
TOPOLOGICAL MIXING OF POSITIVE DIAGONAL FLOWS

NGUYEN-THI DANG

Abstract. Let G be a connected, real linear, semi-simple Lie group without compact factors
and Γ < G a Zariski dense, discrete subgroup. We study the topological dynamics of positive
diagonal �ows on Γ\G. We extend Hopf coordinates to Bruhat-Hopf coordinates of G, which
gives the framework to estimate the elliptic part of products of large generic loxodromic ele-
ments. By rewriting results of Guivarc'h-Raugi into Bruhat-Hopf coordinates, we partition
the preimage in Γ\G of the non-wandering set of mixing regular Weyl chamber �ows, into
�nitely many dynamically conjugated subsets. We prove a necessary condition for topological
mixing, and when the connected component of the identity of the centralizer of the Cartan
subgroup is abelian, we prove it is su�cient.

1. Introduction

Let G be a connected, real linear, semi-simple Lie group without compact factors. Let A
be a maximal R-split torus i.e. a maximal abelian subgroup whose Lie algebra a is a Cartan
subspace, denote by a+ ⊂ a a choice of closed positive Weyl chamber and by a++ its interior,
by A+ = exp(a+) and A++ := exp a++. Let Γ < G be a Zariski dense, discrete subgroup. We
study topological mixing of the right action by translation on Γ\G of one parameter subgroups
of A that are parametrized by non-trivial elements of a+.

1.1. Previous results. In the case of lattices1 i.e. Γ\G has �nite volume for the Haar measure,
topological mixing is a consequence of Howe�Moore [HM79] Theorem. Moore [Moo87] even
proved that it is exponentially mixing for the Haar measure.

For the isometry group SO(n, 1)0 of Hn, the Cartan subspace a is isomorphic to R. As-
sume that Γ is Zariski dense, discrete and torsion free. Such right action corresponds to the
geodesic frame �ow of the hyperbolic orbifold Γ\Hn. The geodesic frame �ow factors the geodesic
�ow on the unit tangent bundle T 1Γ\Hn. The latter identi�es with the right action of A on
Γ\SO(n, 1)0/SO(n − 1), where SO(n − 1) is the stabilizer in SO(n) of a �xed unit vector in
T 1Hn. The geodesic �ow is topologically mixing on its non-wandering set2.

Denote by ΩG the preimage in Γ\SO(n, 1)0 of the non-wandering set of the geodesic �ow. For
convex cocompact subgroups, Winter [Win16] and Sarkar�Winter [SW20] proved exponential
mixing for the push forward of the Bowen-Margulis-Sullivan (BMS) measure on the frame bundle.
Since this measure is supported in ΩG, these results imply topological mixing of the frame �ow.

Under no other assumption for Γ than Zariski dense, Maucourant�Schapira [MS19] proved
that the frame �ow is topological mixing on ΩG.

For rank one (i.e. dimA = 1) locally symmetric spaces and discrete Zariski dense subgroup
admitting a �nite BMS measure, Winter [Win15] showed mixing for the frame �ow.

1991 Mathematics Subject Classi�cation. 37A17, 37B05, 37C15, 22F30.
1lattices are Zariski dense subgroups by Borel density Theorem
2For example, topological mixing is equivalent to non-arithmeticity of the length spectrum by [Dal00], which

follow, for Zariski dense subgroup from [Ben00] or [Kim06].
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1.2. Main setting. In this article, we focus on a higher rank semisimple Lie group without
compact factors G, meaning that dimA ≥ 2 and on an in�nite covolume, discrete, Zariski dense
subgroup Γ of G.

Let K be a maximal compact subgroup of G for which the Cartan decomposition KA+K of
elements of G holds. Denote by M := ZK(A) the centralizer subgroup of A in K.

For any θ ∈ a+, the nonnegative diagonal �ow φtθ corresponds to the right action by translation
on Γ\G of exp(tθ). When θ ∈ a++ \ {0}, the �ow φtθ is called positive diagonal . Nonnegative
diagonal �ows φtθ, where θ ∈ a+, induce right actions on Γ\G/M , so called Weyl chamber �ows.
They are called regular when they are induced by positive diagonal �ows. The latter will play
the same role in higher rank as the geodesic �ow in the unit tangent bundle of the hyperbolic
orbifold.

1.3. Mixing of regular Weyl chamber �ows. Conze�Guivarc'h [CG00] de�ned for SL(n,R)
and Zariski dense discrete subgroups a right A-invariant closed subset Ω ⊂ Γ\G/M (cf. � 5.1
for a detailed construction). Their construction generalizes to all semisimple Lie groups without
compact factors.

De�nition 1.1. We denote by Ω the smallest closed A-invariant subset of Γ\G/M containing
all periodic orbits of regular Weyl chamber �ows and by ΩG its preimage in Γ\G.

The closed subset Ω is the analogue for Weyl chamber �ows of the non-wandering set of the
geodesic �ow in the hyperbolic case. With Glorieux [DG20], we obtained the following necessary
and su�cient mixing condition for regular Weyl chamber �ows.

Theorem 1.2 ( [DG20]). Let G be a connected, real linear, semi-simple Lie group, without
compact factor. Let Γ be a Zariski dense, discrete subgroup of G.

A regular Weyl chamber �ow φtθ is topologically mixing on Ω if and only if θ ∈
◦
C(Γ).

The limit cone C(Γ) was introduced by Benoist [Ben97b]. For every Zariski dense Γ, he proves
that the limit cone is a closed, convex cone of a+ of non-empty interior.

De�nition 1.3. Denote by λ : G→ a+ the Jordan projection. The limit cone of Γ which is also
called Benoist cone C(Γ), is the smallest closed cone of a+ containing λ(Γ).

Mixing ratio for regular Weyl chamber �ow φtθ, where θ lies in the interior of the limit cone,
were obtained by Thirion [Thi09] for Ping-Pong groups, Sambarino [Sam15] for Hitchin repres-
entations and Edwards�Lee�Oh [ELO20] for Borel Anosov groups.

1.4. Main result. We study the topological dynamics of non-negative diagonal �ows (ΩG, φ
t
θ).

We focus on its topological mixing properties. Note that ΩG is a right AM -invariant closed
subset of Γ\G and a principal M -bundle over Ω, where M is not necessarily connected.

Using a result of Guivarc'h�Raugi [GR07], we partition ΩG into �nitely many A-invariant
subsets that are dynamically conjugated to each other for nonnegative diagonal �ows.

Theorem 1.4. Let G be a connected, real linear, semi-simple Lie group, without compact factors.
Let Γ be a Zariski dense, discrete subgroup of G.

Then there exists a normal subgroup of �nite index M0 C MΓ C M and a partition of ΩG
denoted by (Ω[m])[m]∈M/MΓ

such that

(a) every Ω[m] is right AMΓ-invariant and a principal MΓ-bundle over Ω;

(b) for all θ ∈ a+, the dynamical systems {(Ω[m], φ
t
θ)}[m]∈M/MΓ

are conjugated to each other;

(c) if θ ∈ a++ and (Ω[eM ], φ
t
θ) is topologically mixing then θ ∈

◦
C(Γ) .

If furthermore M0 is abelian and θ ∈ a++, then the converse of (c) is true:
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(d) (Ω[eM ], φ
t
θ) is topologically mixing if and only if θ ∈

◦
C(Γ).

We expect that condition (d) holds in the general case, because Maucourant�Schapira [MS19]
proved topological mixing of the geodesic frame �ow for SO(n, 1)0 where M = M0 = SO(n− 1).
Condition (c) is a consequence of the joint work with Glorieux.

Observe that M0 is abelian for example: split real semisimple Lie groups i.e. SL(n,R),
Sp(2n,R), SO0(p, p), SO0(p, p+1); and also for SU(p, p+1), SU(p, p), SO0(p, p+2) and SL(n,C).
The closed, normal subgroup of �nite indexMΓ ofM containing the connected component of the
identity M0 of M , is de�ned in Guivarc'h�Raugi [GR07] by using the elliptic part of loxodromic
elements of Γ. It was also de�ned and studied in the appendix of [Ben05]. We call it the sign
group of Γ.

Labourie [Lab06] proved that MΓ is trivial if Γ is the image of a Hitchin representations. It
thus follows from the above result that in this case, there are 2n−1 disjoint subsets in Γ\PSL(n,R)
that share the same dynamical behavior for non-negative diagonal �ows. Consequently, positive
diagonal �ows are topologically mixing on any of these subsets if and only if they are parametrized
by directions of the interior of the limit cone.

For Borel Anosov subgroups and independently, Lee�Oh [LO20] prove that there is an A-
ergodic decomposition of every BMS measure into AMΓ-semi-invariant and A-ergodic measures
parametrized by M/MΓ. Any pair of such measures is the same up to right multiplication by
elements of M/MΓ, which concur with our result.

1.5. Key ideas.

Bruhat-Hopf coordinates. Denote by F (2) the subset of transverse pairs in the Furstenberg
boundary (cf. � 2.2) which identi�es with G/AM (cf. Proposition 2.6). Thirion [Thi07] general-
ized Hopf coordinates in higher rank by parametrizing points of G/M with elements of F (2)× a.
The left action of G on G/M reads using the Iwasawa cocycle σ (cf. De�nition 2.3) as follows

g(ξ, ξ̌ ; x) = (gξ, gξ̌ ; σ(g, ξ) + x).

The Weyl chamber �ow reads by translating only the a coordinate without changing the �rst
two.

Consider the set {Gs}s∈S of maximal Bruhat cells of G. For every s ∈ S, we denote by Fs
(resp. F (2)

s ) the projection of Gs in F (resp. F (2)).

In Section 3, we construct Bruhat-Hopf coordinates Hs : Gs → F (2)
s ×AM that extend Hopf

coordinates (cf. De�nition 3.2, 3.12, Proposition 3.10). Note that they di�er from coordin-
ates coming from the unique Bruhat decomposition of N−MAN or their translate of the form
hN−MAN , where h ∈ G. The projection G → G/M reads for all s ∈ S by preserving the
coordinates in F (2) and projecting the AM -coordinates to a. The right translation by AM on

G reads for all (ξ, ξ̌;u)s ∈ F (2)
s ×AM and x ∈ AM as (ξ, ξ̌;ux)s.

The left action of G on itself reads in this family of Bruhat-Hopf coordinates (Hs)s∈S equivari-
antly in the coordinates in F (2) and via left multiplication by the signed Iwasawa cocycles
(βs′,s)s,s′∈S (cf. De�nition 3.7) of domains in G × F and codomains in AM . They extend
(cf. Proposition 3.10) the Iwasawa cocycle in the sense that for all ξ ∈ Fs and g ∈ G such that
gξ ∈ Fs′ , then βs′,s(g, ξ) ∈ exp(σ(g, ξ))M. We prove that the signed cocycles (βs,s)s∈S are all
cohomologous (cf. Fact 3.9) for the transition maps Ts,s′ : Fs ∩ Fs′ → AM of De�nition 3.5.

Furthermore, Bruhat-Hopf coordinates induce local coordinates of K in F ×M by removing
the second coordinate and projecting in M the third one.

Likewise, the reader can check that Bruhat-Hopf coordinates induce local coordinates on G/N ,
G/A and G/MN .
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The elliptic part of loxodromic elements. Elements of G whose Jordan projection is in the
positive Weyl chamber are called loxodromic. Denote by Glox and Γlox the subset of loxodromic
elements of the respective groups. Loxodromic elements (see �4) have trivial unipotent parts
and are conjugated to elements in MA++. The part in A++, corresponding to the hyperbolic
part, is given by the Jordan projection. In [Ben96], [Ben97b] and [Ben00], Benoist de�nes
(r, ε)-loxodromic elements (see De�nition 4.5) and obtains estimates for the Jordan projection
of generic products of (r, ε)-loxodromic elements. We show that their elliptic part satisfy similar
estimates.

The elliptic part of a loxodromic element is conjugated to an element of M which is de�ned
up to conjugacy by M . Therefore, the latter is only well de�ned when M is abelian, in which
case one can extend the Jordan projection from Glox to a++×M . Bruhat-Hopf coordinates gives
a framework to solve this technical di�culty in the general case.

Fix a loxodromic element g and denote by g+ (resp. g−) its attracting (resp. repelling) �xed
point in F and by b(g−) the basin of attraction of g+ (cf. Proposition 4.4). Starting from the
formula σ(g, g+) = λ(g) satis�ed by loxodromic elements, we de�ne a multiplicative and signed
Jordan projection for g. For every s ∈ S such that g+ ∈ Fs, we set Ls(g) := βs,s(g, g

+). It
is the unique element in exp(λ(g))M such that there is an element hs ∈ Gs unique up to right
multiplication by A such that h−1

s ghs = Ls(g).
Using the continuous maps Rs′,s given in De�nition 4.8, we obtain an exact formula.

Proposition 1.5 (4.9 below). Let G be a connected, real linear, semi-simple Lie group, without
compact factor.

Then for all loxodromic element g ∈ Glox, all integer n ≥ 1 and ξ ∈ b(g−), for any suitable
s0, s1, s2 ∈ S such that (ξ, g+, gnξ) ∈ Fs0 ×Fs1 ×Fs2

βs2,s0(gn, ξ) = Rs1,s2(g; gnξ)−1Ls1(g)nRs1,s0(g; ξ).

We estimate the elliptic part of generic products of (r, ε)-loxodromic elements. In order to do
that, we introduce a family of constants {δr,ε | 0 < ε ≤ r} (cf. De�nition 4.11) such that for all
r > 0, they satisfy limε→0 δr,ε = 0 (cf. Proposition 4.10).

Proposition 1.6 (4.12 below). Let G be a connected, real linear, semi-simple Lie group, without
compact factor. For all r > 0 and ε ∈ (0, r] and every family g1, ..., gl ∈ G of (r, ε)-loxodromic
elements such that

? r ≤ 1
6d
(
{g+
i−1, g

+
i }, ∂b(g−i )

)
for all 1 ≤ i ≤ l with the convention g0 = gl.

For all family (si)0≤i≤l ⊂ S such that

?? Fsi ⊃ Vr(∂b(g−i )){ for every 1 ≤ i ≤ l and Fs0 ⊃ Vε(∂b(g−1 )){.

Then for all integers n1, ..., nl ≥ 1, the element gnl

l ...g
n1
1 is (2r, 2ε)-loxodromic with attracting

(resp. repelling) point in B(g+
l , ε) (resp. B(g−1 , ε)) and its extended Jordan projection satis�es

Lsl(g
nl

l ...g
n1
1 ) ∈ Lsl(g

nl

l )Rsl,sl−1
(gl, g

+
l−1)...Ls1(gn1

1 )Rs1,sl(g1, g
+
l )B(eAM , 2lδr,ε).

Decorrelation. Denote by Mab the abelianization of M . We de�ne an abelianized Jordan
projection for loxodromic elements L ab : Glox → A++Mab using the previous local Jordan
projections Ls. The number of connected components of Mab reached by the subset L ab(Γlox)
su�ces to understand MΓ. Indeed, its abelianized M

ab
Γ is the subgroup of Mab generated by the

projection to Mab of L ab(Γlox). Thanks to Guivarc'h�Raugi [GR07, Theorem 6.4] we deduce
that the subgroup generated by L ab(Γlox) is dense in AMab

Γ . They also give a classi�cation of
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Γ-invariant minimal subsets of K. We rewrite their result using Bruhat-Hopf coordinates of K

in Theorem 5.9 and de�ne the invariant subsets Ω[m] through their universal cover Ω̃[m] in G.

Denote by L(Γ) ⊂ F the limit set of Γ and by L(2)(Γ) := L(Γ) × L(Γ) ∩ F (2). The universal

cover Ω̃G has Bruhat-Hopf coordinates L(2)(Γ)×AM .
Without loss of generality, by using the joint work with Glorieux [DG20], it su�ces to prove the

decorrelation Proposition 6.1 i.e. that there exists (ξ1, ξ̌1) ∈ L(2)(Γ) such that for every x ∈ AM
and small δ > 0, the orbit Γ(ξ1, ξ̌1 ; x)č1 is δ-dense in an MΓ-orbit of the form (ξ1, ξ̌1 ; yδxMΓ)c1
(for suitable č1, c1 ∈ S).

The �rst step (Lemma 6.2) is to reach all connected components of MΓ by the left action of
�nitely many (r, ε)-loxodromic elements of Γ of attracting point close to ξ1. It does not use that
M abelian.

In the second step (Lemma 6.4) we construct (r, ε)-loxodromic elements γ1, ..., γl ∈ Γ that
satisfy the hypothesis of Proposition 1.6 and such that L ab({γnl

l ...γ
n1
1 | n1, .., nl ≥ 1}) is δ-dense

in an M0-invariant set that projects to log πA(yδx) + C0, where C0 ⊂ a++ is a closed convex cone
of non-empty interior. We rely on density of squares in M0, as well as density lemmata deduced
from the assumption that M0 is abelian.

Finally, we use an overlapping cone argument to deduce the decorrelation.

1.6. Organization of the paper. In Section 2 we recall the classical Iwasawa, Bruhat de-
compositions of Lie groups and characterize the transverse points in the Furstenberg boundary.
Section 3 is dedicated to the construction of Bruhat-Hopf coordinates. In Section 4, using Bruhat-
Hopf coordinates, we estimate the elliptic part of products of generic loxodromic elements. In
Section 5, we de�ne the subgroup MΓ, the Γ-invariant subsets of G and prove Theorem 1.4
(a)(b). Section 6 is dedicated to the proof of decorrelation. In Section 7 we prove the necessary
and su�cient condition for topological mixing when M0 abelian. In the appendix, we prove the
density lemmata.

Relation to other works. Sections 2, 5, 6, 7 and the Appendix can be found in french in
the author's PhD thesis [Dan19]. Sections 3 and 4 improve the thesis's construction of Bruhat-
Hopf coordinates and its estimates of the elliptic and hyperbolic parts of products of loxodromic
elements.

Bruhat-Hopf coordinates were independently studied by Lee�Oh [LO20].
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2. Background

In the whole article, G is a semisimple, connected, real linear Lie
group, without compact factor.

