Topological mixing of the Weyl chamber flow

Nguyen-Thi Dang online in Bristol, 29th of October 2020

MATHEMATISCHES

FAKULTÄT FÜR MATHEMATIK UND INFORMATIK UNIVERSITÄT HEIDELBERG

Plan of the talk

- (1) Weyl chamber flows
- (2) Mixing condition
- (3) Benoist cone
- (4) Non-diverging orbits
- (5) Necessary condition for mixing
- (6) Sufficient condition for mixing
- (6.1) A dense orbit in the space of oriented flats
- (6.2) Generic product of loxodromic elements

Plan of the talk

- (1) Weyl chamber flows
- (2) Mixing condition
- (3) Benoist cone
- (4) Non-diverging orbits
- (5) Necessary condition for mixing
- (6) Sufficient condition for mixing
- (6.1) A dense orbit in the space of oriented flats
- (6.2) Generic product of loxodromic elements

Topological mixing:

 $\Omega \curvearrowleft \phi^t$ is topologically mixing if for all (non-empty) $\mathcal{U}, \mathcal{V} \subset \Omega$, there exists T > 0 such that $\phi^t(\mathcal{U}) \cap \mathcal{V} \neq \emptyset$ for all $t \ge T$.

G semisimple Lie group of non-compact type,

A maximal torus, a := Lie(A) the Cartan subspace,

 \mathfrak{a}^+ closed positive Weyl chamber, \mathfrak{a}^{++} its interior.

M the compact subgroup such that $AM = Z_G(A)$.

G semisimple Lie group of non-compact type,	$\mathrm{SL}(n,\mathbb{R})$
A maximal torus, $\mathfrak{a} := Lie(A)$ the Cartan subspace,	$diag(e^{t_1},,e^{t_n})$ $\sum_{i=1}^n t_i = 0$
\mathfrak{a}^+ closed positive Weyl chamber, \mathfrak{a}^{++} its interior.	$diag(t_1,,t_n) \ t_1 \geq \geq t_n$
M the compact subgroup such that $AM = Z_G(A)$.	$diag(arepsilon_1,,arepsilon_n) \ arepsilon_i \in \{\pm 1\}, \ arepsilon_1 arepsilon_n = 1$

 $\begin{array}{ll} G \text{ semisimple Lie group of non-compact type,} & \operatorname{SL}(n,\mathbb{R}) & \operatorname{SO}(n,1)_0 \\ \\ A \text{ maximal torus, } \mathfrak{a} := Lie(A) \text{ the Cartan subspace,} & \begin{pmatrix} diag(e^{t_1},...,e^{t_n}) \\ \sum_{i=1}^n t_i = 0 \end{pmatrix} \begin{pmatrix} e^t & 1_{n-1} \\ & e^{-t} \end{pmatrix}_{t \in \mathbb{R}} \\ \\ \mathfrak{a}^+ \text{ closed positive Weyl chamber, } \mathfrak{a}^{++} \text{ its interior.} & \begin{pmatrix} diag(t_1,...,t_n) \\ t_1 \ge ... \ge t_n \end{pmatrix} \begin{pmatrix} t \\ & 0_{n-1} \\ & -t \end{pmatrix}_{t \ge 0} \\ \\ M \text{ the compact subgroup such that } AM = Z_G(A). & \begin{pmatrix} diag(\varepsilon_1,...,\varepsilon_n) \\ \varepsilon_i \in \{\pm 1\}, \end{pmatrix} \begin{pmatrix} 1 \\ & \operatorname{SO}_{n-1} \end{pmatrix} \end{pmatrix} \end{array}$

$$\varepsilon_1 \cdots \varepsilon_n = 1$$
 $\left(\begin{array}{c} \mathrm{SO}_{n-1} \\ \mathrm{I} \end{array} \right)$

Weyl chamber flow

For all non zero $\theta \in \mathfrak{a}^+$, denote by $\phi^t_{\theta}(\Gamma gM) := \Gamma g e^{t\theta} M$ the Weyl chamber flow $\phi^t_{\theta} : \Gamma \setminus G/M \curvearrowleft$. The flow ϕ^t_{θ} is a *regular Weyl chamber flow* when $\theta \in \mathfrak{a}^{++}$.

