) is periodic}.
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γ ∈ Γlox then w = hγM is φt
λ(γ)

periodic in Γ\G/M, where γ = hγmγeλ(γ)h−1
γ .



Proof of (a)

If φtθ has a non-diverging orbit, then θ ∈ B(Γ).

Definition

Cartan projection, g ∈ G 7→ µ(g) ∈ a+ unique element such that g ∈ Keµ(g)K .

Theorem (Benoist 97’)

When Γ is Zariski dense, B(Γ) is the cone asymptotic to µ(Γ) i.e.

B(Γ) = ∩n≥0∪‖µ(γ)‖≥nR+µ(γ).

Pick h ∈ G such that φtθ(ΓhM) is non-diverging,

pick C ⊂ G/M compact, tn →∞ and γn such that

φtnθ (hM) = hetnθM ∈ γnC ⊂ Γ.C .

The Cartan projection is a proper map,

µ(hetnθ) = µ(γn) + O(µ(C))

tnθ = µ(γn) + O(µ(C), µ(h)).

θ =
1

tn
µ(γn) + O(

1

tn
).

Hence θ ∈ B(Γ).
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Necessary condition for mixing

(a) φtθ has a non-diverging orbit ⇒ θ ∈ B(Γ).

Ω := {wA | θ ∈ λ(Γ) ∩ a++ and φtθ(w) is periodic}.

We want to prove : (NC) If (Ω, φtθ), with θ ∈ a++, is mixing, then θ ∈
◦
B(Γ).

Proof: Take h ∈ G such that

Γ.hAM ⊂ φtθ(Γ.hM).

For all v ∈ a, there exists γn ∈ Γ, tn →∞, mn ∈ M, δn → eG such that

γnhe
v δn = hetnθmn.

γn = he−v+tnθmnh
−1δ′n

Idea: he−v+tnθmnh−1 is (r , εn)-loxodromic when n large. δ′n → eG .

γn is (2r , 2εn)-loxodromic when n large enough and

λ(γn) = λ(he−v+tnθmnh
−1) + o(1)

λ(γn) = −v + tnθ + o(1).
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For all v ∈ a, there exists γn ∈ Γ, tn →∞, mn ∈ M, δn → eG such that

γnhe
v δn = hetnθmn.

γn = he−v+tnθmnh
−1δ′n

Idea: he−v+tnθmnh−1 is (r , εn)-loxodromic when n large. δ′n → eG .

γn is (2r , 2εn)-loxodromic when n large enough and

λ(γn) = λ(he−v+tnθmnh
−1) + o(1)

λ(γn) = −v + tnθ + o(1).





Generic product of loxodromic elements

g ∈ G lox loxodromic, pick (hg ,mg ) ∈ G ×M such that g = hg eλ(g)mgh
−1
g .

N = {u ∈ G | a−nuan → eG for all a ∈ A++} maximal unipotent subgroup.

P := MAN and F = G/P the Furstenberg boundary, P− s.t. StabG (P−) = MAN−.

Fact

g has an attracting point g+ := hgP and a repelling point g− = hgP− in F . The

bassin of attraction of g+ is hgN−.P =: b(g−).

Definition

Let r > 0 and ε ∈ (0, r ], we say g is (r , ε)-loxodromic if

(i) r ≤ 1
2
d(g+, ∂b(g−));

(ii) gVε(∂b(g−)){ ⊂ B(g+, ε) and the restriction is ε-Lipschitz.

Proposition (Benoist 97)

There exists δr,ε → 0 such that the following holds.

For all 0 < ε ≤ r and gk , ..., g1 ∈ G be (r , ε)-loxodromic and r -generically ordered,

there exists ν(gk , ..., g1) ∈ a such that for all nk , ..., n1 ≥ 1

λ(g
nk
k ...gn1

1 )
lδr,ε
' nkλ(gk ) + ...+ n1λ(g1) + ν.

and g = g
nk
k ...gn1

1 is (2r , 2ε)-loxodromic with (g+, g−) ∈ B(g+
k , ε)× B(g−1 , ε).
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Sufficient condition for mixing

Step 1

There exists h ∈ G with ΓhM ∈ Ω such that for all δ > 0, for all v ∈ a, there exists

T > 0 such that for all t ≥ T

Γ.B(hM, δ) ∩ B(hev+tθM, δ) 6= ∅.

Proposition (Benoist 1997)

Γ Zariski dense, θ ∈
◦
B(Γ). Then there

is an r -generic family S ⊂ Γ of dimA

elements and εn → 0 such that

• θ is in the interior of the polygonal

cone spanned by λ(S).

• Sn is an r -generic family of

(r , εn)-loxodromic elements and

spans a Zariski dense semigroup of

G , for all n ≥ 1.

Proposition (Benoist 2000)

Γ Zariski dense. Then 〈λ(Γ)〉 = a.

Choose gk , ..., g1 in the semigroup spanned by

Sn so that 〈λ(gj )〉 is δr,εn dense in a, where

k ≤ 3 dimA. Pick h ∈ G such that

(hP, hP−) = (g+
k , g

−
1 ).

g
nk
k ...gn1

1 hM
lδr,εn' h exp(ν +

∑
njλ(gj ))M.
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A dense orbit in the space of oriented flats

Hopf coordinates

G/MA
∼→ F

4
×F

G/M
∼→ F

4
×F × a.

The limit set LΓ ⊂ F is closed, Γ-invariant minimal.

Ω̃
∼→ LΓ

4
× LΓ × a.

Theorem (Conze-Guivarc’h (2000), D-Glorieux)

The action of Γ on LΓ

4
× LΓ has a dense orbit.

Rmk: h ∈ G such that (hP, hP−) = (g+
k , g

−
1 ) where gk , g1 ∈ Γlox , then ΓhM ∈ Ω!

⇒ topological mixing!
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Thank you for your attention!