A classical reference for this section is [Hel01]. Let K be a maximal compact subgroup of
G. Denote by g (resp. k) the Lie algebra of G (resp. K). Consider a Cartan decomposition
g = k ⊕ p. Let a ⊂ p be a Cartan subspace i.e. a maximal abelian subspace of p for which the
adjoint endomorphism of every element is semisimple. Denote by m the centralizer of a in k.
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For every linear form α ∈ a∗, set gα := {v ∈ g | ∀u ∈ a, [u, v] = α(u)v}. Note that g0 = m⊕a.
The set of restricted roots is given by Σ := {α ∈ a∗ \0 | gα 6= 0}. By simultaneous diagonalisation
over the abelian family of endomorphisms ad(a), we deduce the decomposition g = g0 ⊕α∈Σ gα.
Note that Σ is a �nite set. Let us now choose a positive Weyl chamber of a i.e. a connected
component of a \ ∪α∈Σ ker(α). Denote the closed positive Weyl chamber by a+ and a++ its
interior. The set of positive roots, denoted by Σ+, is the subset of restricted roots which take
positive values in the positive Weyl chamber. This choice allows to de�ne two particular nilpotent
subalgebras n = ⊕α∈Σ+gα and n− = ⊕α∈Σ+g−α.

Finally, denote by A := exp(a) the maximal R-split torus, A+ := exp(a+) the closed positive
Weyl chamber, A++ := exp(a++) its interior, N := exp(n) (resp. N− := exp(n−)) the positive
(resp. negative) maximal unipotent subgroups and M the centralizer of A in K, of Lie algebra
m. By de�nition, A normalizes N and N−. Furthermore, for all a ∈ A++ and h± ∈ N± the
following convergences hold

(1) a−nh±a
n −→
±∞

eG.

2.1. Furstenberg boundary. By Iwasawa decomposition ( cf. [Hel01, Chapter IX, Thm 1.3 ])
G = KAN and G = KAN− and the maps (with the convention that N+ = N)

K ×A×N± −→ G

(k, a, n) 7−→ kan

are di�eomorphisms. Denote by g 7→
(
kI±(g), aI±(g), uI±(g)

)
∈ K × A × N± the respective

inverse di�eomorphisms. Note3 that [g0, gα] ⊂ gα for all α ∈ Σ+. Hence m⊕a⊕n and m⊕a⊕n−
are Lie subalgebras of g. Consequently MAN and MAN− are closed subgroups of G.

De�nition 2.1. The Furstenberg boundary is de�ned by F := G/MAN . Denote by kι ∈ K a
representative of the element in the Weyl group such that Ad(kι)a

+ = −a+. Set η0 := MAN
and η̌0 := kιη0.

The map k ∈ K 7→ kη0 ∈ F is surjective and equivariant for the left action of K. Furthermore,
the stabilizer of η0 is the closed subgroup M . Therefore, we deduce an identi�cation of K/M
with the Furstenberg boundary.

Let us sketch the construction of a K-invariant Riemannian distance on K. Start from a
scalar product on k. Since K is a compact subgroup, its Haar measure is �nite. By averaging the
scalar product on k along the Haar measure on K for the adjoint action, we obtain an Ad(K)-
invariant scalar product and norm on k. Using the left action of K, we transport them on every
tangent space and obtain a left K-invariant metric which is also invariant by conjugation. Hence
K is endowed with an invariant Riemannian metric. Its induced Riemannian distance is thus
K-invariant.

De�nition 2.2. Let dK be a K-invariant Riemannian distance on K. For every ξ, η ∈ F for
any choice of representatives kξ, kη ∈ K such that kξη0 = ξ and kηη0 = η, we consider the
induced left K-invariant distance in F

d(ξ, η) := dK(kξM,kηM).

Let us de�ne the Iwasawa cocycle.

3using Jacobi identity
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De�nition 2.3. For all g ∈ G and ξ ∈ F , we denote by σ(g, ξ) the unique element4 in a such
that for all kξ ∈ K such that kξη0 = ξ,

gkξ ∈ K exp(σ(g, ξ))N.

The map σ : G×F → a is the Iwasawa cocycle.

2.2. Transverse pairs in the Furstenberg boundary. The following subset of F × F is a
higher rank analogue to the set of pair of points in the geometric boundary of the hyperbolic
plane H2 that parametrize oriented geodesics. It also identi�es for SL(n,R) with the space of
transverse complete �ags of Rn.

De�nition 2.4. The subset of ordered transverse pairs of F × F is de�ned by

F (2) := {(gη0, gη̌0) | g ∈ G}.

Since kι is an involution, (η̌0, η0) is also an ordered transverse pair. Consequently, we say that
ξ, η ∈ F are transverse if any of the ordered pairs (ξ, η) of (η, ξ) are transverse.

Denote by W := NK(A)/ZK(A) the Weyl group of G. We choose for every w ∈ W a
representative kw ∈ NK(A). Then by Bruhat decomposition [Hel01, Chapter IX, Thm 1.4 ],

G = tw∈WBkwB

where B = MAN . Note that N− = kιNk
−1
ι and that G = tw∈W kιBkwB, meaning that

N−MAN is a cell in the Bruhat decomposition of G.

Corollary 2.5 (Chapter IX, Cor. 1.9 [Hel01]). The map

N− −→ N−η0

n− 7−→ n−η0

is a di�eomorphism, its image is an open submanifold of F and its complement is a �nite union
of disjoint submanifolds of stricly smaller dimensions.

Thus N−MAN is a maximal cell for the Bruhat decomposition. We will call sets of the
form hN−MAN as well as their projection to F , where h ∈ G, maximal Bruhat cells. We
describe below the subset of transverse pairs in the Furstenberg boundary and include a proof
for completeness.

Proposition 2.6. The following holds,

(i) the set of transverse points to η̌0 is N−η0,

(ii) for all η, ξ ∈ F and kη, ǩξ ∈ K such that kηη0 = η and ǩξη̌0 = ξ,

(η, ξ) ∈ F (2) ⇐⇒ ǩ−1
ξ kη ∈ N−MAN,

(iii) for all ξ ∈ F and ǩξ ∈ K such that ǩξη̌0 = ξ, the set of transverse points to ξ is ǩξN
−η0.

(iii') for all ξ ∈ F and kξ ∈ K such that kξη0 = ξ, the set of transverse points to ξ is kξNη̌0.

Furthermore, the G−equivariant map

G/AM −→ F (2)

gAM 7−→ (gη0, gη̌0)

is a di�eomorphism.

4because M normalises N , this element does not depend on the choice of the representative in K of ξ.
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Proof. (i) First remark that N−(η0, η̌0) = (N−η0, η̌0). Let us now prove the converse i.e. that
any point transverse to η̌0 must be in N−η0. Let g ∈ G such that (gη0, η̌0) ∈ F (2). Then by
de�nition, there exists h ∈ G such that

(gη0, η̌0) = h(η0, η̌0).

On one hand hη̌0 = η̌0, hence h ∈ Stab(η̌0) = kιMANk−1
ι . Since N− = kιNk

−1
ι and MA is

invariant by conjugation by kι, we deduce that

h ∈MAN−.

On the other hand gη0 = hη0, hence h
−1g ∈ Stab(η0) = MAN. Thus

g ∈ hMAN ⊂MAN−MAN.

Since MA normalizes N−, we deduce that g ∈ N−MAN . Hence gη0 ∈ N−η0.
(ii) It follows from (i) and by noticing that the pair (kηη0, ǩξη̌0) ∈ F (2) if and only if

(ǩ−1
ξ kηη0, η̌0) ∈ F (2).

(iii) It follows from (ii) since ǩη(N−η0, η̌0) ∈ F (2).

For the last statement, remark �rst that G acts transitively on F (2). Furthermore

StabG(η0, η̌0) = MAN ∩MAN− = AM.

We thus deduce the G-equivariance and bijectivity of the map

G/AM −→ F (2)

gAM 7−→ (gη0, gη̌0).

The left action of G on the Furstenberg boundary F = G/MAN is di�erentiable and so is its
action on F × F . Thus, the map g 7→ (gη0, gη̌0) is di�erentiable. The kernel of the di�erential
in eG of the map g 7→ (gη0, gη̌0) contains m ⊕ a. Since the maps N− → N−η0 and N → Nη̌0

are di�eomorphisms, the di�erential in eG of g 7→ (gη0, gη̌0) is surjective from g to n− ⊕ n+. By
Bruhat decomposition in the Lie algebra g = n− ⊕ m ⊕ a ⊕ n, we deduce that the kernel of the
di�erential in eG of g 7→ (gη0, gη̌0) is equal to a ⊕ m. Thus, the map G/AM → F (2) is a local
di�eomorphism in AM . Finally, by transitivity of the left G action on G/AM , we deduce that
it is a di�eomorphism. �

We parametrize the maximal Bruhat cells of the Furstenberg boundary.

De�nition 2.7. Let η̌ ∈ F , then for any representative h(η̌) ∈ G such that η̌ = h(η̌)η̌0, we
denote by b(η̌) := h(η̌)N−η0 the maximal Bruhat cell opposite to η̌.

Thanks to the previous Proposition, the representative h(η̌) ∈ G is chosen up to right multi-
plication by MAN−. Remark that b(η0) = Nη̌0 and b(η̌0) = N−η0. Using this notation, the set
of Bruhat cells of F is naturally endowed with a left action of G which satis�es hb(η̌0) := b(hη̌0)
for all h ∈ G.

3. Bruhat-Hopf coordinates

In his thesis, Thirion [Thi07, Chapter 8 �8.G.2] introduced Hopf coordinates for SL(n,R)/M .
His construction generalizes to every semisimple Lie group without compact factors. It is de�ned
by the following map

H : G/M −→ F (2) × a

hM 7−→ (hη0, hη̌0 ; σ(h, η0)).
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The left action of G and right action of A on G/M read in those coordinates as follows. For all
(g, θ, t) ∈ G× a× R and (ξ, ξ̌ ; x) ∈ F (2) × a,

φ̃tθ
(
g(ξ, ξ̌ ; x)

)
= (gξ, gξ̌ ; σ(g, ξ) + x+ tθ).

The projection G/M → F (resp. G/M → G/AM) reads as the projection to the �rst coordinate
in F (resp. by removing the coordinate in a).

In this section, we extend locally and equivariantly (for the left action of G and right action
of A) Hopf coordinates to G.

Any local trivialisation of G → G/AM provides local coordinates in F (2) × AM that are
equivariant for the right action of A. The restricted left G-action provides a local AM -cocycle.
In general, neither these cocycles extend the Iwasawa cocycle nor will those coordinates locally
extend Hopf coordinates. We give a general method to extend locally Hopf coordinates to
F (2) ×AM , while the local AM -cocycle extends the Iwasawa cocycle.

In �3.1, using Bruhat decomposition, we construct from any cross-sections s of G → F of
domain Fs, open sets Gs := s(Fs)MAN of G and the local coordinate map Bs : Gs ↪→ F (2)×AM
(cf. De�nition 3.2). We set notations for the rest of the article and in De�nition 3.3, de�ne
covering families of cross-sections and of the same type (i.e. that are translates of one another
by G-action).

In �3.2, we set notations for the transition functions between di�erent sets of coordinates in
De�nition 3.5. In Proposition 3.6 we compute these functions in some cases and prove that the
cross-section parameters satisfy chain rule relations.

In �3.3, for every family of di�erentiable cross-sections (si)i∈I of G→ F whose domain cover
F , we read the left action of G on itself in the Bsi coordinates. The behavior is the same as for
Hopf coordinates for the coordinates in F (2). We de�ne AM -valued functions in De�nition 3.7
of domain in G× F . We prove in Proposition 3.8 that those functions are cocycles that encode
the information in AM for the left action of G on itself. This implies in particular that the
information contained in the second and third coordinate in F (2)×AM are not needed when one
reads the left action of G. In Fact 3.9, we obtain for the cocyle a chain rule formula compatible
with the one we had for the transition functions.

In �3.4, we prove that when the cross-section s takes value in K, then the coordinate map Bs
extends the Hopf coordinates. Indeed, in Proposition 3.10, we prove that when the cross-sections
(si)i∈I take value in K, the signed multiplicative Iwasawa cocycles (βsi,sj )i,j∈I de�ned in the
third paragraph generalize the Iwasawa cocycle. We obtain an equivariant and commutative
diagram with Hopf coordinates.

In �3.5, we prove in Proposition 3.11 that local coordinates of G that extends Hopf coordinates
provide local coordinates of K that take value in F ×M . Furthermore, the map kI : G → K
reads in those coordinates by keeping the �rst coordinate in F and projecting the last one in M .

In the last paragraph, using Bruhat decomposition and Iwasawa decomposition, we construct
two families of cross-sections of G → F de�ned on Bruhat cells of F : unipotent and compact
Bruhat sections in De�nition 3.12 We de�ne Bruhat-Hopf coordinates as the local extensions of
Hopf coordinates given by Proposition 3.10 with respect to the compact Bruhat sections. In
Proposition 3.14 we parametrize these cross-sections.

3.1. Local trivialisations. Let s be a non-trivial cross-section of the MAN -bundle G → F ,
we denote by Fs its domain. Denote by Gs := s(Fs)MAN the preimage of Fs by the projection

G → F , by F (2)
s := Gs(η0, η̌0) = (Fs × F) ∩ F (2) the image of Gs by the projection G → F (2).

The following Fact will allow us to de�ne the coordinate map Gs → F (2)
s ×AM .

Fact 3.1. Let s be a di�erentiable cross-section of G→ F .
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Then the two maps below are di�eomorphisms.

Fs ×N ×AM −→ s(Fs)NAM ⊂ G
(ξ, u, x) 7−→ s(ξ)ux.

Fs ×N ×AM −→ F (2)
s ×AM

(ξ, u, x) 7−→ (ξ, s(ξ)uη̌0 ; x)s.

Proof. By hypothesis, the map s : Fs → G is a cross-section and by Iwasawa decomposition in
NAM , we deduce that the �rst map is a di�eomorphism.

By Proposition 2.6 (iii') for every ξ ∈ Fs, the set of transverse points to ξ is s(ξ)Nη̌0. Hence
the map

Fs ×N −→ F (2)
s

(ξ, u) 7−→ (ξ, s(ξ)uη̌0)

is a di�eomorphism. Consequently, the second map is a di�eomorphism. �

De�nition 3.2. For every di�erentiable cross-section s of G→ F , we denote by Bs the following
di�erentiable coordinate map

Bs : Gs ⊂ G −→ F (2)
s ×AM

g = s(ξ)ux 7−→ (gη0, gη̌0 ; x)s.

When s is compact valued i.e. a cross-section of K → F , the same map is denoted by Hs.

In order to write in such coordinates every element of G, we construct families of di�erentiable
cross-sections whose domain cover F . For all g ∈ G and any cross-section s : Fs → G, we de�ne
the left translate by

g · s : gFs −→ G

ξ 7−→ gs(g−1ξ).

This provides a left G action on the space of cross-sections of G → F . For any b ∈ MAN, we
de�ne the cross-section

s.b : Fs −→ G

ξ 7−→ s(ξ)b.

De�nition 3.3. A family of cross-section (si)i∈I of the bundle G → F is covering when the
family of domains {Fsi}i∈I covers F i.e.

F ⊂ ∪i∈IFsi .

The family (si)i∈I is of the same type if for any i, j ∈ I there exists gij ∈ K such that

si = gij · sj .

Since F is compact and the action K y F is transitive, one can construct covering families
of di�erentiable cross-sections of the same type. We provide two such families in De�nition 3.12.
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3.2. Transition functions. Given two di�erentiable cross-sections s, s′ of G→ F , we compute
the change of coordinates. This information is contained in the so-called transition map Ts,s′

below. We prove in Proposition 3.6 that the cross-section subscripts in the notation Ts,s′ follow
a chain rule relation and compute for all b ∈MAN the transition function between s and s.b.

Fact 3.4. Let s and s′ be two di�erentiable cross-sections of G → F such that Fs ∩ Fs′ 6= ∅.
Then for all ξ ∈ Fs ∩ Fs′ ,

aI
(
s(ξ)−1s′(ξ)

)
kI
(
s(ξ)−1s′(ξ)

)
∈ AM.

Proof. For every ξ ∈ Fs∩Fs′ , we denote by Ts,s′(ξ) := aI
(
s(ξ)−1s′(ξ)

)
kI
(
s(ξ)−1s′(ξ)

)
. Due to

the hypothesis that s and s′ are both cross-sections of G→ F , we deduce that s′(ξ) ∈ s(ξ)MAN .
Hence the compact part kI

(
s(ξ)−1s′(ξ)

)
is in M and Ts,s′(ξ) is in AM . �

De�nition 3.5. Let s and s′ be two di�erentiable cross-sections of G→ F such that Fs∩Fs′ 6= ∅.
We de�ne the transition map

Ts,s′ : Fs ∩ Fs′ −→ AM

ξ 7−→ aI
(
s(ξ)−1s′(ξ)

)
kI
(
s(ξ)−1s′(ξ)

)
,

which associate to every ξ ∈ Fs ∩ Fs′ , the unique element in AM such that

s′(ξ) ∈ s(ξ)NTs,s′(ξ).

Remark that if both s and s′ take value in K, then the transition functions takes value in M .
Let us compute the change of coordinates between Bs and Bs′ .

Proposition 3.6. Let s and s′ be di�erentiable cross-sections of G→ F such that Fs ∩Fs′ 6= ∅.
Then the following holds.

(i) The map Ts,s′ is di�erentiable and the identity map of s(Fs ∩ Fs′)NAM reads in Bs′
and Bs coordinates as follows:(

F (2)
s′ ∩ F

(2)
s

)
×AM −→

(
F (2)
s ∩ F (2)

s′

)
×AM

(ξ, ξ̌ ; x)s′ 7−→ (ξ, ξ̌ ; Ts,s′(ξ)x)s.

(ii) For all di�erentiable cross-section s′′ such that Fs′′ ∩Fs′ ∩Fs 6= ∅, and all ξ in the triple
intersection,

Ts′′,s(ξ) = Ts′′,s′(ξ)Ts′,s(ξ).