Weyl chamber flow

For all non zero $\theta \in \mathfrak{a}^+$, denote by $\phi_{\theta}^t(\Gamma gM) := \Gamma g e^{t\theta} M$ the Weyl chamber flow $\phi_{\theta}^t : \Gamma \setminus G/M \curvearrowright$. The flow ϕ_{θ}^t is a *regular Weyl chamber flow* when $\theta \in \mathfrak{a}^{++}$.

□ attice: Howe-Moore(79) mixing, Moore (87) exponential rate

 $G = SO(n, 1)_0$ (... Dal'bo 2000, Kim 2006)

Geodesic flow acting on $T^1\Gamma \setminus \mathbb{H}^n$ is topologically mixing on its non-wandering set.

Let G be a connected, real linear, semisimple Lie group of non-compact type and $\Gamma < G$ discrete, Zariski dense. The following holds.

(a) If ϕ_{θ}^{t} has a non-diverging orbit, then $\theta \in \mathcal{B}(\Gamma)$.

Let G be a connected, real linear, semisimple Lie group of non-compact type and $\Gamma < G$ discrete, Zariski dense. The following holds.

- (a) If ϕ_{θ}^{t} has a non-diverging orbit, then $\theta \in \mathcal{B}(\Gamma)$.
- (b) A regular Weyl chamber flow ϕ_{θ}^t is topologically mixing on Ω if and only if θ is in the interior of $\mathcal{B}(\Gamma)$.

Let G be a connected, real linear, semisimple Lie group of non-compact type and $\Gamma < G$ discrete, Zariski dense. The following holds.

- (a) If ϕ_{θ}^{t} has a non-diverging orbit, then $\theta \in \mathcal{B}(\Gamma)$.
- (b) A regular Weyl chamber flow ϕ_{θ}^t is topologically mixing on Ω if and only if θ is in the interior of $\mathcal{B}(\Gamma)$.

 $\mathcal{B}(\Gamma) \subset \mathfrak{a}^+$ is the Benoist cone of Γ , it was introduced in 1997, it is a closed, convex cone of non-empty interior when Γ is Zariski dense.

Let G be a connected, real linear, semisimple Lie group of non-compact type and $\Gamma < G$ discrete, Zariski dense. The following holds.

- (a) If ϕ_{θ}^{t} has a non-diverging orbit, then $\theta \in \mathcal{B}(\Gamma)$.
- (b) A regular Weyl chamber flow ϕ_{θ}^t is topologically mixing on Ω if and only if θ is in the interior of $\mathcal{B}(\Gamma)$.

 $\mathcal{B}(\Gamma) \subset \mathfrak{a}^+$ is the Benoist cone of Γ , it was introduced in 1997, it is a closed, convex cone of non-empty interior when Γ is Zariski dense. Quint, Thirion (2007) for Ping-Pong groups, Sambarino (2014) for Hitchin, Edwards-Lee-Oh (2020) Anosov groups obtain mixing rates.

Let G be a connected, real linear, semisimple Lie group of non-compact type and $\Gamma < G$ discrete, Zariski dense. The following holds.

- (a) If ϕ_{θ}^{t} has a non-diverging orbit, then $\theta \in \mathcal{B}(\Gamma)$.
- (b) A regular Weyl chamber flow ϕ_{θ}^t is topologically mixing on Ω if and only if θ is in the interior of $\mathcal{B}(\Gamma)$.

