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Topological mixing:
Q .~ ¢t is topologically mixing if for all (non-empty) U,V C , there exists T > 0
such that ¢f(U) NV # 0 for all t > T.

(V) u %



Weyl chamber flows

G semisimple Lie group of non-compact type,

A maximal torus, a := Lie(A) the Cartan subspace,

at closed positive Weyl chamber, a™ its interior.

M the compact subgroup such that AM = Z;(A).



Weyl chamber flows

G semisimple Lie group of non-compact type,

A maximal torus, a := Lie(A) the Cartan subspace,

at closed positive Weyl chamber, a™ its interior.

M the compact subgroup such that AM = Z;(A).

SL(n,R)
diag(eh, ..., etn)
i ti=0
diag(ti, ..., tn)
t1 2 2 tn
diag(e1,...,&n)
ei € {£1},

€1...€pn = 1



Weyl chamber flows

G semisimple Lie group of non-compact type, SL(n,R) S0(n,1)o
t
e
| , diag(e, e [ 1,
A maximal torus, a := Lie(A) the Cartan subspace, & T =
2 ti=0 et
teR
. t
at closed positive Weyl chamber, a™ its interior. diag(ti, ..., tn) 0
t > ... 2> tn =1
=G t>0
M the compact subgroup such that AM = Z;(A). diag(e1, ..y en) 1
g; € {£1}, SOp—1

€1...€pn = 1



Weyl chamber flows

G semisimple Lie group of non-compact type, SL(n,R) 50(n, 1)o

et

diag(eh, ..., etn)

A maximal torus, a := Lie(A) the Cartan subspace, n _ 1o

i ti=0

. t
at closed positive Weyl chamber, a™ its interior. diag(ti, ..., tn)
0nfl

t1 2 2 tn
M the compact subgroup such that AM = Z;(A). diag(e1, ..., en) 1

g; € {£1}, SOp—1

€1...€pn = 1
[ C G a torsion free, Zariski dense, discrete subgroup.
Weyl chamber flow

For all non zero 0 € a™, denote by ¢}(I'gM) := 'get? M the Weyl chamber flow
®% : T\G/M . The flow ¢}, is a regular Weyl chamber flow when 6 € a™+.



Weyl chamber flows

G semisimple Lie group of non-compact type, SL(n,R) 50(n, 1)o
t
e
diag(e', ..., et
A maximal torus, a := Lie(A) the Cartan subspace, ,,g( T ) Ln-1
i ti=0
. t
at closed positive Weyl chamber, a™ its interior. diag(ti, ..., tn)
0nfl
t1 2 2 tn
M the compact subgroup such that AM = Z;(A). diag(e1, ..y en) 1
€i € {:I:]'}7 SOnfl

€1...€pn = 1

[ C G a torsion free, Zariski dense, discrete subgroup.

Weyl chamber flow

For all non zero 0 € a™, denote by ¢}(I'gM) := 'get? M the Weyl chamber flow
®% : T\G/M . The flow ¢}, is a regular Weyl chamber flow when 6 € a™+.

I lattice: Howe-Moore(79) mixing, Moore (87) exponential rate

G = SO(n,1)g (... Dal’bo 2000, Kim 2006)

Geodesic flow acting on TXF\H" is topologically mixing on its non-wandering set.
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Definition

Q is the smallest closed, A-invariant subset of '\G/M containing the periodic orbits
of regular Weyl chamber flows.

Conze-Guivarc'h (2000) gave a construction for SL(n, R), they proved that there are
dense A-orbits in Q.
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parts compact subgp C conjugate of A unip subgp
Definition

Jordan projection, g € G + \(g) € a™ unique element such that gj, ~ eMe),
When A(g) € a* ', we say that g is loxodromic.
Benoist cone B(I') := UyerR+ A(7).

Theorem (Benoist 97°)
When T is Zariski dense, B(I) is a convex cone of non-empty interior.