(iii) For all ξ ∈ Fs′ ∩ Fs,
Ts′,s(ξ) = Ts,s′(ξ)

−1.

(iv) For all x ∈ AM and u ∈ N ,

Ts,s.xu = x = Ts,s.ux.

The �rst three points enforce the computational 'chain rule' that double cross-sections sub-
script cancel.

Proof. (i) note that s′(Fs ∩ Fs′)NAM = s(Fs ∩ Fs′)NAM = Gs ∩ Gs′ since s and s′ are both
cross-sections of G→ F . We want to write every element in Gs ∩Gs′ in Bs and Bs′ coordinates.
By De�nition 3.2, the �rst two coordinates in F (2) do not depend on s and s′. We only need to
compute the change in the last coordinate. Fix an element g ∈ s′(Fs ∩Fs′)NAM and denote by

(ξ, ξ̌ ; x)s′ ∈ F (2)
s′ × AM its coordinates with respect to the section s′. Using Fact 3.1 on g and

s′, there exists a unique element uξ̌ ∈ N such that g admits the following decomposition

g = s′(ξ)uξ̌x.
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Let us deduce the last Bs coordinate of g by �nding its decomposition in s(Fs∩Fs′)NAM . Since
ξ ∈ Fs′ ∩ Fs, by De�nition 3.5, there exists a unique element us′,s(ξ) ∈ N such that

s′(ξ) = s(ξ)us′,s(ξ)Ts,s′(ξ).

Then we replace it in s′(ξ)uξ̌x,

s′(ξ)uξ̌x = s(ξ)us′,s(ξ)Ts,s′(ξ)uξ̌x.

Since AM normalizes N and Ts,s′(ξ) ∈ AM , we deduce the following s(Fs ∩ Fs′)NAM decom-
position of g,

g = s′(ξ)uξ̌x = s(ξ)
(
us′,s(ξ)Ts,s′(ξ)uξ̌Ts,s′(ξ)

−1
)

Ts,s′(ξ)x.

Hence, the Bs-coordinates of g is
(
ξ, ξ̌ ; Ts,s′(ξ)x

)
s
.

(ii) is a direct consequence of the relation BsB−1
s′′ = BsB−1

s′ Bs′B
−1
s′′ where each map is restricted

to s
(
Fs′′ ∩ Fs′ ∩ Fs

)
NAM .

(iii) follows from (ii) since eAM = Ts,s = Ts,s′Ts′,s.
(iv) we recall that for all x ∈ AM and u ∈ N the section s.xu (resp. s.ux) is de�ned for every

ξ ∈ Fs by s.xu(ξ) = s(ξ)xu (resp. s.ux(ξ) = s(ξ)ux). Using that AM normalises N , we deduce
the unique decomposition in s(Fs)NAM,

s.xu(ξ) = s(ξ) (xux−1) x.

Hence the maps Ts,s.xu and Ts,s.ux are constant equal to x. �

3.3. Cocycle. Fix a covering family of di�erentiable cross-sections (si)i∈I of G→ F and let us
read in (Bsi)i∈I coordinates the left action of G on itself. The left action of G on the �rst two
coordinates in F (2) is given by g(ξ, ξ̌) = (gξ, gξ̌).

In Proposition 3.8, we prove that the AM -valued function de�ned below, called signed Iwasawa
cocycle, contains the remaining information on the third coordinate. Its domain is in G × F ,
meaning that the information contained in the second and third coordinate in F (2) × AM are
not needed when one reads the left action of G.

In Fact 3.9, we prove a chain rule relation for the cross-section parameter subscripts of the
cocyle. Such a relation is compatible with the one we had for the transition functions.

De�nition 3.7. Let s0, s1 be di�erentiable cross-sections of G→ F .
For every g ∈ G and ξ ∈ Fs0 such that gξ ∈ Fs1 , we denote by βs1,s0(g, ξ) the unique element

in AM such that

gs0(ξ) ∈ s1(gξ)βs1,s0(g, ξ)N.

When s1 = s0, we set βs0 := βs0,s0 .
Whenever s0 and s1 take value in K, the cocycle βs1,s0 is called signed (multiplicative) Iwasawa

cocycle or in a shorter way, signed cocycle.

Proposition 3.8. Let s0, s1 be di�erentiable cross-sections of G→ F .
For all g ∈ G and every element in Gs0 of coordinates (ξ, ξ̌ ; x)s0 ∈ F

(2)
s0 × AM such that

gξ ∈ Fs1 , we denote by g
(
ξ, ξ̌ ; x

)
s0

its left multiplication by g. Then the latter's coordinates

with respect to s1 are

(2) g
(
ξ, ξ̌ ; x

)
s0

=
(
gξ, gξ̌ ; βs1,s0(g, ξ)x

)
s1
.

For every covering family of smooth cross-sections (si)i∈I of G→ F , for every i, j, k ∈ I, all
ξi ∈ Fsi and gj , gk ∈ G such that gjξi ∈ Fsj and gkgjξi ∈ Fsk then we have the cocycle relation

(3) βsk,si(gkgj , ξi) = βsk,sj (gk, gjξi) βsj ,si(gj , ξi).
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For all y ∈ AM, for every element of coordinates (ξ, ξ̌ ; x)s0 , denote by (ξ, ξ̌ ; x)s0y its right
multiplication by y, then

(4) (ξ, ξ̌ ; x)s0y = (ξ, ξ̌ ; xy)s0 .

As in Proposition 3.6 concerning the transition functions, (2) and (3) enforce the 'chain rule'
that double cross-sections subsequent subscript cancel. Equation (4) provides a key argument
for the properties given in �5 Proposition 5.12 of the invariant subsets of G for the dynamics of
nonnegative diagonal �ows.

Proof. Because AM normalizes N , the following diagram is G-equivariant for the left action of
G and commutative.

g ∈ G
N

xx

AM

))
gN ∈ G/N

AM &&

G/AM ' F (2) 3 g(η0, η̌0)

Nuu
gη0 ∈ F

Thanks to the lower left side G/N → F of the diagram we deduce that local trivializations of
G → F induces local trivializations of G/N → F , of �ber AM . Indeed, for every di�erentiable
cross-section s : Fs → G, the map Fs ×AM → G/N that associates to (ξ ; x)s ∈ Fs ×AM the
element s(ξ)xN ∈ G/N is the inverse of a local coordinate system.
Let (si)i∈I be a covering family of cross-sections of G → F . Then the cocycles (βsi,sj )i,j∈I of
De�nition 3.7 and the left action of G on F encode the left action of G on G/N . Indeed, let
hN ∈ G/N be an element of coordinates (ξ ; x)si ∈ Fsi × AM and g ∈ G such that gξ ∈ Fsj .
By the restricted coordinates map, we write hN = si(ξ)xN. Hence

ghN = gsi(ξ)xN.

By De�nition 3.7 of βsj ,si , there exists a unique u ∈ N such that gsi(ξ) = sj(ξ)βsj ,si(g, ξ)u.
Replacing it in the expression of ghN and using that AM normalizes N , we get

ghN = sj(gξ)βsj ,si(g, ξ)uxN = sj(gξ)βsj ,si(g, ξ)x
(
x−1uxN

)
.

Hence ghN has coordinates (gξ ; βsj ,si(g, ξ)x)sj .
Thanks to the higher right hand side of the diagram, the same cocycles (βsi,sj )i,j∈I combined

with the left action of G on F (2) allow us to write in local trivialisations the left action of G on
itself. Hence, equation (2) holds.

The cocycle relation given by equation (3) follows from the equivariance of the diagram for
the left action of G.

For equation (4), note �rst that for every cross-section s of G → F , the subset s(Fs)NAM
is invariant by right AM -translation. Furthermore, right translating by AM preserve the parts

of the decomposition in s(Fs)N . Finally, this translates in F (2)
s ×AM to a trivial action in the

F (2) coordinates and a translation in the third AM coordinate. �

Lastly, let us combine the relations between the transition maps and the cocycles for the
coordinate system (Bsi)i∈I .

Fact 3.9. Let s0, s
′
0, s1, s

′
1 be di�erentiable cross-sections of G → F . Then for all g ∈ G and

ξ ∈ Fs0 ∩ Fs′0 such that gξ ∈ Fs1 ∩ Fs′1 ,

βs′1,s′0(g, ξ) = Ts′1,s1
(gξ) βs1,s0(g, ξ) Ts0,s′0

(ξ).
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Note that cross-section subscript that are doubled, cancel out with our notations.

Proof. Let (ξ, ξ̌ ; x)s′0 ∈
(
Fs′0 ∩ Fs0

)(2) ×AM and g ∈ G such that gξ ∈ Fs′1 ∩ Fs1 . By equation
(2) of the previous Proposition 3.8 for the local coordinates given by s′1 and s′0,

g(ξ, ξ̌ ; x)s′0 = (gξ, gξ̌ ; βs′1,s′0(g, ξ)x)s′1 .

Then by the transition identity of Proposition 3.10 (i) between s′0 and s0 on the left side of the
previous equation,

g(ξ, ξ̌ ; x)s′0 = g(ξ, ξ̌ ; Ts0,s′0
(ξ)x)s0 .

Again by the cocycle identity on the right hand side between s0 and s1,

g(ξ, ξ̌ ; x)s′0 = (gξ, gξ̌ ; βs1,s0(g, ξ)Ts0,s′0
(ξ)x)s1 .

Lastly, the transition identity between s1 and s′1 on the right side of the equation yields

(gξ, gξ̌ ; βs′1,s′0(g, ξ)x)s′1 = (gξ, gξ̌ ; Ts′1,s1
(gξ)βs1,s0(g, ξ)Ts0,s′0

(ξ)x)s′1 .

�

3.4. Local extensions of Hopf coordinates. Given a family of covering di�erentiable cross-
sections (si)i∈I of G→ F , the associated cocycles do not extend the Iwasawa cocycle. Hence, in
a general setting, the maps (Bsi)i∈I do not extend Hopf coordinates of G/M .

We prove that when the cross-sections (si)i∈I take value in K, the signed multiplicative
cocycles (βsi,sj )i,j∈I generalize the Iwasawa cocycle. We obtain an equivariant and commutative
diagram with the Hopf coordinates.

Proposition 3.10. Let s be a compact valued, di�erentiable cross-section of G → F , then Hs
extends the Hopf coordinates restricted to GsM i.e. the following diagram is commutative.

Gs

πM

��

// F (2)
s ×AM 3 (ξ, ξ̌ ; x)s

��
G/M // F (2) × a 3 (ξ, ξ̌ ; log xA)

Moreover, it is equivariant with the left action of G, i.e. for all ξ ∈ Fs, for all g ∈ G and all
compact valued section s′ such that gξ ∈ Fs′ , the element

g(ξ, ξ̌ ; x)s = (gξ, gξ̌ ; βs′,s(g, ξ)x)s′

projects in G/M to

g(ξ, ξ̌ ; log xA) = (gξ, gξ̌ ; σ(g, ξ) + log xA).

Similarly, it is equivariant with the right action of A i.e. for all (ξ, ξ̌ ; x) ∈ F (2)
s × AM and all

θ ∈ a \ {0}, the element

φ̃tθ(ξ, ξ̌ ; x)s = (ξ, ξ̌ ; xetθ)s

projects to

φ̃tθ(ξ, ξ̌ ; log xA) = (ξ, ξ̌ ; log xA + tθ).

The proof in �7 of the main mixing Theorem 7.1 of this paper, relies on key results (Cf.
Proposition 7.2, 5.2 below) of the joint work [DG20] on mixing of regular Weyl chamber �ow on
Γ\G/M . These results provide the arguments in F (2) × A. By constructing local extensions of
Hopf coordinates, we provide a �rst technical background step in the construction of the invariant
sets and in the proof of mixing.
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Proof. Recall that the lower part of the diagram reads as gM 7→ (gη0, gη̌0 ; σ(g, η0)). The
upper part reads as g 7→ (gη0, gη̌0 ; x)s where x is the component in MA given by the Iwasawa
decomposition of s(gη0)−1g. Commutativity of the diagram then follows from the hypothesis
s(Fs) ⊂ K and the De�nition 2.1 of the Iwasawa cocycle exp(σ(g, η0)) = aI(g) = aI(s(gη0)−1g).

Let us check the left G-equivariance. Let s and s′ be compact valued di�erentiable cross-
sections. By Proposition 3.8 (2) the left G-action that sends elements of Gs to Gs′ is given in
the AM -coordinate by the cocycle βs′,s. Since s and s

′ take value in K, the maps Hs and Hs′
are local extensions of the Hopf coordinates where the left G-action is given in the a-coordinate
by the Iwasawa cocycle. Hence the equivariance.

The last part follows from the commutativity of the diagram and Proposition 3.8 (4) that
describes how to read in coordinates the right multiplication by elements of AM . �

3.5. Local coordinates of K. We prove that every di�erentiable compact valued cross-section
of G→ F also induces local coordinates of K that take value in F ×M . We read the map kI in
those coordinates.

By endowing K with the left G-action de�ned for every g ∈ G and k ∈ K by g.k = kI(gk),
we make the projection G-equivariant.

Proposition 3.11. Let s be a di�erentiable compact valued cross-section of G→ F . Then the
restriction to the �rst and last coordinates of Hs provide local coordinates of K as follows.

Fs ×M −→ s(Fs)M ⊂ K
(ξ ; c)s 7−→ s(ξ)c.

Furthermore, the map kI : G→ K reads in coordinates as

F (2)
s ×AM −→ Fs ×M
(ξ, ξ̌ ; x)s 7−→ (ξ ; xM )s

and for every covering family of compact valued cross-sections (si)i∈I of G → F , the M -
coordinate of the cocycles (βsi,sj )i,j∈I parametrize the left G action on K.

In �5, we use the Proposition above to rewrite in local coordinates the results of Guivarc'h�
Raugi [GR07] on the action of Γ on K. The relations of these coordinates with the extended
Hopf coordinates of G allow us to construct the invariant sets in Γ\G for the dynamics of the
nonnegative diagonal �ows. Proposition 5.12 is a direct consequence of the properties of the
extended Hopf coordinates and of the results of Guivarc'h�Raugi.

Proof. The map k 7→ kη0 allows to identify F with K/M . Consequently, every compact valued
di�erential cross-section induces a local trivialization.

Let s be a compact valued di�erential cross-section of G → F . Then s(Fs)M ⊂ K. Co-

ordinates in F (2)
s ×AM are the same as unique decompositions in s(Fs)NAM where the N part

is associated to the second coordinate in F and the AM part the last coordinate. Since AM
normalises N and M commutes with A, the compact part of the Iwasawa decomposition KAN
of every element in s(Fs)NAM is given by the product of its elements in s(Fs) and M . Hence,
the following diagram

G
AN−→ K

M−→ F
g 7−→ kI(g) 7−→ gη0

reads in local Bs coordinates as

F (2)
s ×AM −→ Fs ×M −→ Fs

(ξ, ξ̌ ; x)s 7−→ (ξ ; xM )s 7−→ ξ.
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Let (si)i∈I be a family of covering di�erentiable cross-sections of K → F . That the left G action
in K reads as the projection in M of the cocycles

(
βsi,sj

)
i,j∈I now follows from the equivariance

of the second diagram in local coordinates. �

3.6. Bruhat-Hopf coordinates. We de�ne two (covering) families of cross-sections of G→ F
de�ned on maximal Bruhat cells of F : unipotent and compact Bruhat sections. We de�ne
Bruhat-Hopf coordinates as the extensions of Hopf coordinates on maximal Bruhat cells of G
(Cf. Proposition 3.10). In Proposition 3.14 we prove that every unipotent (resp. compact)
Bruhat section is parametrized by a point of F and an element in AM (resp. M).

By Corollary 2.5 of Bruhat decomposition, the map

N− −→ N−η0 = b(η̌0)

u 7−→ uη0

is a di�eomorphism. Denote by [e] its inverse.

De�nition 3.12. A unipotent Bruhat section is a left translate by G of the map [e]. We denote
them by [h] := h · [e] where h ∈ G. For every h ∈ G, the unipotent Bruhat section [h] has domain
hN−η0 = b(hη̌0), codomain hN− and is de�ned for all ξ ∈ b(hη̌0) by

[h](ξ) = h[e](h−1ξ).

A compact Bruhat section is the compact component in the KAN decomposition of a unipotent
Bruhat section, meaning that for every h ∈ G, the associated compact Bruhat section is de�ned
by kI ◦ [h].

Bruhat-Hopf coordinates (resp. Bruhat coordinates) are the families of coordinates of G given
by covering families of compact (resp. unipotent) Bruhat sections.

The relations between Bruhat coordinates and Bruhat-Hopf coordinates play an important
role in the estimates of the elliptic part of products of loxodromic elements of �4 as well as in the
proofs of decorrelation in �6. In the rest of the section, we lighten the notations for unipotent
and compact Bruhat sections.

For every h ∈ G, the unipotent Bruhat section [h] and the compact Bruhat section kI ◦ [h]
share the same domain: the maximal Bruhat cell b(hη̌0) opposite to hη̌0. Using compactness of
F , one can choose �nite families of covering Bruhat sections of any type.

For every ξ̌ ∈ F , we pick a compact element hξ̌ ∈ K such that hξ̌η̌0 = ξ̌. The choice of

this compact family (hξ̌)ξ̌∈F ⊂ K determines a covering family of unipotent Bruhat sections.
Abusing notation, we denote each of them by

[ξ̌] := [hξ̌].

Likewise, we determine a choice of compact Bruhat section for every domain b(ξ̌) where ξ̌ ∈ F .
We denote them by

k(ξ̌) := kI ◦ [ξ̌].

Remark 3.13. The Proposition below implies that for any h ∈ G such that hη̌0 = ξ̌, there is a
unique element x∗ ∈ AM such that [h] = [ξ̌].x∗.