 $\mathcal{B}(\Gamma) \subset \mathfrak{a}^+$ is the Benoist cone of Γ , it was introduced in 1997, it is a closed, convex cone of non-empty interior when Γ is Zariski dense. Quint, Thirion (2007) for Ping-Pong groups, Sambarino (2014) for Hitchin, Edwards-Lee-Oh (2020) Anosov groups obtain mixing rates.

Definition

 Ω is the smallest closed, A-invariant subset of $\Gamma \setminus G/M$ containing the periodic orbits of regular Weyl chamber flows.

Conze-Guivarc'h (2000) gave a construction for $\mathrm{SL}(n,\mathbb{R})$, they proved that there are dense A-orbits in Ω .

Jordan decomposition				
g = '	<i>g</i> _e	Вh	gu	
commuting	elliptic \subset max.	hyperbolic	$\mathit{unipotent} \subset max$	
parts	compact subgp	\subset conjugate of A	unip subgp	

	Jordan decomposit g =	ion ge	<i>g</i> _h	gu	
С	ommuting	$elliptic \subset max.$	hyperbolic	$\mathit{unipotent} \subset max$	
pa	arts	compact subgp	\subset conjugate of A	unip subgp	
	Definition				
	Jordan projection, $g \in G \mapsto \lambda(g) \in \mathfrak{a}^+$ unique element such that $g_h \sim e^{\lambda(g)}$.				

When $\lambda(g) \in \mathfrak{a}^{++}$, we say that g is *loxodromic*.

	Jordan decomposit g =	ion ge	<i>g</i> _h	gu
С	ommuting	$elliptic \subset max.$	hyperbolic	$\mathit{unipotent} \subset max$
pa	arts	compact subgp	\subset conjugate of A	unip subgp
	Definition			
	Jordan projection, $g\in {\mathcal G}\mapsto \lambda(g)\in \mathfrak{a}^+$ unique element such that $g_h\sim e^{\lambda(g)}.$			

When $\lambda(g) \in \mathfrak{a}^{++}$, we say that g is loxodromic. Benoist cone $\mathcal{B}(\Gamma) := \overline{\bigcup_{\gamma \in \Gamma} \mathbb{R}_+ \lambda(\gamma)}$.

Theorem (Benoist 97')

When Γ is Zariski dense, $\mathcal{B}(\Gamma)$ is a convex cone of non-empty interior.

Jordan decomposition				
g = .	<i>g</i> _e	g _h	gu	
commuting	$elliptic \subset max.$	hyperbolic	$\textit{unipotent} \subset max$	
parts	compact subgp	\subset conjugate of A	unip subgp	
Definition				

Definition

Jordan projection, $g \in G \mapsto \lambda(g) \in \mathfrak{a}^+$ unique element such that $g_h \sim e^{\lambda(g)}$.

When $\lambda(g) \in \mathfrak{a}^{++}$, we say that g is loxodromic. Benoist cone $\mathcal{B}(\Gamma) := \overline{\bigcup_{\gamma \in \Gamma} \mathbb{R}_+ \lambda(\gamma)}$.

Theorem (Benoist 97')

When Γ is Zariski dense, $\mathcal{B}(\Gamma)$ is a convex cone of non-empty interior.

Loxodromics of Γ $\gamma = h_{\gamma}m_{\gamma}e^{\lambda(\gamma)}h_{\gamma}^{-1}$ $\lambda(\Gamma) \cap \mathfrak{a}^{++} \subset \mathcal{B}(\Gamma)$ Periodic orbits in $\Gamma \setminus G/M$ $\gamma h_{\gamma} = h_{\gamma}m_{\gamma}e^{\lambda(\gamma)} \in h_{\gamma}e^{\lambda(g)}M$

Jordan decomposition					
g = .	<i>g</i> _e	Вh	gu		
commuting	$elliptic \subset max.$	hyperbolic	$\textit{unipotent} \subset max$		
parts	compact subgp	\subset conjugate of A	unip subgp		

Definition

Jordan projection, $g \in G \mapsto \lambda(g) \in \mathfrak{a}^+$ unique element such that $g_h \sim e^{\lambda(g)}$.