Loxodromics of T Periodic orbits in N\G/M
++
v = hwmwe’\(ﬂhﬁj1 AFynar C B(T) vhy = thWeA(V) S hwek(g)M

When T is a lattice, B(I') = a*.

Non-wandering set

Q:={wA

6 € A(I') Na** and ¢p(w) is periodic}.



v € T’ then w = hyM is qﬁf\(’y) periodic in T\G/M, where v = h,ym,YeA(V)h;l.
SL(3,R)
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Proof of (a)

If ¢4 has a non-diverging orbit, then 6 € B(I).

Definition
Cartan projection, g € G — pu(g) € a™ unique element such that g € Ket(8)K.

Theorem (Benoist 97°)
When T is Zariski dense, B(I") is the cone asymptotic to p(I') i.e.

B(I) = Nnz0Yju(y) ) =nR-1(7)-

Pick h € G such that ¢},(FhM) is non-diverging,
pick C C G/M compact, t, — oo and 7, such that

o (hM) = he"® M € v,C C T.C.

The Cartan projection is a proper map,
p(he'®) = p(vn) + O(u(C))
tn6 = p(vn) + O(u(C), pu(h)).

1 1
0 = —p(yn) + O(—).
(1) +0()

Hence 0 € B(T).
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(a) ¢f has a non-diverging orbit = 6 € B(I).
Q:={wA | 60Xl Nnatt and ¢)(w) is periodic}.
We want to prove : (NC) If (2, ¢f), with 0 € a™™, is mixing, then 6 € IOS(F)

Proof: Take h € G such that
r.hAM C ¢§(T.hM).
For all v € qa, there exists v, € I, t, — 00, mp € M, §, — eg such that
Ynhe'S, = hen? m,.
Yn = he_v+t"9mnh_1§:,

Idea: he=v+t9m,h=1 is (r,e,)-loxodromic when n large. &, — eg.
~n is (2r,2e,)-loxodromic when n large enough and

A(vn) = A(he V9 m h=1) 4 o(1)

A(vn) = —v + tab + o(1).
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Definition
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Proposition (Benoist 97)

There exists §,, — 0 such that the following holds.

For all 0 < e < r and g, ...,g1 € G be (r,e)-loxodromic and r-generically ordered,
there exists v(gx, -..,&1) € a such that for all ng,...,n > 1

167 e
Aek.gt) = mA(gk) + -+ mA(gr) + v

and g = g *...g{"* is (2r, 2¢)-loxodromic with (g*,g7) € B(g/",¢) x B(g; ,2).
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Sufficient condition for mixing

Step 1

There exists h € G with ThM € Q such that for all § > 0, for all v € a, there exists
T > 0 such that for all t > T

r.B(hM,8) N B(he" M, §) # 0.

Choose gy, ..., g1 in the semigroup spanned by
Sn so that (\(gj)) is dr,c, dense in a, where

& . ;

[ Zariski dense, 0 € B(T). Then there < = 3dimA. Pick h € G such that

is an r-generic family S C ' of dim A (hP,hP~) = (g;> &1 )-

elements and £, — 0 such that

Proposition (Benoist 1997)

167,
gk ..glthM =" hexp(v + Z ni\(gj))M.
e O is in the interior of the polygonal

cone spanned by A(S).

e S, is an r-generic family of
(r,&n)-loxodromic elements and
spans a Zariski dense semigroup of
G, for all n > 1.

Proposition (Benoist 2000)

I Zariski dense. Then (A\()) = a.
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A dense orbit in the space of oriented flats

Hopf coordinates
A
G/MAS F x F
- A
G/M = F x F X a.

The limit set L C F is closed, -invariant minimal.

~ N
Q— Lr X Lr X a.

Theorem (Conze-Guivarc’h (2000), D-Glorieux)

N
The action of I on L X Lr has a dense orbit.

Rmk: h € G such that (hP,hP~) = (g;",g; ) where gi, g1 € %, then ThM € Q!

= topological mixing!



Thank you for your attention!