Similarly, any compact Bruhat section s is determined by its domain b(ξ̌) with ξ̌ ∈ F and an

element c ∈M such that s = k(ξ̌).c.
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Recall that kI− (resp. aI−) denotes the coordinate in K (resp. A) in the Iwasawa decom-
position G = KAN− and that for every cross-sections s, s′ of G → F , for all ξ ∈ Fs ∩ Fs′ , we
de�ned Ts,s′(ξ) as the unique element in AM such that

s′(ξ) ∈ s(ξ)NTs,s′(ξ).

We compute the transition functions for particular cases of unipotent Bruhat sections.

Proposition 3.14. The following holds.

(1) For every u∗ ∈ N−, then [u∗] = [e] i.e.

T[e],[u∗] = eAM .

(2) For every x∗ ∈ AM and u∗ ∈ N−, then [x∗u∗] = [e].x∗ = [u∗x∗] i.e.

T[e],[x∗u∗] = x∗ = T[e],[u∗x∗].

(3) For every h ∈ G, then [h] = [kI−(h)].aI−(h) i.e.

T[kI−(h)],[h] = aI−(h).

Proof. Note that for every h ∈ N−AM , because hη̌0 = η̌0, then F[h] = F[e] = b(η̌0).

Let us prove (1) i.e. that for all u∗ ∈ N− and ξ ∈ F[u∗] then [u∗](ξ) ∈ [e](ξ)N. Since

[u∗](ξ) = u∗[e](u
−1
∗ ξ) for every ξ ∈ b(η̌0), then by De�nition 3.12 of [e], we deduce that [u∗] takes

value in N−. Hence [e](ξ)−1[u∗](ξ) ∈ N−. Furthermore, using that [e] and [u∗] are cross-sections
of G → F , we deduce [e](ξ)−1[u∗](ξ) ∈ N− ∩MAN . Therefore, by uniqueness of the Bruhat
decomposition [e](ξ)−1[u∗](ξ) = eG and T[e],[u∗] = eAM .

For statement (2), for all (u∗, x∗) ∈ N−×AM and ξ ∈ F[e], then [x∗u∗](ξ) = x∗u∗[e](u
−1
∗ x−1

∗ ξ).

Using that AM normalizes N−, we deduce that the map ξ 7→ [x∗u∗](ξ)x
−1
∗ is a di�erentiable

cross-section of G 7→ F taking value in N− and of domain b(η̌0). Hence, by uniqueness of
the Bruhat decomposition in N−NAM , we deduce that T[e],[x∗u∗].x

−1
∗

= eAM . Now we apply

Proposition 3.6 (ii) on transition functions to deduce that

eAM = T[e],[x∗u∗].x
−1
∗

= T[e],[x∗u∗]T[x∗u∗],[x∗u∗].x
−1
∗
.

Then point (iv) of the same Proposition yields T[x∗u∗],[x∗u∗].x
−1
∗

= x−1
∗ , hence

T[e],[x∗u∗]x
−1
∗ = eAM .

For the second part of the equality, note that [u∗x∗] = [x∗(x
−1
∗ u∗x∗)]. Since AM normalizes N−,

the conjugated term is in N− and the rest follows from the previous point.
For statement (3), we write the KAN− decomposition h = kI−(h)aI−(h)uI−(h). Then by

properties of the left action of G on [e], we deduce that

h · [e] = kI−(h) · [aI−(h)uI−(h)].

Hence by statement (2), we deduce [h] = [kI−(h)].aI−(h). �

4. Products of loxodromic elements

Recall that an element of G is unipotent (resp. elliptic, hyperbolic) if it is conjugated to an
element in N (resp. K, A). By semisimplicity of the Lie group, every element g ∈ G admits a
unique decomposition g = geghgu, called the Jordan decomposition, where ge, gh and gu commute
and ge (resp. gh, gu) is called the elliptic part (resp. hyperbolic part, unipotent part) of g.

De�nition 4.1. For any element g ∈ G, there is a unique element λ(g) ∈ a+ such that the
hyperbolic part of g is conjugated to exp(λ(g)) ∈ A+. The map λ : G→ a+ is called the Jordan
projection.
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An element g ∈ G is loxodromic if λ(g) ∈ a++. Denote by Glox (resp. Γlox) the subset
of loxodromic elements of G (resp. Γ). Since any element of N that commutes with A++ is
trivial, the unipotent part of loxodromic elements is trivial. Furthermore, the only elements of
K that commute with A++ are in M . We deduce that the elliptic part of loxodromic elements
is conjugated to elements in M . Therefore, g is loxodromic if and only if there exists h ∈ G such
that h−1gh ∈MA++.

Hence, for every loxodromic element g ∈ G, there exists hg ∈ G and m(g) ∈ M so that we

can write g = hgm(g)eλ(g)h−1
g . However, for every m ∈M we can also write

g = (hgm)(m−1m(g)m)eλ(g)(hgm)−1.

Which means that the angular part m(g) is only well de�ned up to conjugacy by M . We thus
use speci�c cross-sections of G → G/AM , to study the elliptic part of products of loxodromic
elements.

For every loxodromic element g ∈ G, denote by g+ := hη0 and g− := hη0. The Iwasawa
cocycle of g on g+ is equal to its Jordan projection (see for instance [DG20, Fact 2.6])

σ(g, g+) = λ(g).

In �4.1, by using di�erential cross-sections of G→ F that factor the projection G→ G/AM , we
extend locally and to loxodromic elements the previous formula.

In �4.2, we recall the dynamical properties of the left action of loxodromic elements on the
Furstenberg boundary. This leads us to another de�nition of (r, ε)-loxodromic elements, where r
is a positive number that measures the distance between the attracting point of the loxodromic
element and the boundary of its basin of attraction and ε measures how contracting it is. Using
the Bruhat sections of G → F , we give another proof that every loxodromic element, iterated
enough times, will become (r, ε)-loxodromic.

In �4.3, we compute for every loxodromic element, the signed cocycle given by the unipotent
Bruhat section supported on the basin of attraction and on each point of the basin. Benoist in
[Ben00] gave estimates for the Jordan projection of products of loxodromic elements involving
the Jordan projection of each term and some explicit error term maps. We improve those error
term maps into so-called Ratio maps that take value in AM and obtain an exact formula in
Proposition 4.9.

We de�ne in �4.4 a family of equicontinuity constants δr,ε for compact Bruhat sections. We
claim the construction can be adapted for any family of covering K-valued cross-sections of
G→ F of the same type.

In the last paragraph, we estimate simultaneously the elliptic and hyperbolic part of products
of generic loxodromic elements in Proposition 4.12, extending the estimates of Benoist to the
elliptic part. The proof is based on a Ping-Pong argument.

4.1. Extended Jordan projections for loxodromic elements. For every loxodromic ele-
ment g ∈ G, denote by g+ := hη0 and g− := hη0. Let us de�ne a multiplicative and local
extension to MA++ of the Jordan projection of loxodromic elements.

De�nition 4.2. Let s be a di�erentiable cross-section of G→ F . For every loxodromic element
g ∈ G such that g+ ∈ Fs, we denote by

Ls(g) := βs(g, g
+).

For compact or unipotent Bruhat sections, such a map is called a signed Jordan projection (for
loxodromic elements).

Fact 4.3. Fix a family of unipotent Bruhat sections denoted by ([ξ])ξ∈F of respective domains
b(ξ). Let g ∈ G be a loxodromic element. The following holds.
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(1) For every h ∈ G such that h−1gh ∈MA++, we have L[h](g) = h−1gh.

(2) Denote by hg the element of Bruhat coordinates (g+, g− ; eAM )[g−].

L[g−](g) = L[hg ](g) = h−1
g ghg.

Let s be a cross-section of G→ F such that g+ ∈ Fs. Then
(3) Ls(g) = T[g−],s(g

+)−1 L[g−](g) T[g−],s(g
+),

(4) Ls(g) ∈Meλ(g).

Proof. (1) By De�nition 3.7 of the cocycle, β[h](g, g
+) is the unique element in AM such that

g[h](g+) ∈ [h](g+)β[h](g, g
+)N.

By De�nition 3.12 of the unipotent Bruhat section, [h](g+) = h[e](h−1g+). Since g+ = hη0, we
deduce that [h](g+) = h[e](η0) = h. We rewrite the inclusion, with the de�nition of the extended
Jordan projection β[h](g, g

+) = L[h](g)

gh ∈ hL[h](g)N.

Since h−1gh ∈MA++, we deduce that L[h](g) ∈MA++ and the N -coordinate is trivial, i.e.

gh = hL[h](g).

(2) The unipotent Bruhat section [g−] shares the same domain as [h]. By Remark 3.13, these
cross-sections are de�ned only up to their domain and by right multiplication by an element in
AM . Since hg the unique element in hMA of Bruhat coordinates (g+, g− ; eAM )[g−], then

g(g+, g− ; eAM )[g−] = (g+, g− ; β[g−](g, g
+))[g−].

Using properties of the right translation by AM in Bruhat coordinates, we deduce that

ghg = hgL[g−](g).

(3) Follows �rst from the identity of Fact 3.9 between transition functions and cocycle. Then
using that g+ is a �xed point for the action of g on F , we apply Proposition 3.6 (iii) on Ts,[g−](g

+).
(4) Follows from (3) because we are conjugating by an element in AM . �

4.2. Dynamical action on the Furstenberg boundary. We study the left action of loxo-
dromic elements on the Furstenberg boundary. We give an alternative proof that the basin of
attraction is the Bruhat cell opposite to the repelling point. This leads to a De�nition 4.5 of
(r, ε)-loxodromic elements using the K-invariant distance on F . We give another proof that large
iterates of loxodromic element are (r, ε)-loxodromic.

Proposition 4.4. Let g ∈ G be a loxodromic element.
Then g+ is an attracting point for the action of g on the Furstenberg boundary. Furthermore,

the basin of attraction of g+ is b(g−), the Bruhat cell opposite to its repelling point.

The classical proof uses the fundamental representations of G introduced Tits (cf. [Sam14,
Corollary 3.12]) and involves the notion of simultaneaous proximality in those representations (
cf. [Ben97b]). We only rely here on Bruhat decomposition and the convergence (1).

Proof. Let us �rst assume that g ∈ MA++. Then g+ = η0 and g− = η̌0 and we are going to
prove that its basin of attraction is b(η̌0).

SinceMA normalizes N−, we deduce that g stabilizes the Bruhat cell b(η̌0). Indeed, for every
u∗ ∈ N−, then gu∗η0 = gu∗g

−1η0 ∈ N−η0. Furthermore for any u∗ ∈ N−, then gnu∗g−n → eG
when n→ +∞. This implies that b(η̌0) is in the bassin of attraction of η0.

Conversely, let ξ ∈ F be in the basin of attraction of η0. Choose for every element in the Weyl
group w ∈W a representative kw ∈ NK(A) and recall that kι ∈ NK(A) denotes an element such
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that N− = kιNk
−1
ι . Apply Bruhat decomposition G = kιtw∈W BkwB where B = MAN . Then

there exists u∗ ∈ N− and kw ∈ NK(A) such that ξ = u∗kwη0. Now gnξ = gnu∗g
−n (gnkwη0).

Since ξ is in the basin of attraction and gnu∗g
−n converges to eG, we deduce that g

nkwη0 → η0.
Using that kw normalizes MA, we deduce that gnkwη0 = kw(k−1

w gnkw)η0 = kwη0. The sequence
is stationary at kwη0, by uniqueness of the limit kwη0 = η0. Hence kw ∈M and ξ ∈ N−η0.

In the general case, let g ∈ G be a loxodromic element. Consider the unique element hg ∈ G
given by Fact 4.3 such that

h−1
g ghg = L[g−](g) ∈MA++.

Hence, the attracting point of g is hgη0 = g+ and its basin of attraction is hgb(η̌0) = b(g−). �

We give a de�nition of (r, ε)-loxodromic elements which is slightly di�erent from what the
reader may �nd in [Ben97b] or [Ben00] because it does not use the notion of simultaneous
proximality in the fundamental representations of G given by Tits. However, using our choice of
distance on F and the intrinsic characterization of the basin of attraction of loxodromic elements,
one can check that both de�nitions are equivalent.

For all ε > 0, all ξ̌ ∈ F , we set the following notation.

Vε(∂b(ξ̌)){ := {ξ ∈ F | d(ξ, ∂b(ξ̌)) ≥ ε}.

De�nition 4.5. Let r > 0 be a positive number and ε ∈ (0, r]. An element g ∈ G is (r, ε)-
loxodromic if it satis�es the following conditions.

(i) The element g is loxodromic and r ≤ 1
2d(g+, ∂b(g−)).

(ii) It maps the compact set Vε(∂b(g−)){ into the ball B(g+, ε).

(iii) The restriction of g to Vε(∂b(g−)){ is an ε-Lipschitz map.

These remarks follow from the previous de�nition.

1) If an element is (r, ε)-loxodromic, then it is (r′, ε)-loxodromic for every ε ≤ r′ ≤ r.
2) If an element is (r, ε)-loxodromic, then it is (r, ε′)-loxodromic for every r ≥ ε′ ≥ ε.
3) If g is is (r, ε)-loxodromic, then gn is also is (r, ε)-loxodromic for every n ≥ 1.

Note that loxodromic elements that are not su�ciently contracting, for instance those too close
to eG, will never satisfy the second condition for being (r, ε)-loxodromic. However, we give below
another proof that every loxodromic element, iterated a large enough amount of times will be
(r, ε)-loxodromic.

Proposition 4.6. Let g ∈ G be a loxodromic element.
Then for all positive number r ≤ 1

2d(g+, ∂b(g−)) and all ε ∈ (0, r], there exists an integer
Nr,ε ≥ 1 such that for all n ≥ Nr,ε, the element gn is (r, ε)-loxodromic.

The Proposition above is used in the Ping-Pong arguments of �6.3 : in the proofs of decorrel-
ation.

Proof. Let g ∈ G be a loxodromic element and �x r ≤ 1
2d(g+, ∂b(g−)) and ε ∈ (0, r]. By choice

of these parameters, condition (i) holds.

Note that Vε(∂b(g−)){ is a compact subset of b(g−), which by Proposition 4.4 is the basin

of attraction of g+. Hence {gnVε(∂b(g−)){}n≥1 is a sequence of compact sets in the basin of
attraction shrinking towards g+. Consequently, condition (ii) holds for every n ≥ N2 su�ciently
large.

Let us now prove that there exists an integer Nr,ε such that for every n ≥ Nr,ε the restriction
of gn to Vε(∂b(g−)){ is an ε-Lipschitz map. By Fact 4.3, we consider the element hg ∈ G such
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that h−1
g ghg = L[g−](g). Using that AM normalises N−, we express the action of g on b(g−) in

the unipotent charts [g−](b(g−)) = hgN
− by

c(g) : hgN
− −→ hgN

−

hgu∗ 7−→ hg
(
L[g−](g)u∗L[g−](g)−1

)
.

The chosen metric on F is induced by the identi�cation K/M ' F . Furthermore, the compact
Bruhat section k(g−) : b(g−) → K de�ned by kI ◦ [g−] is a di�erentiable chart of b(g−).
Therefore, any upper bound of the di�erential of the map

k(g−)(b(g−)) −→ k(g−)(b(g−))

kI(hgu∗) 7−→ kI ◦ c(g)(hgu∗).

restricted to k(g−)(Vε(∂b(g−)){) provides a Lipschitz constant for the map

Vε(∂b(g−){ −→ b(g−)

ξ 7−→ gξ.

Set Cr,ε := supu∗∈[g−]B(g+,ε) ‖Du∗kI‖ supu∗∈[g−]Vε(∂b(g−)){ ‖Du∗kI‖−1.

At every point, the eigenvalues of the di�erential of c(g) are {e−α(λ(g))}α∈Σ+
where Σ+ is the

set of positive roots. Denote by `g := minα∈Σ+ α(λ(g)). Since g is loxodromic, `g is a positive
number and we obtain the uniform exponential decay of the di�erential of c(g) i.e. for every
n ≥ 1,

sup
u∗∈hgN−

‖Du∗c(g
n)‖ ≤ e−n`g .

By hypothesis on r and ε, we deduce that B(g+, ε) ⊂ Vε(∂b(g−)){. Let n ≥ N2. Then by choice
of `g and Cr,ε, we deduce that Cr,εe

−n`g is a Lipschitz constant for the action of gn restricted
to this compact subset of the basin of attraction. Since this sequence decays exponentially fast,
there exists Nr,ε ≥ N2 such that for every n ≥ Nr,ε, then Cr,εe

−n`g ≤ ε and condition (iii) is
satis�ed. �

4.3. Cocycle on the basin of attraction. Let g be a loxodromic element. We prove in
Lemma 4.7 that the cocycle in Bruhat coordinates β[g−], applied to g and every point ξ in b(g−)
is everywhere equal to the signed Jordan projection L[g−](g). Then we de�ne the so-called ratio
maps which allow us to write in Proposition 4.9 the relation between the signed cocycle of g on
every point ξ in its basin of attraction and any local signed Jordan projection of g, provided that
it is well de�ned.

Lemma 4.7. For all loxodromic element g ∈ G, all n ≥ 1 and every ξ ∈ b(g−),

β[g−](g
n, ξ) = L[g−](g)n.

We give a di�erent proof from Lee-Oh [LO20], using Bruhat coordinates.

Proof. Denote by hg the element of G of Bruhat coordinates (g+, g− ; eAM )[g−]. By Fact 4.3 we
deduce that ghg = hgL[g−](g).

By property of the unipotent Bruhat section, for every ξ ∈ b(g−) = hgN
−η0, there exists a

unique uξ ∈ N− such that ξ = hguξη0 and hguξ reads in Bruhat coordinates as (ξ, g− ; eAM )[g−].

On one hand, by de�nition of the cocycle and because b(g−) is the basin of attraction of g+,
for all n ≥ 1, the element gnhguξ reads as

gn(ξ, g− ; eAM )[g−] = (gnξ, g− ; β[g−](g
n, ξ) )[g−].
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Note that β[g−](g
n, ξ) is the unique element in AM such that gnhguξ ∈ hgN−β[g−](g

n, ξ)N. That

the second coordinate remains equal to g− means that the part in N is trivial.
On the other hand, using the de�nition of the signed Jordan projection,

gnhguξ = hgL[g−](g)nuξ = hg
(
L[g−](g)nuξL[g−](g)−n

)
L[g−](g)n.