When $\lambda(g) \in \mathfrak{a}^{++}$, we say that g is loxodromic. Benoist cone $\mathcal{B}(\Gamma) := \overline{\bigcup_{\gamma \in \Gamma} \mathbb{R}_+ \lambda(\gamma)}$.

Theorem (Benoist 97')

When Γ is Zariski dense, $\mathcal{B}(\Gamma)$ is a convex cone of non-empty interior.

Loxodromics of Γ $\gamma = h_{\gamma} m_{\gamma} e^{\lambda(\gamma)} h_{\gamma}^{-1} \qquad \lambda(\Gamma) \cap \mathfrak{a}^{++} \subset \mathcal{B}(\Gamma)$ Periodic orbits in $\Gamma \setminus G/M$ $\gamma h_{\gamma} = h_{\gamma} m_{\gamma} e^{\lambda(\gamma)} \in h_{\gamma} e^{\lambda(g)} M$

When Γ is a lattice, $\mathcal{B}(\Gamma) = \mathfrak{a}^+$.

Jordan decomposition					
g = .	<i>g</i> _e	g _h	gu		
commuting	$elliptic \subset max.$	hyperbolic	$\textit{unipotent} \subset max$		
parts	compact subgp	\subset conjugate of A	unip subgp		

Definition

Jordan projection, $g \in G \mapsto \lambda(g) \in \mathfrak{a}^+$ unique element such that $g_h \sim e^{\lambda(g)}$.

When $\lambda(g) \in \mathfrak{a}^{++}$, we say that g is loxodromic. Benoist cone $\mathcal{B}(\Gamma) := \overline{\bigcup_{\gamma \in \Gamma} \mathbb{R}_+ \lambda(\gamma)}$.

Theorem (Benoist 97')

When Γ is Zariski dense, $\mathcal{B}(\Gamma)$ is a convex cone of non-empty interior.

Loxodromics of Γ $\gamma = h_{\gamma}m_{\gamma}e^{\lambda(\gamma)}h_{\gamma}^{-1}$ $\lambda(\Gamma) \cap \mathfrak{a}^{++} \subset \mathcal{B}(\Gamma)$ Periodic orbits in $\Gamma \setminus G/M$ $\gamma h_{\gamma} = h_{\gamma}m_{\gamma}e^{\lambda(\gamma)} \in h_{\gamma}e^{\lambda(g)}M$

When Γ is a lattice, $\mathcal{B}(\Gamma) = \mathfrak{a}^+$.

Non-wandering set

$$\Omega:=\overline{\{wA \quad | \quad \theta\in\lambda(\Gamma)\cap\mathfrak{a}^{++} \text{ and } \phi^t_\theta(w) \text{ is periodic}\}}.$$

If ϕ_{θ}^{t} has a non-diverging orbit, then $\theta \in \mathcal{B}(\Gamma)$.

If ϕ_{θ}^{t} has a non-diverging orbit, then $\theta \in \mathcal{B}(\Gamma)$.

Definition

Cartan projection, $g \in G \mapsto \mu(g) \in \mathfrak{a}^+$ unique element such that $g \in Ke^{\mu(g)}K$.

```
If \phi_{\theta}^{t} has a non-diverging orbit, then \theta \in \mathcal{B}(\Gamma).
```

Definition

Cartan projection, $g \in G \mapsto \mu(g) \in \mathfrak{a}^+$ unique element such that $g \in Ke^{\mu(g)}K$.

Theorem (Benoist 97')

When Γ is Zariski dense, $\mathcal{B}(\Gamma)$ is the cone asymptotic to $\mu(\Gamma)$ i.e.

 $\mathcal{B}(\Gamma) = \overline{\bigcap_{n \ge 0} \bigcup_{\|\mu(\gamma)\| \ge n} \mathbb{R}_+ \mu(\gamma)}.$

If ϕ_{θ}^{t} has a non-diverging orbit, then $\theta \in \mathcal{B}(\Gamma)$.