Since AM normalizes N−, we deduce that L[g−](g)nuξL[g−](g)−n ∈ N−, hence

gnhguξ ∈ hgN−L[g−](g)n.

This allows us to deduce by uniqueness of the Bruhat decomposition in hgN
−MAN that

β[g−](g
n, ξ) = L[g−](g)n. �

De�nition 4.8. Given two cross-sections s1, s2 and a Bruhat cell b(ξ̌), then for all ξ1 ∈ Fs1∩b(ξ̌)
and ξ2 ∈ Fs2 ∩ b(ξ̌) we de�ne the ratio

Rs1,s2(ξ̌; ξ1, ξ2) := Ts1,[ξ̌]
(ξ1)T[ξ̌],s2

(ξ2).

When s1 = s2, we shorten the notation Rs1 := Rs1,s1 . For every loxodromic element g ∈ G
such that g+ ∈ Fs1 ∩ b(g−), for all ξ ∈ Fs2 ∩ b(g−), set

Rs1,s2(g, ξ) := Rs1,s2(g−; g+, ξ).

The regularity of the ratio map depends on the regulatity of the transfer maps which in turn
depend on that of the cross-sections. Because the transition functions between the unipotent
and compact Bruhat sections take value in AM , for any compact Bruhat sections s1, s2, the ratio
map Rs1,s2 is continuous on its domain and takes value in AM .

Using the ratio map, the following statement follows from Lemma 4.7.

Proposition 4.9. For all loxodromic element g ∈ Glox, all integer n ≥ 1 and ξ ∈ b(g−), for any
choice of compact (Bruhat) sections s0, s1, s2 such that (ξ, g+, gnξ) ∈ Fs0 ×Fs1 ×Fs2 ,
(5) βs2,s0(gn, ξ) = Rs1,s2(g; gnξ)−1Ls1(g)nRs1,s0(g; ξ).

Proof. Using �rst the transition functions between s2, s0 and [g−], then applying Lemma 4.7 on
the middle term and �nally using the transition function between [g−] and s1 in the middle term,
we get

βs2,s0(gn, ξ) = Ts2,[g−](g
nξ) β[g−](g

n, ξ) T[g−],s0(ξ)

= Ts2,[g−](g
nξ) L[g−](g

n) T[g−],s0(ξ)

= Ts2,[g−](g
nξ)T[g−],s1(g+) Ls1(gn) Ts1,[g−](g

+)T[g−],s0(ξ).

Finally, using De�nition 4.8 and the properties of the transition functions, we check that
Ts2,[g−](g

nξ)T[g−],s1(g+) = Rs1,s2(g; gnξ)−1 and Ts1,[g−](g
+)T[g−],s0(ξ) = Rs1,s0(g; ξ). �

4.4. Equicontinuity constants. The �rst term on the left side of the equation (5), will converge
towards Rs1,s2(g; g+)−1 = eAM as n goes to in�nity. Therefore, when n is large enough, the
signed cocycle βs2,s0(gn, ξ) is well approximated by Ls1(g)nRs1,s0(g; ξ). In the next paragraph
�4.4, we de�ne a suitable distance on AM and the so-called equicontinuity constants δr,ε that
control this approximation for (r, ε)-loxodromic elements.

After constructing a distance of AM0 that is symmetric and left and right invariant, we
introduce for every r > 0 and ξ̌ ∈ F , a family (δr,ε(ξ̌))ε∈(0,r] of equicontinuity constants of a
continuous fonction de�ned over a compact set. These constants are thus positive and converge
to zero when ε goes to zero. Furthermore, using the K-invariance of the distance on F and the
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action of K on the compact and unipotent Bruhat sections, we show that these constants do not
depend on the choice of ξ̌ ∈ F .

Let us now choose a distance on AM which is left and right AM invariant i.e. for every
x, y, z, w ∈ AM , then dAM (wxz,wyz) = dAM (x, y). The maximal R-split torus A is an abelian
group of �nite dimension so any norm on its Lie algebra a will induce by the exponential map a
suitable distance on A. Since M is the centralizer of A in K, it is su�cient to construct an M
invariant distance between arc connected points and setting an in�nite distance otherwise. We
will then endow AM with the distance dAM induced by the product group structure A×M .

Now we construct an M -invariant norm on the Lie algebra of M . Starting from an euclidean
norm on m, we make it Ad(M)-invariant by taking its average with respect to the Haar measure
on M . Since M is compact, its Haar measure is �nite. Therefore, the average is an Ad(M)-
invariant norm on m. It induces an Ad(M)-invariant scalar product on TeMM . By transporting
it on the tangent space over every point by left multiplication by M we obtain a left invariant
metric. The induced riemannian distance on M is only de�ned between arc connected points
and is, by construction, left M -invariant and invariant by conjugation. This su�ces to deduce
the M -invariance of such a distance.

Recall that for every ξ̌ ∈ F , then [ξ̌] denotes a choice of unipotent Bruhat section of domain
b(ξ̌) and k(ξ̌) := kI ◦ [ξ̌] is the associated compact Bruhat section. Therefore k(F) denotes the
family of such compact Bruhat sections.

Proposition 4.10. Let r > 0. Consider the compact, symmetric and invariant by conjugacy by
K subset

Kr := {h ∈ K | hVr(∂b(η̌0)) ⊂ V2r(∂b(η̌0))}.

For every ξ̌ ∈ F , denote by

δr,ε(ξ̌) := sup
s∈Kr·k(ξ̌)

{
dAM (Rs(ξ̌ ; ξ1, ξ2), eAM )

∣∣∣ ξ1 ∈ V3r(∂b(ξ̌)){ and ξ2 ∈ B(ξ1, ε)
}
.

Then the following holds.

(a) For every r > 0 and every ε ∈ (0, r], the constant δr,ε(η̌0) is non-zero and

δr,ε(η̌0) −→
ε→0

0.

(b) For every ξ̌ ∈ F , the equality holds δr,ε(η̌0) = δr,ε(ξ̌).

Proof. First, by M -invariance of the distance we deduce that

dAM (Rs(ξ̌ ; ξ1, ξ2), eAM ) = dAM (Ts,[ξ̌](ξ1) ,Ts,[ξ̌](ξ2)).

(a) Because the Bruhat sections and the Iwasawa decomposition are di�erentiable, by De�ni-
tion 3.5 of the transition maps, the map

Kr × V2r(∂b(η̌0)){ −→ AM

(c, ξ) 7−→ Tc·k(η̌0),[η̌0](ξ)

is continuous. It is de�ned over a compact set and using the De�nition 4.8 of the ratio map,
we notice that δr,ε(η̌0) is for every ε > 0 bounded above by the equicontinuity constant of this

map and bounded below by the equicontinuity constants for the restriction to Kr×V3r(∂b(η̌0)){.
Hence the positivity and convergence to zero.
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(b) Let l ∈ K such that ξ̌ = lη̌0 and k(ξ̌) = l · k(η̌0). Since lV2r(∂b(η̌0)){ = V2r(∂b(ξ̌)){, note
that δr,ε(ξ̌) is associated to the continuous map

Kr × V2r(∂b(η̌0)){ −→ AM

(c, ξ) 7−→ Tcl·k(η̌0),l·[η̌0](lξ).

Recall that the transition function is the unique element in AM such that(
cl · k(η̌0)

)
(lξ) ∈

(
l · [η̌0]

)
(lξ)NTcl·k(η̌0),l·[η̌0](lξ).

By �rst applying the de�nition of the translation l · s(lξ) = ls(ξ), then multiplying by l−1 on the
left, we obtain (

l−1cl · k(η̌0)
)
(ξ) ∈ [η̌0](ξ)NTcl·k(η̌0),l·[η̌0](lξ).

Therefore Tcl·k(η̌0),l·[η̌0](lξ) = Tl−1cl·k(η̌0),[η̌0](ξ). Since Kr is invariant by conjugation, in partic-

ular l−1Krl = Kr. The continuous maps associated to δr,ε(ξ̌) and δr,ε(η0) coincide, hence the
constants are equal. �

De�nition 4.11. Let r > 0. We de�ne the family of equicontinuity constants

δr,ε := sup
ξ̌∈F

sup
s∈Kr·k(ξ̌)

{
dAM (Rs(ξ̌ ; ξ1, ξ2), eAM )

∣∣∣ ξ1 ∈ V3r(∂b(ξ̌)){ and ξ2 ∈ B(ξ1, ε)
}
.

4.5. Estimates for products of generic loxodromic elements. Let g1, ..., gl ∈ Glox be
loxodromic elements. Taking the convention that g0 = gl, we say the (ordered) family is generic
if g+

i−1, g
−
i are transverse for every 1 ≤ i ≤ l or in other words g+

i−1 ∈ b(g−i ). The statement below
gives new information on the elliptic part of a product of generic very contracting loxodromic
elements. However, because the elliptic part of loxodromic elements is well de�ned only up to
conjugation and M is not abelian in general, we need to specify the choice of diagonalisation of
each loxodromic element via a family of cross-sections si.

Proposition 4.12. Let r > 0 and ε ∈ (0, r], let g1, ..., gl ∈ G be a generic family of (r, ε)-
loxodromic elements such that

? r ≤ 1
6d({g+

i−1, g
+
i }, ∂b(g−i )) for all 1 ≤ i ≤ l with the convention g0 = gl.

Fix a choice of compact Bruhat sections (si)0≤i≤l such that

?? Fsi ⊃ Vr(∂b(g−i )){ for every 1 ≤ i ≤ l and Fs0 ⊃ Vε(∂b(g−1 )){.

Then for all ξ0 ∈ Vε(∂b(g−1 )){ and for all integers n1, ..., nl ≥ 1,

βsl,s0(gnl

l ...g
n1
1 , ξ0) ∈ Lsl(g

nl

l )Rsl,sl−1
(gl, g

+
l−1)...Ls1(gn1

1 )Rs1,s0(g1, ξ0)B(eAM , (2l − 1)δr,ε).

Furthermore, gnl

l ...g
n1
1 is (2r, 2ε)-loxodromic with attracting (resp. repelling) point in B(g+

l , ε)

(resp. B(g−1 , ε)) and its extended Jordan projection satis�es

Lsl(g
nl

l ...g
n1
1 ) ∈ Lsl(g

nl

l )Rsl,sl−1
(gl, g

+
l−1)...Ls1(gn1

1 )Rs1,sl(g1, g
+
l )B(eAM , 2lδr,ε).

Benoist in [Ben00, Lemma 3.6] gave a proof that gnl

l ...g
n1
1 is (2r, 2ε)-loxodromic with attracting

(resp. repelling) point in B(g+
l , ε) (resp. B(g−1 , ε)). Using the fundamental representations of G

given by Tits and simultaneous proximality of loxodromic elements, he de�ned some error terms
ν(gi, ξ) ∈ a, equicontinuity constants δr,ε and proved the following estimate∥∥∥∥λ(gnl

l ...g
n1
1 )−

∑
1≤i≤l

(niλ(gi) + ν(gi, g
+
i−1))

∥∥∥∥ ≤ 2lδr,ε.
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The statement in the above Proposition is multiplicative, taking value in AM , replacing λ with
the signed Jordan projections Lsi and ν with the ratio maps Rsi,si−1

. It gives information on
both the elliptic and hyperbolic part of product of generic loxodromic elements.

Finally, this Proposition is an important component in the proofs of �6 for decorrelation.

Proof. Let us prove the estimate for the signed cocycle, the extended Jordan projection's estimate
will follow from the De�nition 4.2 that for every loxodromic element g and a suitable cross-section
s such that g+ ∈ Fs, then Ls(g) = βs(g, g

+).
For all 1 ≤ j ≤ l, we set ξj := g

nj

j ...gn1
1 ξ0. At each step starting from j = 1, the element gj

is (r, ε)-loxodromic and ξj−1 ∈ Vε(∂b(g−j )){ ∩ Fsj−1
. Hence ξj := g

nj

j ξj−1 ∈ B(g+
j , ε), which by

choice of sj and r ≤ 1
6d(g+

j , ∂b(g−j )∪∂b(g−j+1)) is inside Vr(∂b(g−j+1)){ ∩Vr(∂b(g−j )){ ⊂ Fsj . We

deduce, by induction, that ξj ∈ B(g+
j , ε) ⊂ Fsj for every 1 ≤ j ≤ l.

By the cocycle relation and recognizing ξj for every 1 ≤ j ≤ l − 1,

βsl,s0(gnl

l ...g
n1
1 , ξ0) = βsl,sl−1

(gnl

l , g
nl−1

l−1 ...g
n1
1 ξ0) βsl−1,s0(g

nl−1

l−1 ...g
n1
1 , ξ0)

= βsl,sl−1
(gnl

l , ξl−1) βsl−1,s0(g
nl−1

l−1 ...g
n1
1 , ξ0)

= βsl,sl−1
(gnl

l , ξl−1) · · · βsj ,sj−1(g
nj

j , ξj−1) · · · βs1,s0(gn1
1 , ξ0).

We will �rst prove that the �rst term on the right hand side is in a 2δr,ε neighbourhood
of Lsl(g

nl

l )Rsl,sl−1
(gl ; g+

l−1). It will then follow by induction that every term of the form

βsj ,sj−1(g
nj

j , ξj−1) where 2 ≤ j ≤ l is 2δr,ε close to Lsj (g
nj

j )Rsj ,sj−1(gj ; g+
j−1). Finally, we

prove that the last term is in a δr,ε neighbourhood of Ls1(gn1
1 )Rs1,s0(g1; ξ0).

Let us apply Proposition 4.9, then replace gnl

l ξl−1 with ξl

βsl,sl−1
(gnl

l , ξl−1) = Rsl(gl ; gnl

l ξl−1)−1 Lsl(gl)
nl Rsl,sl−1

(gl ; ξl−1)

= Rsl(gl ; ξl)
−1 Lsl(gl)

nl Rsl,sl−1
(gl ; ξl−1).

By De�nition 4.8 of the ratio Rsl(gl ; ξl)
−1 = Rsl(g

−
l ; g+

l , ξl)
−1. Since ξl ∈ B(g+

l , ε) and by

choice of r ≤ 1
6d(g+

l , ∂b(g−l )), we deduce by De�nition 4.11 of δrε that Rsl(gl ; ξl) ∈ B(eAM , δr,ε).

The �rst term is small, it remains to show that the third term is close to Rsl,sl−1
(g−l ; g+

l , g
+
l−1).

By de�nition of the ratio map,

Rsl,sl−1
(g−l ; g+

l , ξl−1) = Tsl,[hl](g
+
l ) T[hl],sl−1

(ξl−1)

= Tsl,[hl](g
+
l ) T[hl],sl−1

(g+
l−1)

Tsl−1,[hl](g
+
l−1)T[hl],sl−1

(ξl−1)

= Rsl,sl−1
(g−l ; g+

l , g
+
l−1) Rsl−1

(g−l ; g+
l−1, ξl−1).

Hence, the cocycle can be written as follows,

βsl,sl−1
(gnl

l , ξl−1) = Rsl(gl ; ξl)
−1 Lsl(gl)

nl Rsl,sl−1
(gl ; g+

l−1) Rsl−1
(g−l ; g+

l−1, ξl−1).

Finally, by choice of r ≤ 1
6d(g+

l−1, ∂b(g−l )) and by De�nition 4.11 of δr,ε, the third term is small i.e.

Rsl−1
(g−l ; g+

l−1, ξl−1) ∈ B(eAM , δr,ε). Given that the distance in AM is symmetric and invariant
by conjugation, we deduce that

βsl,sl−1
(gnl

l , ξl−1) ∈ Lsl(gl)
nl Rsl,sl−1

(gl ; g+
l−1) B(eAM , 2δr,ε).

By induction, for every 2 ≤ j ≤ l
βsj ,sj−1

(g
nj

j , ξj−1) ∈ Lsj (gj)
nj Rsj ,sj−1

(gj ; g+
j−1) B(eAM , 2δr,ε).

Now for βs1,s0(gn1
1 , ξ0), by Proposition 4.9 and by replacing gn1

1 ξ0 with ξ1

βs1,s0(gn1
1 , ξ0) = Rs1(g1 ; gn1

1 ξ0)−1 Ls1(g1)n1 Rs1,s1(g1 ; ξ0).
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Similarly, by choice of r and by de�nition of δr,ε, we deduce that

βs1,s0(gn1
1 , ξ0) ∈ Ls1(g1)n1 Rs1,s1(g1 ; ξ0) B(eAM , δr,ε).

Hence,

βsl,s0(gnl

l ...g
n1
1 , ξ0) ∈ Lsl(g

nl

l )Rsl,sl−1
(gl, g

+
l−1)...Ls1(gn1

1 )Rs1,s0(g1, ξ0)B(eAM , (2l − 1)δr,ε).

Finally, for the extended Jordan projection, we apply the cocycle estimate for the attracting
point g+ of gnl

l ...g
n1
1 with cross-section s0 = sl. By [Ben00, Lemma 3.6], it is in B(gnl

l , ε), there-

fore by choice of r ≤ 1
6d(g+

l , ∂b(g−1 )), we deduce that Rs1,sl(g1, g
+) ∈ Rs1,sl(g1, g

+
l )B(eAM , δr,ε).

Hence Lsl(g
nl

l ...g
n1
1 ) ∈ Lsl(g

nl

l )Rsl,sl−1
(gl, g

+
l−1)...Ls1(gn1

1 )Rs1,sl(g1, g
+
l )B(eAM , 2lδr,ε). �

De�nition 4.13. Let 0 < ε ≤ r. A semigroup Γ ⊂ G is strongly (r, ε)-Schottky if

(i) every element is (r, ε)-loxodromic,
(ii) d(h+, ∂b(h′−)) ≥ 6r for all h, h′ ∈ Γ.

We also write that Γ is a strong (r, ε)-Schottky semigroup.

5. Invariant sets

In this section, Γ < G is a Zariski dense subsemigroup of G.

In the �rst paragraph, following [DG20], we construct the non-wandering set Ω ⊂ Γ\G/M
for regular Weyl chamber �ows. We notice that it is the smallest closed A-invariant subset of
Γ\G/M containing all the periodic orbits of the �ows φtλ(Γlox).

Denote by Ω̃G the preimage of Ω via the projection G → Γ\G/M . Such a subset is closed,
left Γ-invariant and right AM -invariant. Denote by M0 the connected component of the identity
of M . In the second paragraph, following Guivarc'h�Raugi [GR07], we introduce the sign group
MΓ, a normal subgroup of �nite index of M containing M0. One can �nd another construction
of the sign group in [Ben05].

Finally, using Guivarc'h�Raugi's classi�cation of Γ-invariant subsets of K (cf. Theorem 5.9)

we construct a partition of left Γ-invariant right AMΓ-invariant subsets of Ω̃G. We prove in Pro-
position 5.12 that the topological dynamics of diagonal �ows on these subsets are all conjugated.

5.1. In the space of Weyl chamber.

De�nition 5.1. A point η ∈ F is a limit point if there exists a sequence (γn)n≥1 in Γ such that(
(γn)∗HaarF

)
n≥1

converges weakly towards the Dirac measure in η.

The limit set of Γ, denoted by L+(Γ), is the set of limit points of Γ. It is a closed, Γ-invariant
subset of F .

Denote by L−(Γ) the limit set of Γ−1 and �nally let L(2)(Γ) =
(
L+(Γ)× L−(Γ)

)
∩ F (2).

Note that when Γ is a subgroup, then L+(Γ) = L−(Γ) and L(2)(Γ) is the subset of pair of
points of L+(Γ) in general position. For the hyperbolic plane, we get the product of the usual
limit set minus the diagonal.

By [Ben97b] Lemma 3.6, the set of pairs of attracting and repelling points of loxodromic
elements of Γ is dense in L+(Γ)×L−(Γ). Therefore, using Hopf coordinates and the construction
of attracting and repelling points of loxodromic elements, L(2)(Γ) identi�es with smallest closed
Γ-invariant subset of G/AM containing{

hγAM | ∃γ ∈ Γlox such that h−1
γ γhγ ∈MA++

}
.

Theorem 5.2 (Theorem 4.5 [DG20]). The (diagonal) action of Γ on L(2)(Γ) is topologically
transitive, i.e. there are dense Γ-orbits.
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The transitivity, along with the background work on Bruhat-Hopf coordinates, is one of the
main arguments in the proof of the main mixing Theorem 7.1 in �7.

De�nition 5.3. We denote by Ω̃ the subset of non-wandering Weyl chambers, de�ned through
the Hopf parametrization by:

Ω̃ := H−1(L(2)(Γ)× a).

This is a Γ-invariant and right A-invariant subset of G/M . When Γ is a subgroup, we denote

by Ω := Γ\Ω̃ the quotient space.

By Theorem 5.2 the quotient Ω is the smallest closed A-invariant subset of Γ\G/M containing
the following subset {

φRλ(γ)(hγM) | γ ∈ Γlox and h−1
γ γhγ ∈MA++

}
.

Note that in rank one, the above set is the reunion of all periodic orbits for the geodesic �ow.

5.2. The sign subgroup. Denote by Mab := M/[M,M ] the abelianisation of the compact
group M and by πab : M → Mab the projection. Abusing notations, πab also denotes the
projection AM → AMab.

Fact 5.4. For all cross-sections s and s′ the projection into AMab of the signed translation maps
Ls and Ls′ coincide on the intersection of their domains i.e. for every loxodromic element g ∈ G
such that g+ ∈ Fs ∩ Fs′ , then

πab
(
Ls(g)

)
= πab

(
Ls′(g)

)
.

Proof. By De�nition 4.2 of the signed translation map, we write

Ls′(g) = βs′(g, g
+).

First apply the relations between the signed cocycles and transition functions of the Fact 3.9,
then using that that g+ is �xed by g, we deduce that

Ls′(g) = Ts′,s(g
+)βs(g, g

+)Ts,s′(g
+).

The middle term is an extended Jordan projection and the �rst and last term are inverse (see
Proposition 3.6 (iii) on transition functions). Hence

Ls′(g) = Ts′,s(g
+)Ls(g)Ts′,s(g

+)−1.

The claim then follows by projecting the relation into the abelian group AMab. �

Denote by L ab the map that associates to every loxodromic element g ∈ G the projection into
AMab of any signed Jordan projection. We call this map the abelian signed Jordan projection.
Denote by πMab the projection AMab →Mab.

De�nition 5.5. Denote by Γlox the subset of loxodromic elements of Γ. We de�ne the abelian
sign group of Γ by

Mab
Γ := πMab

(
〈L ab(Γlox)〉

)
.

The sign group of Γ, denoted by MΓ is given by MΓ := π−1
ab (Mab

Γ ).

The following Theorem will imply non-arithmeticity in AMab
Γ of the abelian signed Jordan

projections of Γ.

Theorem 5.6 (Theorem 6.4 [GR07]). The closed subgroup spanned by L ab(Γlox) is of �nite
index in AMab.
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Corollary 5.7. The closed subgroup spanned by L ab(Γlox) and the sign group MΓ are related
as follows.

〈L ab(Γlox)〉 = AMab
Γ .

Proof. Denote byH := 〈L ab(Γlox)〉. By de�nition, it is a closed subgroup of AMab. In particular,
AMab/H is Hausdor�. According to the previous Theorem 5.6, it is a �nite group. By endowing
it with the discrete topology, we deduce that the morphism

ϕ : A −→ AMab/H

a 7−→ aH

is a continuous map that takes value in a �nite group. Since A is connected, ϕ is constant to
eAH, hence ϕ(A) = AH = H and A ⊂ H.

By De�nition 5.5 of the sign group, H ⊂ AMab
Γ . Conversely, for every x ∈ A and m ∈ Mab

Γ ,
there exists y ∈ A such that ym ∈ H. We now write xm as a product xm = (xy−1)ym. In the
right hand side, the �rst term is in A hence in H and the second term is in H, hence xm ∈ H.
We thus conclude that H = AMab

Γ . �

Theorem 5.8 (Theorem 8.2 [Ben05],Theorem 1.9 [GR07]). The following holds.

(a) MΓ is a closed normal subgroup of �nite index of M and contains the connected com-
ponent of the identity M0.

(b) There exists an integer pΓ ∈ [0,dim a] such that MΓ/M0 is isomorphic to
(
Z/2Z

)pΓ
.

(c) MΓ−1 = kιMΓk
−1
ι where kι ∈ NK(A) is an element such that Ad(kι)a

+ = −a+.
(d) For all g ∈ G, the groups satisfy MgΓg−1 = MΓ.

When G is a split, real linear, algebraic group, Y. Benoist in [Ben97a] studies the following
conditions:

(C1) There exists a Zariski dense subgroup Γ ⊂ G such that MΓ = M0.
(C2) There exists a Zariski dense subgroup Γ ⊂ G with MΓ )M0 such that the sign group of

every Zariski dense subgroup of Γ strictly contains M0.

In particular, he proves for SL(m,R) that both conditions hold when m is a multiple of 4, in fact
(C2) is true for all m. . However, when m is even but not divisible by 4, condition (C1) is false
i.e. the sign group of every Zariski dense subgroup of SL(m,R) is non trivial.

5.3. Γ-invariant subsets of G. The G-equivariant projection K → F endows K with a �ber
bundle structure of �ber M over the Furstenberg boundary. We apply a result of Guivarc'h�
Raugi [GR07] to the left action of G on K. Denote by LG(Γ) the preimage in K of the limit set
L(Γ) ⊂ F . Then the closed right M -invariant and left Γ-invariant subset LG(Γ) ⊂ K partitions
into |M/MΓ| closed, Γ-invariant, minimal subsets. Furthermore, these invariant subsets are right

MΓ-invariant. Lastly, using Iwasawa decomposition, we partition Ω̃G into left Γ-invariant and
right AMΓ-invariant subsets of G.

Theorem 5.9 (Theorem 2 [GR07] ). The following holds.

1) LG(Γ) ⊂ K partitions into |M/MΓ| closed, minimal Γ-invariant subsets i.e. in each
partition, every Γ-orbit is dense.

2) There is an indexation of this partition by M/MΓ i.e. LG(Γ) = t[m]∈M/MΓ
L[m](Γ) such

that for every m ∈M ,

L[m](Γ) = L[eM ](Γ)m.

3) Every element of the partition turns out to be right MΓ-invariant.
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Recall that for every compact Bruhat section s, the map g ∈ Gs 7→ kI(g) ∈ K reads in Bs
coordinates for the source and target as

F (2)
s ×AM −→ Fs ×M
(ξ, η ; x)s 7−→ (ξ ; xM )s.

Bruhat-Hopf coordinates make the following diagram commutative and equivariant for every
compact Bruhat section s.

F (2)
s ×AM ' Gs ⊂ G

M
��

// Fs ×M ' s(Fs)M ⊂ K

M

��
H−1

(
F (2)
s × a

)
⊂ G/M // Fs

Let us now translate Theorem 5.9 using the right side of the diagram.

Corollary 5.10. Let s be a compact Bruhat section of K → F . Then the following holds.

1) For every element in LG(Γ) of coordinates (ξ ; x)s ∈
(
Fs ∩ L(Γ)

)
×M , there exists a

unique element [m] ∈ M/MΓ such that (ξ ; x)s is in L[m](Γ). Furthermore, the Γ-orbit
Γ(ξ ; x)s is dense in L[m](Γ).

2) For every element in L[eM ](Γ) of coordinate (ξ ; x)s and for all m ∈M , the translate of
coordinate (ξ ; xm)s is in L[m](Γ).

3) For every element in L[m](Γ) of coordinate (ξ ; x)s and for all c ∈MΓ then the element
of coordinate (ξ ; xc)s remains in L[m](Γ).

Denote by Ω̃G the preimage in G of Ω̃ ⊂ G/M by the projection G→ G/M . It is a closed, left
Γ-invariant and right AM -invariant subset of G. For every compact Bruhat section s ∈ k(F),

the intersection Ω̃G ∩ s(Fs)NAM reads in Bruhat-Hopf coordinates as

Bs
(
Ω̃G ∩ s(Fs)NAM

)
=
(
L(2)(Γ) ∩ F (2)

s

)
×AM.

In other words, every element of coordinate (ξ, η ; x)s ∈ L(2)(Γ)×AM with ξ ∈ Fs is in Ω̃G. The
previous Theorem and left side of the diagram allow us to partition it into closed left Γ-invariant
and right AMΓ-invariant subsets. To simplify notations, for every x ∈ AM , we denote by xM its
projection in M .

De�nition 5.11. For every m ∈M , we denote by Ω̃[m] := L[m](Γ)AN∩Ω̃G and Ω[m] := Γ\Ω̃[m].

In other words, Ω̃[m] is the subset of elements of coordinate (ξ, η ; x)s ∈ L(2)(Γ) × AM whose
compact Iwasawa projection of coordinate (ξ ; xM )s is in L[m](Γ), for every suitable compact
Bruhat section s.

Proposition 5.12. The sets Ω̃[m], with [m] ∈M/MΓ satisfy the following properties.

(a) The left Γ-invariant and right AMΓ-invariant subsets Ω̃[m] form a partition of Ω̃G, i.e.

Ω̃G =
⊔

[m]∈M/MΓ

Ω̃[m].

(b) For every m ∈M , then Ω̃[m] = Ω̃[eM ]m.

(c) For all [m] ∈M/MΓ, the dynamical systems (Ω[m], φ
t
θ) and (Ω[eM ], φ

t
θ) are conjugated.

Proof. The left Γ-invariance in (a) is a consequence of the �rst point of Theorem 5.9 and of the

left Γ-invariance of Ω̃G. It also follows from the same point that the subsets
(
Ω̃[m]

)
[m]∈M/MΓ
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form a partition of Ω̃G. The right AMΓ-invariance is due to the right MΓ-invariance of L[m](Γ)
and the properties of the Bruhat-Hopf coordinates given by Proposition 3.8 and Proposition 3.11.

Point (b) is a direct consequence of the second point of Theorem 5.9 and the compatibility of
the Bruhat-Hopf coordinates with the compact Iwasawa projection.

Point (c) follows from the commutativity of the right action by multiplication byM with that
of A, because every element of M commute with every element of A. �

6. Decorrelation

In the remaining parts of this paper, unless it is speci�ed otherwise
in the statements, Γ < G is a Zariski dense subgroup of G.

We construct a pair of points (ξ1, ξ̌1) ∈ L(2)(Γ) and show that there exists (r, ε)-loxodromic
elements in Γ of attracting and repelling points in an ε-neighbourhood of these points and whose
signed cocycle are dense in an MΓ-invariant set.

Consider the family of equicontinuity constants δr,ε of De�nition 4.11. To simplify notations,
we introduce the family of constants

δ̃r,ε := (8 dim a + 4 dimM0 + 5)δr,ε.

In this section, we prove the following Proposition.

Proposition 6.1. Assume that M0 is abelian. Then there exists

1) (ξ1, ξ̌1) ∈ L(2)(Γ),
2) a real positive number

0 < r1 ≤
1

6
d(ξ1, ∂b(ξ̌1)),

such that for all r ∈ (0, r1] and ε ∈ (0, r], for any choice of compact Bruhat sections c1, č1 with

B(ξ1, r) ⊂ Fc1 and V6r

(
∂b(ξ̌1)

){ ⊂ Fč1
there exists a �nite family (gi)i∈I ⊂ Γ and a point ar,ε ∈ A that satisfy the following conditions.

† For all i ∈ I, the element gi is (2r, 2ε)-loxodromic with

(g+
i , g

−
i ) ∈ B(ξ1, ε)×B(ξ̌1, ε).

‡ For all η ∈ V6r

(
∂b(ξ̌1)

){
and (ηi)i∈I ⊂ B(η, ε), the family {βc1,č1(gi, ηi)}i∈I is δ̃r,ε-dense

in ar,εRc1,č1(ξ̌1; ξ1, η)MΓ i.e.

ar,εRc1,č1(ξ̌1; ξ1, η)MΓ ⊂ ∪i∈IB(βc1,č1(gi, ηi), δ̃r,ε).

In the �rst paragraph, we construct (Cf. Lemma 6.2) families of �nite products of loxodromic
elements whose signed cocycle reach all the connected components of AMΓ.

In the second paragraph, we prove the density, in an M0 orbit of AMΓ that projects into a
convex cone of non-empty interior of a++, of the signed Jordan projection of a family of products
of loxodromic elements. More speci�cally, we construct in Lemma 6.4:

(a) a convex cone of non-empty interior C0 ⊂ a++,
(b) a pair of transverse points (ξ0, ξ̌0) ∈ L(2)(Γ),
(c) a real positive number r0 > 0.

for which there exists, for all 0 < ε ≤ r ≤ r0 an (r, ε)-Schottky generating family Fr,ε =
(γ1, ..., γl), of at most 4 dim a+ 2 dimM0 elements, such that the signed Jordan projection of the
elements of the form

{γn1
1 ...γnl

l | n1, ...nl ≥ 1}



TOPOLOGICAL MIXING 31

are 2lδr,ε-dense in a translate in AMΓ of exp(C0)M0. Note that the constants δr,ε converge to 0
as ε goes to 0.

In the third paragraph, we prove Proposition 6.1 by combining the previous Lemmata with
an overlapping cone argument.

6.1. The connected components of AMΓ. SinceM/M0 is abelian, the projection inM/M0 of
every signed Jordan projection does not depend on the choice of the cross-section. The following
Lemma does not require that M0 is abelian.

Lemma 6.2. Denote by p the integer such thatMΓ/M0 is isomorphic to (Z/2Z)p and by πM/M0
:

AM →M/M0 the projection.
Then for all ξ0 ∈ L+(Γ), there exists h1, ..., hp ∈ Γlox such that taking the notation h+

0 := ξ0,
the following holds.

(i) For every choice of cross-sections s1, ..., sp such that h+
i ∈ Fsi for all 1 ≤ i ≤ p, the set

{πM/M0
(Lsi(hi))}1≤i≤p forms a basis of the vector space MΓ/M0.

(ii) For all 1 ≤ i ≤ p, the pair (h+
i−1, h

−
i ) ∈ L(2)(Γ) is transverse.

(iii) Assume now that s0, sp are compact Bruhat sections of respective domains b(h−1 ) and
b(h−p ), then there exists mp ∈M and a large integer N ∈ N such that for all ν ∈ {0, 1}p,
for all n ≥ N ,

πM/M0

(
βspmp,s0(h2n+νp

p ...h2n+ν1
1 , ξ0)

)
= ν.

For the �rst step of the proof of this Lemma we use the non-arithmeticity Corollary 5.7 to
choose p loxodromic elements in Γ. We order them. For the second step, since the repelling
point of the ith element is not necessarily transverse to the attracting point of the i− 1th term,
we conjugate inductively these elements. Thanks to the Fact below, the abelianised Jordan
projection of the conjugated element will remain in the same connected component of AMΓ. To
obtain the third point, we use the explicit formula of the cocycle given by Proposition 4.9 and
the cocycle relation and combine it with a Ping-Pong argument. Finally, the corrective term
mp ∈M of the cross-section is chosen using the De�nition 4.8 of the ratio maps.

Fact 6.3. For all u ∈ G and all loxodromic element g ∈ G, the conjugate ugu−1 is loxodromic
of attracting point ug+ and basin of attraction ub(g−) = b(ug−). Furthermore,

L ab(ugu−1) = L ab(g).