Definition

Cartan projection, $g \in G \mapsto \mu(g) \in \mathfrak{a}^+$ unique element such that $g \in Ke^{\mu(g)}K$.

Theorem (Benoist 97')

When Γ is Zariski dense, $\mathcal{B}(\Gamma)$ is the cone asymptotic to $\mu(\Gamma)$ i.e.

 $\mathcal{B}(\Gamma) = \overline{\bigcap_{n \ge 0} \bigcup_{\|\mu(\gamma)\| \ge n} \mathbb{R}_+ \mu(\gamma)}.$

Pick $h \in G$ such that $\phi^t_{\theta}(\Gamma hM)$ is non-diverging, pick $C \subset G/M$ compact, $t_n \to \infty$ and γ_n such that

$$\phi_{\theta}^{t_n}(hM) = h e^{t_n \theta} M \in \gamma_n C \subset \Gamma.C.$$

If ϕ_{θ}^{t} has a non-diverging orbit, then $\theta \in \mathcal{B}(\Gamma)$.

Definition

Cartan projection, $g \in G \mapsto \mu(g) \in \mathfrak{a}^+$ unique element such that $g \in Ke^{\mu(g)}K$.

Theorem (Benoist 97')

When Γ is Zariski dense, $\mathcal{B}(\Gamma)$ is the cone asymptotic to $\mu(\Gamma)$ i.e.

 $\mathcal{B}(\Gamma) = \overline{\bigcap_{n \ge 0} \bigcup_{\|\mu(\gamma)\| \ge n} \mathbb{R}_+ \mu(\gamma)}.$

Pick $h \in G$ such that $\phi^t_{\theta}(\Gamma hM)$ is non-diverging, pick $C \subset G/M$ compact, $t_n \to \infty$ and γ_n such that

$$\phi_{\theta}^{t_n}(hM) = he^{t_n\theta}M \in \gamma_nC \subset \Gamma.C.$$

The Cartan projection is a proper map,

$$\mu(he^{t_n\theta}) = \mu(\gamma_n) + O(\mu(C))$$

$$t_n\theta = \mu(\gamma_n) + O(\mu(C), \mu(h))$$

$$\theta = \frac{1}{t_n}\mu(\gamma_n) + O(\frac{1}{t_n}).$$

Hence $\theta \in \mathcal{B}(\Gamma)$.

Necessary condition for mixing

(a) ϕ^t_{θ} has a non-diverging orbit $\Rightarrow \theta \in \mathcal{B}(\Gamma)$. $\Omega := \overline{\{wA \mid \theta \in \lambda(\Gamma) \cap \mathfrak{a}^{++} \text{ and } \phi^t_{\theta}(w) \text{ is periodic}\}}.$ $\begin{array}{l} \text{(a)} \ \phi^t_\theta \ \text{has a non-diverging orbit} \Rightarrow \theta \in \mathcal{B}(\Gamma). \\ \Omega := \overline{\{wA \ \mid \ \theta \in \lambda(\Gamma) \cap \mathfrak{a}^{++} \ \text{and} \ \phi^t_\theta(w) \ \text{is periodic}\}}. \\ \text{We want to prove : (NC) If } (\Omega, \phi^t_\theta), \ \text{with} \ \theta \in \mathfrak{a}^{++}, \ \text{is mixing, then} \ \theta \in \overset{\circ}{\mathcal{B}}(\Gamma). \end{array}$

Proof: Take $h \in G$ such that

$$\Gamma.hAM \subset \overline{\phi^t_{\theta}(\Gamma.hM)}.$$

For all $v \in \mathfrak{a}$, there exists $\gamma_n \in \Gamma$, $t_n \to \infty$, $m_n \in M$, $\delta_n \to e_G$ such that

$$\gamma_n h e^{v} \delta_n = h e^{t_n \theta} m_n.$$

$$\gamma_n = h e^{-v + t_n \theta} m_n h^{-1} \delta'_n$$

(a) ϕ_{θ}^{t} has a non-diverging orbit $\Rightarrow \theta \in \mathcal{B}(\Gamma)$. $\Omega := \overline{\{wA \mid \theta \in \lambda(\Gamma) \cap \mathfrak{a}^{++} \text{ and } \phi_{\theta}^{t}(w) \text{ is periodic}\}}.$ We want to prove : (NC) If $(\Omega, \phi_{\theta}^{t})$, with $\theta \in \mathfrak{a}^{++}$, is mixing, then $\theta \in \overset{\circ}{\mathcal{B}}(\Gamma)$.

Proof: Take $h \in G$ such that

$$\Gamma.hAM \subset \overline{\phi^t_{\theta}(\Gamma.hM)}.$$

For all $v \in \mathfrak{a}$, there exists $\gamma_n \in \Gamma$, $t_n \to \infty$, $m_n \in M$, $\delta_n \to e_G$ such that

$$\gamma_n h e^v \delta_n = h e^{t_n \theta} m_n.$$

$$\gamma_n = h e^{-\nu + t_n \theta} m_n h^{-1} \delta'_n$$

Idea: $he^{-v+t_n\theta}m_nh^{-1}$ is (r, ε_n) -loxodromic when n large. $\delta'_n \to e_G$. γ_n is $(2r, 2\varepsilon_n)$ -loxodromic when n large enough and

$$\lambda(\gamma_n) = \lambda(he^{-\nu + t_n\theta}m_nh^{-1}) + o(1)$$
$$\lambda(\gamma_n) = -\nu + t_n\theta + o(1).$$

 $g \in G^{lox}$ loxodromic, pick $(h_g, m_g) \in G \times M$ such that $g = h_g e^{\lambda(g)} m_g h_g^{-1}$. $N = \{ u \in G \mid a^{-n} u a^n \to e_G \text{ for all } a \in A^{++} \}$ maximal unipotent subgroup. P := MAN and $\mathcal{F} = G/P$ the Furstenberg boundary, P^- s.t. $\mathrm{Stab}_G(P^-) = MAN^-$.

 $g \in G^{lox}$ loxodromic, pick $(h_g, m_g) \in G \times M$ such that $g = h_g e^{\lambda(g)} m_g h_g^{-1}$. $N = \{u \in G \mid a^{-n}ua^n \to e_G \text{ for all } a \in A^{++}\}$ maximal unipotent subgroup. P := MAN and $\mathcal{F} = G/P$ the Furstenberg boundary, P^- s.t. $\operatorname{Stab}_G(P^-) = MAN^-$.

Fact

g has an attracting point $g^+ := h_g P$ and a repelling point $g^- = h_g P^-$ in \mathcal{F} . The bassin of attraction of g^+ is $h_g N^- \cdot P := b(g^-)$.

 $g \in G^{lox}$ loxodromic, pick $(h_g, m_g) \in G \times M$ such that $g = h_g e^{\lambda(g)} m_g h_g^{-1}$. $N = \{u \in G \mid a^{-n}ua^n \to e_G \text{ for all } a \in A^{++}\}$ maximal unipotent subgroup. P := MAN and $\mathcal{F} = G/P$ the Furstenberg boundary, P^- s.t. $\operatorname{Stab}_G(P^-) = MAN^-$.

Fact

g has an attracting point $g^+ := h_g P$ and a repelling point $g^- = h_g P^-$ in \mathcal{F} . The bassin of attraction of g^+ is $h_g N^- \cdot P := b(g^-)$.

Definition

Let r > 0 and $\varepsilon \in (0, r]$, we say g is (r, ε) -loxodromic if

(i)
$$r \leq \frac{1}{2} d(g^+, \partial b(g^-));$$

(ii) $g\mathcal{V}_{\varepsilon}(\partial b(g^{-}))^{\complement} \subset B(g^{+},\varepsilon)$ and the restriction is ε -Lipschitz.