Proof. By Proposition 4.4, a loxodromic element g has attracting point g+ in F and its basin
of attraction is the Bruhat cell opposite to its repelling point b(g−). By Fact 4.3, consider
hg ∈ G such that L[g−](g) = h−1

g ghg. Since the Jordan projection is invariant by conjugation,

ugu−1 is also loxodromic and diagonalised by uhg. Therefore, its attracting point is ug+ of
basin of attraction b(ug−). The abelian signed Jordan projection relation comes from Fact 4.3
by choosing to compute Lu·[g−](ugu

−1) = L[g−](g) and then using Fact 6.3 to argue that the
abelian signed Jordan projection does not depend on the choice of the cross-sections. �

Proof of Lemma 6.2. Since Z/2Z is a �eld,MΓ/M0 is a vector �eld over it. By Corollary 5.7, the

abelian signed Jordan projection of Γlox spans AMab
Γ i.e. AMab

Γ = 〈L ab(Γlox)〉. Because M0 is
a closed normal subgroup of M and M0 ⊃ [M,M ], we deduce that Mab

Γ /Mab
0 = MΓ/M0. Using

that this is a discrete vector space and projecting the abelian signed Jordan projection to Mab,
we get

MΓ/M0 = Mab
Γ /Mab

0 =
〈
πMab/Mab

0

(
L ab(Γlox)

)〉
.
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The left and middle sides are Z/2Z vector space of dimension p. The right hand side provides
us with a generating set of the vector space, we extract a basis from it. Hence there exists
g1, ..., gp ∈ Γlox such that

MΓ/M0 =
〈
πMab/Mab

0

(
L ab(gp)

)
, ..., πMab/Mab

0

(
L ab(g1)

)〉
.

Now using that Mab
Γ /Mab

0 = MΓ/M0, we deduce for every suitable choice of compact Bruhat
sections b1, ..., bp, that

MΓ/M0 =
〈
πM/M0

(
Lbp(gp)

)
, ..., πM/M0

(
Lb1(g1)

)〉
.

By the above Fact 6.3, condition (i) holds for every family h1, ..., hp such that for every i = 1, ..., p
the element hi is a conjugate of gi.

Let us now construct h1, ..., hp. Set u0 := eG and g+
0 := ξ0. We are going to choose by

induction u1, ..., up ∈ Γ such that for every i = 1, ..., p,(
u−1
i−1g

+
i−1, u

−1
i g−i

)
∈
(
L+(Γ)× L−(Γ)

)
∩ F (2).

Repelling points of loxodromic elements lie in L−(Γ) i.e. for every i = 1, ..., p,

g−i ∈ L−(Γ).

By minimality of the action of Γ−1 on L−(Γ) and because there are no isolated points in this
subset, we choose u1 ∈ Γ such that u−1

1 g−1 also lies in the Bruhat cell opposite to ξ0, meaning

that u−1
1 g−1 ∈ L−(Γ)∩ b(ξ0). By Proposition 2.6, we deduce the �rst step (ξ0, u

−1
1 g−1 ) ∈ L(2)(Γ).

Using the same minimality arguments on the action of Γ−1 on L−(Γ), we proceed as such to
construct ui given u1, ..., ui−1 such that

(
u−1
i−1g

+
i−1, u

−1
i g−i

)
∈ L(2)(Γ). Now that u1, ..., up ∈ Γ

are chosen, we set for every i = 1, ..., p

hi := u−1
i giui.

By the above Fact 6.3, condition (i) holds. Furthermore, because Γ is a subgroup, every hi is a
loxodromic element of Γ with

(h+
i , h

−
i ) = (u−1

i g+
i , u

−1
i g−i ).

The family h1, ..., hp veri�es condition (ii) by construction of the ui.
Let us now check condition (iii). Choose s1, ..., sp compact Bruhat sections of respective

domains b(h−1 ), ..., b(h−p ) and set s1 = s0. For all n1, ..., np ≥ 1, denote by n := (n1, ..., np) and
for all i = 1, ..., p we set

ξi,n := hni
i ...h

n1
1 ξ0.

Let us compute the signed cocycle βsp,s0(h
np
p ...hn1

1 , ξ0). We want to understand which connec-
ted component of AM these cocycles can reach. Condition (ii) ensures that βsi,si−1

(hni
i , ξi−1,n) is

well-de�ned for every 1 ≤ i ≤ p. Hence we start by applying the cocycle relation, then we apply
the exact formula of Proposition 4.9 using that the domain of si is b(h−i ) for every 1 ≤ i ≤ p.

βsp,s0(hnp
p ...hn1

1 , ξ0) = βsp,sp−1
(hnp
p , h

np−1

p−1 ...h
n1
1 ξ0) ... βs1,s0(hn1

1 , ξ0)

= βsp,sp−1
(hnp
p , ξp−1,n) ... βs2,s1(hn2

2 , ξ1,n)βs1,s0(hn1
1 , ξ0)

= Rsp(hp; ξp,n)−1 Lsp(hp)
np Rsp,sp−1(hp; ξp−1,n) ...

... Rs2(h2; ξ2,n)−1 Ls2(h2)n2 Rs2,s1(h2; ξ1,n)

Rs1(h1; ξ1,n)−1 Ls1(h1)n1 Rs1,s0(h1; ξ0).
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Condition (i) allow us to deduce that the products of the middle terms Lsp(hp)
np ...Ls1(h1)n1

take value in the connected component of AMΓ corresponding to the projection of n in
(
Z/2Z

)p
that we denote by ν. Then

(6) πM/M0

(
Lsp(hp)

np ...Ls1(h1)n1
)

= ν.

Note that this equation does not depend on the choice of compact Bruhat section s1, ..., sp of
same domains.

It remains to control the connected components of AM in which the ratio terms take value.
First, by a Ping-Pong argument, we choose a large integer N which will allows us to control
the sequence (ξi,n)1≤i≤p. Then we slightly modify the choice of s1, ..., sp while preserving their
domains. Lastly, we check that under these modi�cations the ratio terms are AM0 valued.

Let us start by the Ping-Pong argument. For all i = 2, ..., p denote by b0(h−i , h
−
i−1) the

connected component of b(h−i ) ∩ b(h−i−1) containing h+
i−1. By condition (ii) then ξ0 ∈ b(h−1 )

and h+
1 ∈ b(h−2 ). By Proposition 4.4 applied on the loxodromic element h1, there exists a large

integer N1 ≥ 1 such that for every n1 ≥ N1, the element hn1
1 ξ0 is su�ciently close to h+

1 to
satisfy

hn1
1 ξ0 = ξ1,n1

∈ b0(h−2 , h
−
1 ).

Assume for any i = 1, ..., p the following induction hypothesis, that there exists a large integer
Ni−1 such that for every n ∈

(
[Ni−1,+∞) ∩ N

)p
and every j = 1, ..., i− 1

ξj,n ∈ b0(h−j+1, h
−
j ).

In particular ξi−1,n ∈ b(h−i ). Also, by condition (ii) then h+
i ∈ b(h−i+1). As before, we apply

Proposition 4.4 on hi to choose a large integer Ni ≥ Ni−1 such that for all n ∈
(
[Ni,+∞)∩N

)p
,

hni
i ξi−1,n = ξi,n ∈ b0(h−i+1, h

−
i ).

Since Ni is larger that Ni−1, the induction hypothesis is inherited for every j = 1, ..., i i.e.
ξj,n ∈ b0(h−j+1, h

−
j ). Hence, by induction, there exists a large integer N ≥ 1 such that for all

n ∈
(
[N,+∞) ∩ N

)p
and all i = 1, ..., p

(7) ξi,n ∈ b0(h−i+1, h
−
i ).

Now that the large integer N is chosen, assume that n ∈
(
[2N,+∞)∩N

)p
. Let us now modify

the sections by right multiplication by elements of M and prove that the ratio terms for the new
family of compact Bruhat section take value in AM0. Recall the De�nition 4.8 of the ratio map.

Rsi,si−1(hi; ξi−1,n) = Tsi,[h
−
i ](h

+
i )T[h−i ],si−1

(ξi−1,n).

By De�nition 3.5 of the transition functions, the domain of Rsi,si−1
(hi; .) is b(h−i )∩b(h−i−1). Set

m0 = eM . By induction, we multiply s1, ..., sp on the right by elements m1, ...,mp ∈ M such
that for every i = 1, ..., p the restriction to the connected component containing h+

i−1 of the map

b0(h−i , h
−
i−1) −→ AM

ξi−1 7−→ Rsi.mi,si−1.mi−1(hi; ξi−1)

takes value in AM0. In particular, by choice of N such that condition (7) holds, we deduce that
all Rsi.mi,si−1.mi−1(hi; ξi−1,n) term take value in AM0. Replacing them in the cocycle expression,
we write

βsp.mp,s0(hnp
p ...hn1

1 , ξ0) = Rsp.mp
(hp; ξp,n)−1 Lsp.mp

(hp)
np Rsp.mp,sp−1.mp−1

(hp; ξp−1,n) ...

... Rs1.m1(h1; ξ1,n)−1 Ls1.m1(h1)n1 Rs1.m1,s0(h1; ξ0).
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Let us now prove that the left hand terms of the form Rsi.mi(hi; ξi,n)−1 take value in AM0.
Recall that,

Rsi.mi
(hi; ξi,n) = Tsi.mi,[h

−
i ](h

+
i )T[h−i ],si.mi

(ξi,n).

Using that the domain of si.mi is b(h−i ), we deduce that Rsi.mi
(hi; .) is well de�ned on it.

Furthermore, by Proposition 3.6, (iii)

T −1

si.mi,[h
−
i ]

= T[h−i ],si.mi
.

Hence by continuity of the transition functions de�ned in a connected set, we deduce that the
continuous maps ξi ∈ b(h−i ) 7→ Rsi.mi(hi; ξi)

−1 take value in AM0.
Finally, since all ratio terms take value in AM0 and by equation (6), we deduce condition (iii)

that for all ν ∈ {0, 1}p, all n of the form (2n+ νi)1≤i≤p such that n ≥ N ,

πM/M0

(
βsp.mp,s0(hnp

p ...hn1
1 , ξ0)

)
= πM/M0

(
Lsp(hp)

np ...Ls1(h1)n1
)

= ν.

�

6.2. The connected component AM0.

Lemma 6.4. Assume that M0 is abelian and that Γ is a Zariski dense subsemigroup. Then
there exists

(a) a convex cone of non empty interior C0,
(b) a pair of transverse points (ξ0, ξ̌0) ∈ L(2)(Γ),
(c) a real positive number r0 > 0,

such that for all r ∈ (0, r0] and ε ∈ (0, r] and any Bruhat section s0 of domain b(ξ̌0),
there exists Fr,ε ⊂ Γ and xr,ε ∈ AMΓ such that the following holds.

♥ Fr,ε is a �nite subset of at most 4 dim a + 2 dimM0 elements.
♣ Fr,ε is a subset of a strong (r, ε)-Schottky Zariski dense subsemigroup.

♦ There exists an ordering of Fr,ε = (γ1, ..., γl) such that γ−1 = ξ̌0 and γ+
l = ξ0, for which

every element of the form w = γnl

l ...γ
n1
1 with n1, ..., nl ≥ 1, satis�es

(w+, w−) ∈ B(ξ0, ε)×B(ξ̌0, ε).

♠ For such an ordering, the set

Ls0

(
{γnl

l ...γ
n1
1 | n1, ..., nl ≥ 1}

)
is lAM0

δr,ε-dense in exp(C0)xr,εM0, where lAM0
:= 8 dim a + 4 dimM0 + 1.

The family of constants δr,ε is given in De�nition 4.11, for every r > 0, they converge to 0 when
ε goes to 0.

The �rst step of the proof is given by the following Lemma, which is a consequence of [Ben97b,
Proposition 4.3]. We give a reference for a proof. The last steps involve the non-arithmeticity of
Corollary 5.7 and density Lemmata 7.3, 7.5 of the appendix. These statements require that M0

is abelian.

Lemma 6.5 (Lemme 5.6 [DG20]). Let Γ ⊂ G be Zariski dense subsemigroup. For all θ in the
interior of the limit cone C(Γ), there exists a �nite set S ⊂ Γ, a positive number r0 > 0 such that

(i) θ is in the interior of the convex cone C(λ(S)) :=
∑
g∈S R+λ(g),

(ii) the elements of λ(S) form a basis of a,
(iii) for all r ∈ (0, r0] and ε ∈ (0, r], there exists an integer N > 0 such that for all n ≥ N ,

the family Sn := (gn)g∈S spans a Zariski-dense strong (r, ε)-Schottky semigroup of Γ.
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Proof of Lemma 6.4 . First �x θ in the interior of the limit cone. Apply Lemma 6.5. Set C0 :=∑
g∈S R+λ(g). By (i), it is indeed a convex cone of non-empty interior. Let us now order the

elements S := (g1, ..., grG) where rG = dim a by (ii). By (iii), for any integer n su�ciently large,
Sn spans a strong (r, ε)-Schottky Zariski dense subsemigroup. We deduce that g+

rG is in the

basin of attraction of g1, meaning that g+
rG ∈ b(g−1 ), which by Proposition 2.6 is the same as

(g+
rG , g

−
1 ) ∈ L(2)(Γ).

Let r ∈ (0, r0] and ε ∈ (0, r], �x a compact Bruhat section s0 of domain b(ξ̌0). Let us choose
Fr,ε ⊂ Γ. Consider a large integer N such that for every n ≥ N , the subset Sn spans a Zariski
dense, strong (r, ε)-Schottky subsemigroup.

By Theorem 5.8, the groupMΓ/M0 is isomorphic to (Z/2Z)p. Consequently, for every element
m ∈ MΓ, its square m

2 is in M0. In particular, for every loxodromic element γ ∈ Γ and any
suitable compact Bruhat section s such that γ+ ∈ Fs,

Ls(γ
2) =

(
Ls(γ)

)2 ∈ AM0.

Since M0 is abelian and a normal subgroup of MΓ, we deduce that the multiplicative Jordan
projection of squares does not depend on the choice of s and coincides with L ab. We therefore
remove the subscript. Denote by Γn the Zariski dense subsemigroup generated by S2n. By
Corollary 5.7 and using that M0 is abelian,

〈L ab(Γn)〉 = AMab
Γn
⊃ AM0.

Let us prove that the subset of squares L (Γn)2 spans a dense subgroup of AM0. Every element
x ∈ AM0 admits a square root that we denote by

√
x ∈ AM0. Now we approximate it in

〈L ab(Γn)〉. For all δ > 0, there exists a �nite number of integers (kj)j∈J ⊂ Z and a �nite
number of elements (γj)j∈J such that

√
x ∈ B

(∏
j∈J

L ab(γj)
kj ,
√
δ
)
.

Taking the squares, we obtain the approximation by squares,

x ∈ B
(∏
j∈J

L (γj)
2kj , δ

)
.

Hence

〈L (Γn)2〉 = AM0.

Apply density Lemma 7.3 in AM0 for the family of squares L (Γn)2. Consider F ′r,ε of at most

3 dim a + 2 dimM0 elements such that the subgroup spanned by squares L (F ′r,ε)
2 is δr,ε-dense

in AM0. Denote by

Fr,ε := S2n ∪ {γ2 | γ ∈ F ′r,ε}.
The subgroup spanned by L (Fr,ε) is δr,ε-dense in AM0. Apply now density Lemma 7.5 to such
a family. There exists vr,ε ∈ a such that the subsemigroup generated by L (Fr,ε) is δr,ε-dense in

exp

(
vr,ε +

∑
γ∈Fr,ε

R+λ(γ)

)
M0.

Now since Fr,ε contains S2n and by choice of C0,

C0 ⊂
∑
γ∈Fr,ε

R+λ(γ),

we deduce δr,ε-density of the subsemigroup generated by L (Fr,ε) in exp(vr,ε + C0)M0.
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Let us now compute xr,ε ∈ AM . We order Fr,ε = (γ1, ..., γl) such that γ1 := g2n
1 and γl := g2n

rG .
Fix compact Bruhat sections s1, ..., sl such that for every i = 1, ..., l

B(γ+
i , ε) ⊂ Fsi .

We assume that for every i = 2, ..., l then Rsi,si−1(γi, γ
+
i−1) ∈ AM0. Since Rsi,si−1(γi, .) restric-

ted to the connected component of b(γ−i ) ∩ Fsi−1
containing γ+

i−1 takes value in a connected
component of AM , by multiplying si on the right by an element of M one can always assume
that this restricted map takes value in AM0. Set Ri := Rsi,si−1

(γi, γ
+
i−1) with convention that

s0 = sl and γ0 = γl and

xr,ε := exp(vr,ε)Rl...R2R1.

Let us now check ♥,♣,♦,♠. Since S2n contains dim a elements and generates the strong
(r, ε)-Schottky Γn and by choice of F ′r,ε, the subset Fr,ε satis�es both ♥,♣.

By choice of ordering γ−1 = g−1 = ξ̌0 and γ+
l = g+

rG = ξ0. Apply Proposition 4.12, for all

n1, ..., nl ≥ 1 the element w = γnl

l ...γ
n1
1 is loxodromic and satis�es (w+, w−) ∈ B(ξ0, ε)×B(ξ̌0, ε).

Hence ♦ is satis�ed.
Furthermore, by Proposition 4.12 we estimate the Jordan projection

Lsl(w) ∈ Lsl(γl)
nlRl...Ls1(γ1)n1R1 B

(
eAM , 2lδr,ε

)
.

Note that Rl, ...,R2 take value in the abelian group AM0 by choice of s2, .., sl. Furthermore,
the γi are squares, hence integer powers of Lsi(γi) take value in AM0 and we can remove the
subscript. Hence by reordering the terms in AM0,

Lsl(w) ∈ L (γl)
nl ...L (γ1)n1Rl...R1 B

(
eAM , 2lδr,ε

)
.

The �rst part of the left hand side

{L (γl)
nl ...L (γ1)n1 | n1, ..., nl ≥ 1}

coincides with the subsemigroup of AM0 generated by L (Fr,ε) which is δr,ε-dense in

exp(C0) exp(vr,ε)M0.