 $g \in G^{lox}$ loxodromic, pick $(h_g, m_g) \in G \times M$ such that $g = h_g e^{\lambda(g)} m_g h_g^{-1}$. $N = \{u \in G \mid a^{-n}ua^n \to e_G \text{ for all } a \in A^{++}\}$ maximal unipotent subgroup. P := MAN and $\mathcal{F} = G/P$ the Furstenberg boundary, P^- s.t. $\operatorname{Stab}_G(P^-) = MAN^-$.

Fact

g has an attracting point $g^+ := h_g P$ and a repelling point $g^- = h_g P^-$ in \mathcal{F} . The bassin of attraction of g^+ is $h_g N^- \cdot P := b(g^-)$.

Definition

Let
$$r > 0$$
 and $\varepsilon \in (0, r]$, we say g is (r, ε) -loxodromic if

(i)
$$r \leq \frac{1}{2} \mathrm{d}(g^+, \partial \mathsf{b}(g^-));$$

(ii) $g\mathcal{V}_{\varepsilon}(\partial b(g^{-}))^{\complement} \subset B(g^{+},\varepsilon)$ and the restriction is ε -Lipschitz.

Proposition (Benoist 97)

There exists $\delta_{r,\varepsilon} \rightarrow 0$ such that the following holds.

For all $0 < \varepsilon \leq r$ and $g_k, ..., g_1 \in G$ be (r, ε) -loxodromic and *r*-generically ordered, there exists $\nu(g_k, ..., g_1) \in \mathfrak{a}$ such that for all $n_k, ..., n_1 \geq 1$

$$\lambda(g_k^{n_k}...g_1^{n_1}) \stackrel{l\delta_{r,\varepsilon}}{\simeq} n_k\lambda(g_k) + ... + n_1\lambda(g_1) + \nu.$$

and $g = g_k^{n_k} \dots g_1^{n_1}$ is $(2r, 2\varepsilon)$ -loxodromic with $(g^+, g^-) \in B(g_k^+, \varepsilon) \times B(g_1^-, \varepsilon)$.

Step 1

There exists $h \in G$ with $\Gamma hM \in \Omega$ such that for all $\delta > 0$, for all $v \in \mathfrak{a}$, there exists T > 0 such that for all $t \ge T$

 $\Gamma.B(hM,\delta)\cap B(he^{\nu+t\theta}M,\delta)\neq\emptyset.$

Step 1

There exists $h \in G$ with $\Gamma hM \in \Omega$ such that for all $\delta > 0$, for all $v \in \mathfrak{a}$, there exists T > 0 such that for all $t \ge T$

 $\Gamma.B(hM,\delta)\cap B(he^{\nu+t\theta}M,\delta)\neq \emptyset.$

Proposition (Benoist 1997)

 Γ Zariski dense, $\theta \in \mathcal{B}(\Gamma)$. Then there is an *r*-generic family $S \subset \Gamma$ of dim *A* elements and $\varepsilon_n \to 0$ such that

- θ is in the interior of the polygonal cone spanned by λ(S).
- S_n is an r-generic family of (r, ε_n)-loxodromic elements and spans a Zariski dense semigroup of G, for all n ≥ 1.

Step 1

There exists $h \in G$ with $\Gamma hM \in \Omega$ such that for all $\delta > 0$, for all $v \in \mathfrak{a}$, there exists T > 0 such that for all $t \ge T$

 $\Gamma.B(hM,\delta)\cap B(he^{\nu+t\theta}M,\delta)\neq \emptyset.$

Proposition (Benoist 1997)

 Γ Zariski dense, $\theta \in \mathcal{B}(\Gamma)$. Then there is an *r*-generic family $S \subset \Gamma$ of dim Aelements and $\varepsilon_n \to 0$ such that

- θ is in the interior of the polygonal cone spanned by λ(S).
- S_n is an r-generic family of (r, ε_n)-loxodromic elements and spans a Zariski dense semigroup of G, for all n ≥ 1.

Proposition (Benoist 2000)

 Γ Zariski dense. Then $\overline{\langle \lambda(\Gamma) \rangle} = \mathfrak{a}$.

Step 1

There exists $h \in G$ with $\Gamma hM \in \Omega$ such that for all $\delta > 0$, for all $v \in \mathfrak{a}$, there exists T > 0 such that for all $t \ge T$

 $\Gamma.B(hM,\delta) \cap B(he^{\nu+t\theta}M,\delta) \neq \emptyset.$

Proposition (Benoist 1997)

 Γ Zariski dense, $\theta \in \mathcal{B}(\Gamma)$. Then there is an *r*-generic family $S \subset \Gamma$ of dim *A* elements and $\varepsilon_n \to 0$ such that

- θ is in the interior of the polygonal cone spanned by λ(S).
- S_n is an r-generic family of (r, ε_n)-loxodromic elements and spans a Zariski dense semigroup of G, for all n ≥ 1.

Proposition (Benoist 2000)

 Γ Zariski dense. Then $\overline{\langle \lambda(\Gamma) \rangle} = \mathfrak{a}$.

Choose $g_k, ..., g_1$ in the semigroup spanned by S_n so that $\langle \lambda(g_j) \rangle$ is δ_{r,ε_n} dense in a, where $k \leq 3 \dim A$. Pick $h \in G$ such that $(hP, hP^-) = (g_k^+, g_1^-)$.

$$g_k^{n_k}...g_1^{n_1}hM \stackrel{l\delta_{r,\varepsilon_n}}{\simeq} h\exp(\nu + \sum n_j\lambda(g_j))M.$$

Hopf coordinates

$$G/MA \xrightarrow{\sim} \mathcal{F} \stackrel{\bigtriangleup}{\times} \mathcal{F}$$
$$G/M \xrightarrow{\sim} \mathcal{F} \stackrel{\bigtriangleup}{\times} \mathcal{F} \times \mathfrak{a}.$$

Hopf coordinates

$$G/MA \xrightarrow{\sim} \mathcal{F} \stackrel{\bigtriangleup}{\times} \mathcal{F}$$
$$G/M \xrightarrow{\sim} \mathcal{F} \stackrel{\bigtriangleup}{\times} \mathcal{F} \times \mathfrak{a}.$$

The limit set $L_{\Gamma} \subset \mathcal{F}$ is closed, Γ -invariant minimal.

$$\widetilde{\Omega} \xrightarrow{\sim} L_{\Gamma} \overset{\bigtriangleup}{\times} L_{\Gamma} \times \mathfrak{a}.$$

Hopf coordinates

$$G/MA \xrightarrow{\sim} \mathcal{F} \stackrel{\bigtriangleup}{\times} \mathcal{F}$$
$$G/M \xrightarrow{\sim} \mathcal{F} \stackrel{\bigtriangleup}{\times} \mathcal{F} \times \mathfrak{a}.$$

The limit set $L_{\Gamma} \subset \mathcal{F}$ is closed, Γ -invariant minimal.

$$\widetilde{\Omega} \xrightarrow{\sim} L_{\Gamma} \overset{\bigtriangleup}{\times} L_{\Gamma} \times \mathfrak{a}.$$

Theorem (Conze-Guivarc'h (2000), D-Glorieux)

The action of Γ on $L_{\Gamma} \stackrel{\bigtriangleup}{\times} L_{\Gamma}$ has a dense orbit.

Rmk: $h \in G$ such that $(hP, hP^-) = (g_k^+, g_1^-)$ where $g_k, g_1 \in \Gamma^{lox}$, then $\Gamma hM \in \Omega!$ \Rightarrow topological mixing! Thank you for your attention!