We deduce that

{Lsl(γ
nl

l ...γ
n1
1 ) | n1, ..., nl ≥ 1}

is (2l + 1)δr,ε-dense in

exp(C0) exp(vr,ε)M0 Rl...R1 = exp(C0)M0xr,ε,

using that M0 centralises A. Since M0 is a normal subgroup, we deduce (2l + 1)δr,ε-density in
exp(C0)M0xr,ε = exp(C0)xr,εM0. By ♥, then l ≤ 4 dim a + 2 dimM0, hence

(2l + 1)δr,ε ≤ (8 dim a + 4 dimM0 + 1)δr,ε

and condition ♠ is satis�ed. �

6.3. Proof of Proposition 6.1. Let us �rst �nd the pair (ξ1, ξ̌1) ∈ L(2)(Γ) using the previous
Lemmas of this section. Consider the pair of transverse points (ξ0, ξ̌0) ∈ L(2)(Γ) given by
the decorrelation in AM0 Lemma 6.4 (b). Apply Lemma 6.2 to ξ0 to reach every connected
component of AMΓ. There exists loxodromic elements h1, ..., hp ∈ Γlox such that taking the
notation h+

0 := ξ0, the following holds.

(i) For every choice of sections s1, ..., sp such that h+
i ∈ Fsi for all 1 ≤ i ≤ p, the set

{πM/M0
(Lsi(hi))}1≤i≤p forms a basis of the vector space MΓ/M0.

(ii) For all 1 ≤ i ≤ p, the pair (h+
i−1, h

−
i ) ∈ L(2)(Γ) is transverse.
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(iii) Assume now that s0, sp are compact Bruhat sections of respective domains b(h−1 ) and
b(h−p ), then there exists mp ∈M and a large integer N ∈ N such that for all ν ∈ {0, 1}p,
for all n ≥ N ,

πM/M0

(
βspmp,s0(h2n+νp

p ...h2n+ν1
1 , ξ0)

)
= ν.

Since h+
p has no reason to be transverse to ξ̌0, we need the following choice. By density of

attracting and repelling points of loxodromic elements in L(2)(Γ), there exists a loxodromic
element hp+1 ∈ Γlox such that {

(h+
p+1, ξ̌0) ∈ L(2)(Γ)

(h+
p , h

−
p+1) ∈ L(2)(Γ)

Such a choice is always possible because there are no isolated points in the limit sets L±(Γ). Set
now

(8) (ξ1, ξ̌1) := (h+
p+1, ξ̌0).

Let us now �nd the positive number r1. Consider the real number r0 given by Lemma 6.4 (c).
We set

r′0 := inf
1≤i≤p+1

{
1

6
d(h+

i−1, ∂b(h−i )),
1

2
d(h+

i , ∂b(h−i ))

}
.

By (ii), choice of hp+1 and using that h1, ..., hp+1 are loxodromic, we deduce that both r0 and r′0
are positive real numbers. This leads us to de�ne the positive real number

(9) r1 := inf(r0, r
′
0).

Let r ∈ (0, r1] and ε ∈ (0, r]. Fix a choice of compact Bruhat sections c1, č1 such that

B(ξ1, r) ⊂ Fc1 and V6r(∂b(ξ̌1)){ ⊂ Fč1 .

Reaching every connected component of AMΓ

By Proposition 4.6 on loxodromic elements h1, ..., hp+1, there exists a large integer Nr,ε ≥ 1 such
that for every n ≥ Nr,ε, each hni are (r, ε)-loxodromic.

Since ξ0 is in the basin of attraction of h1, then by Proposition 4.4, we choose another integer
N1 ≥ 1 such that for all n ≥ N1 large enough, hn1 ξ0 ∈ B(h+

1 , ε). Set N2 := sup(N1, Nrε). By a
Ping-Pong argument using the dynamical properties of (r, ε)-loxodromic elements, this implies
that for all n1, ..., np ≥ N2, then h

np
p ...hn1

1 ξ0 ∈ B(h+
p , ε). For all n := (np, ..., n1) family of

positive integers, denote by ξp,n := h
np
p ...hn1

1 ξ0. By Proposition 4.9, for all ξp ∈ B(h+
p , ε), then

βc1,spmp(h2n
p+1, ξp) = Rc1(hp+1;h2n

p+1ξp)
−1L (hp+1)2nRc1,spmp(hp+1; ξp).

Note that by choice of ε ≤ r1 the balls B(h+
p , ε) resp. B(h+

p+1, ε) are included in connected

components of b(h−p+1)∩Fsp resp. Fc1 ∩b(h−p+1). Therefore, using that h2n
p+1 is (r, ε)-loxodromic

when n ≥ N2, the restriction to B(h+
p , ε) of βc1,spmp(h2n

p+1, .) to B(h+
p , ε) is constant mod AM0.

For all n ≥ N2, the map (
[N2,∞) ∩ N

)p −→ AM

n 7−→ βc1,s0(h2n
p+1h

np
p ...hn1

1 , ξ0)

reaches every connected components of AMΓ. Indeed, by the cocycle relation

βc1,s0(h2n
p+1h

np
p ...hn1

1 , ξ0) = βc1,spmp(h2n
p+1, ξp,n)βspmp,s0(hnp

p ...hn1
1 , ξ0),

and by (iii), we control which connected component of AMΓ the right term hits, the left term
being constant mod AM0 as discussed above. Thus, for all ν ∈ {0, 1}p ' MΓ/M0 there exists
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and we choose np(ν), ..., n1(ν) ≥ N2 such that if we denote by{
h[ν] := h2n

p+1h
np(ν)
p ...h

n1(ν)
1

x[ν] := βc1,s0(h[ν], ξ0)

then πAM/AM0
(x[ν]) = ν.

A particular subset of loxodromic elements of Γ
Consider now the subset Fr,ε, the point xr,ε ∈ AMΓ and the convex cone of non-empty interior
C0 given by Lemma 6.4. They satisfy

♥ Fr,ε is a �nite subset of at most 4 dim a + 2 dimM0 elements.
♣ Fr,ε is a subset of a strong (r, ε)-Schottky Zariski dense subsemigroup.

♦ There exists an ordering of Fr,ε = (γ1, ..., γl) such that γ−1 = ξ̌0 and γ+
l = ξ0, for which

every element of the form w = γnl

l ...γ
n1
1 with n1, ..., nl ≥ 1, satis�es

(w+, w−) ∈ B(ξ0, ε)×B(ξ̌0, ε).

♠ For such an ordering, the set

Ls0

(
{γnl

l ...γ
n1
1 | n1, ..., nl ≥ 1}

)
is lAM0δr,ε-dense in exp(C0)xr,εM0 where lAM0 := 8 dim a + 4 dimM0 + 1.

We are going to choose (gi)i∈I among elements of the form h[ν]γ
nl

l ...γ
n1
1 , where nl, ..., n1 ≥ 1 are

integers and ν ∈ {0, 1}p.
By choice of r1, we deduce † for all elements of

{h[ν]γ
nl

l ...γ
nl
1 | n1, ..., nl ≥ 1 and ν ∈ (Z/2Z)p}.

Meaning that all elements of the set above are (2r, 2ε)-loxodromic with attracting and repelling
points in B(ξ1, ε)×B(ξ̌1, ε).
Cocycle estimates

By equation (8) recall that ξ̌0 = ξ̌1 = γ−1 . Let nl, ..., n1 ≥ 1 be integers. Then by choice of r ≤ r1

and ε ≤ r, the element γ = γnl

l ...γ
n1
1 is (r, ε)-loxodromic, of attracting point in B(γ+

l , ε) and

repelling point in B(γ−1 , ε). By Proposition 4.9 on loxodromic element γ and η ∈ V6r(∂b(ξ̌1)){,
by De�nition 4.11 of the equicontinuity constant δr,ε, we deduce

βs0,č1(γ, η) ∈ Ls0(γ)Rs0,č1(γ; η)B(eAM , δr,ε).

Now, Rs0,č1(γ; η) is δr,ε close to Rs0,č1(γ−1 ; γ+
l , η). Hence using ξ0 = γ+

l and ξ̌1 = γ−1 , we deduce

βs0,č1(γ, η) ∈ Ls0(γ)Rs0,č1(ξ̌1; ξ0, η)B(eAM , 2δr,ε).

For all ν ∈ {0, 1}p, by the cocycle relation,

βc1,č1(h[ν]γ, η) = βc1,s0(h[ν], γη)βs0,č1(γ, η).

By a Ping-Pong argument on γ1, ..., γl we deduce that γη ∈ B(γ+
l , ε). Similarly, the same type

of argument on the (r, ε)-loxodromic elements h
n1(ν)
1 , ..., h

np(ν)
p , h2n

p+1 yields that

βc1,s0(h[ν], γη) ∈ βc1,s0(h[ν], γ
+
l )B(eAM , δr,ε).

Using γ+
l = ξ0 and the de�nition of x[ν], we deduce the following estimate

βc1,č1(h[ν]γ, η) ∈ x[ν]Ls0(γ)Rs0,č1(ξ̌1; ξ0, η)B(eAM , 3δr,ε).

To recover the term Rc1,č1(ξ̌1; ξ1, η) as in ‡, one can check using the de�nition of the Ratio maps

that Rs0,č1(ξ̌1; ξ0, η) = Rc1,s0(ξ̌1; ξ1, ξ0)−1Rc1,č1(ξ̌1, ξ1, η). Denote by y0 := Rc1,s0(ξ̌1; ξ1, ξ0)−1.

Then for all ν ∈ (Z/2Z)p, all γ ∈ {γnl

l ...γ
n1
1 | n1, ..., nl ≥ 1} and all η ∈ V6r(∂b(ξ̌1)){,

(10) βc1,č1(h[ν]γ, η) ∈ x[ν]Ls0(γ)y0Rc1,č1(ξ̌1; ξ1, η)B(eAM , 3δr,ε).



TOPOLOGICAL MIXING 39

Overlapping cone argument

Using ♠ on the Jordan term, we deduce that for every η ∈ V6r(∂b(ξ̌1)){, the subset of cocycles

{βc1,č1(h[ν]γ
nl

l ...γ
n1
1 , η) | n1, ..., nl ≥ 1}

is (3+ lAM0
)δr,ε-dense in the translated cone x[ν] exp(C0)xr,εM0 y0Rc1,č1(ξ̌1; ξ1, η). The left terms

x[ν] ensures that when ν varies in (Z/2Z)p, all connected components of AMΓ are reached. Denote
by πA : AM → A the projection. Using that C0 is convex of non-empty interior, we deduce that
there exists ar,ε ∈ A such that the intersection, over the number of connected components of
AMΓ, of the projection in A of these translated cones, contains ar,ε exp(C0), i.e.

ar,ε exp(C0) ⊂
⋂

ν∈(Z/2Z)p

πA
(
x[ν] exp(C0)xr,εM0y0

)
.

Hence the disjoint union of translated cones contains ar,ε exp(C0)MΓ i.e.

ar,ε exp(C0)MΓ ⊂
⊔

ν∈(Z/2Z)p

x[ν] exp(C0)xr,εM0 y0.

Hence by right multiplication by Rc1,č1(ξ̌1; ξ1, η), we deduce that

ar,ε exp(C0)MΓRc1,č1(ξ̌1; ξ1, η) ⊂
⊔

ν∈(Z/2Z)p

x[ν] exp(C0)xr,εM0 y0Rc1,č1(ξ̌1; ξ1, η).

Using the (3 + lAM0
)δr,ε density of cocycles in the disjoint union on the right yields

ar,ε exp(C0)MΓRc1,č1(ξ̌1; ξ1, η) ⊂
⋃

ν∈(Z/2Z)p

n1,...,nl≥1

βc1,č1(h[ν]γ
nl

l ...γ
n1
1 , η)B(eAM , (3 + lAM0)δr,ε).

By compacity, we choose a �nite family

(gi)i∈I ⊂ {h[ν]γ
nl

l ...γ
nl
1 | n1, ..., nl ≥ 1 and ν ∈ (Z/2Z)p}

such that for all η ∈ V6r(∂b(ξ̌1)){,

ar,εMΓRc1,č1(ξ̌1; ξ1, η) ⊂
⋃
i∈I

B
(
βc1,č1(gi, η), (3 + lAM0)δr,ε

)
.

Set δ̃r,ε := (8 dim a + 4 dimM0 + 5)δr,ε = (lAM0
+ 4)δr,ε. Finally, we apply for every family

(ηi)i∈I ⊂ B(η, ε) the Proposition 4.9 on βc1,č1(gi, ηi) and by De�nition 4.11 the ratio maps

Rc1,č1(ξ̌1; ξ1, ηi) are δr,ε close to Rc1,č1(ξ̌1; ξ1, η), hence ‡

ar,εMΓRc1,č1(ξ̌1; ξ1, η) ⊂
⋃
i∈I

B
(
βc1,č1(gi, ηi), δ̃r,ε

)
.

7. Conditions for topological mixing

We prove the following necessary and su�cient conditions.

Theorem 7.1. Let G be a real linear, connected, semisimple Lie group of non-compact type (i.e.
without compact factors) and Γ be a Zariski dense subgroup of G. For all θ ∈ a++, the following
topological mixing conditions occur.

(NC) If the dynamical system (Ω[eM ], φ
t
θ) is topologically mixing then θ ∈

◦
C(Γ).

(SC) Assume that the connected component of the identity M0 of M is abelian. Then the
converse is true i.e. if θ is in the interior of the Benoist cone, then the dynamical system
(Ω[eM ], φ

t
θ) is topologically mixing.
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7.1. Necessary condition. Let θ ∈ a++. We prove that if the dynamical system (Ω[eM ], φ
t
θ) is

topologically mixing, then θ is in the interior of the limit cone C(Γ).
Since this dynamical system factors (Ω, φtθ), we deduce topological mixing of the regular Weyl

chamber �ow. Using now θ ∈ a++ and the necessary and su�cient condition for mixing [DG20],
we deduce that

θ ∈
◦
C(Γ).

7.2. Su�cient condition. The key arguments are given by Theorem 5.2, decorrelation Pro-
position 6.1 and the Proposition 7.2 below.

Let θ ∈ a++ be in the interior of the limit cone. We want to prove that for all non-empty
open sets U, V ⊂ Ω[eM ], there exists T > 0 such that for every t ≥ T ,

φtθ
(
U
)
∩ V 6= ∅.

It is equivalent to prove that for all non-empty open sets U ,V ⊂ Ω̃[eM ], there exists T > 0
such that for every t ≥ T ,

Uetθ ∩ ΓV 6= ∅.
By Theorem 5.2, the action of Γ on L(2)(Γ) has dense orbits. The latter are the �rst and

second Bruhat-Hopf coordinates of Ω̃[eM ]. Using that left and right actions commute, we align U
and V in the same AM orbit as a right AM -invariant subsets given by Proposition 6.1: of �rst
and second Bruhat-Hopf coordinates in a neighbourhood of (ξ1, ξ̌1).

We apply the Proposition 7.2 to θ and the neighbourhood of (ξ1, ξ̌1): the Jordan projection
of the elements in γ ∈ Γlox such that (γ+, γ−) is in that neighbourhood of (ξ1, ξ̌1) is dense in
a�ne half-lines of direction θ. We thus construct elements in Γ that will satisfy the mixing
statement up to right multiplication by MΓ. Finally decorrelation Proposition 6.1 allows to
choose very contracting loxodromic elements in Γ whose attracting and repelling points are in a
neighbourhood of (ξ1, ξ̌1) and whose signed Jordan projection are dense in an MΓ-invariant set
of AM .

Proposition 7.2 (Proposition 5.4 [DG20]). Fix θ ∈ a++ of norm 1 in the interior of the limit
cone C(Γ).

Then for every nonempty open subset O(2) ⊂ L(2)(Γ), for all x0 ∈ A and δ0 > 0 there exists
T0 > 0 such that for all t ≥ T0 there exists a loxodromic element γt ∈ Γ with

(11)

{
(γ+
t , γ

−
t ) ∈ O(2)

exp
(
λ(γt)

)
∈ B

(
x0e

tθ, δ0
)

Recall that for every compact Bruhat section s of the M -bundle K → F , we denote by Fs its
domain, by Gs := s(Fs)MAN the domain of the Bruhat-Hopf coordinates map Hs that takes

value in F (2)
s ×AM . Denote by πA the projection AM → A.

Proof of Theorem 7.1 (SC). Let θ ∈ a++ be in the interior of the limit cone.
We want to prove the following statement given in Bruhat-Hopf coordinates: for all non-empty

open sets U (2) ⊂ L(2)(Γ) and V(2) ⊂ L(2)(Γ), for all u, v ∈ AMΓ and δ > 0, there exists T1 > 0

such that for every t ≥ T1, for all compact Bruhat sections cU , cV such that U (2) ⊂ F (2)
cU and

V(2) ⊂ F (2)
cV ,

φtθ
(
U (2) ×B(u, δ)

)
cU
∩ Γ
(
V(2) ×B(v, δ)

)
cV
6= ∅,

meaning that there exists ht ∈ Γ such that(
U (2) ×B(uetθ, δ)

)
cU
∩ ht

(
V(2) ×B(v, δ)

)
cV
6= ∅.
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Consider the pair (ξ1, ξ̌1) ∈ L(2)(Γ), the real positive number r1 > 0 given by Proposition 6.1
and the associated compact Bruhat sections c1, č1.
Step 1: Apply topological transitivity of the action of Γ on L(2)(Γ) given by Theorem 5.2.

Then there exists hU , hV ∈ Γ such that{
hUU (2) 3 (ξ1, ξ̌1)

hV V(2) 3 (ξ1, ξ̌1).

By left Γ invariance and right AMΓ invariance of Ω̃[eM ], there exists u1, v1 ∈ AMΓ such that in
Bruhat-Hopf coordinates, {

hU
(
U (2) ×B(u, δ)

)
cU
3 (ξ1, ξ̌1 ; u1)c1

hV
(
V(2) ×B(v, δ)

)
cV
3 (ξ1, ξ̌1 ; v1)č1 .

Choose r ∈ (0, r1] and δ1 > 0 small enough such that in Bruhat-Hopf coordinates{
hU
(
U (2) ×B(u, δ)

)
cU
⊃
(
B(ξ1, r)×B(ξ̌1, r)×B(u1, δ1)

)
c1

hV
(
V(2) ×B(v, δ)

)
cV
⊃
(
B(ξ1, r)×B(ξ̌1, r)×B(v1, δ1)

)
č1
.

By Proposition 6.1, for all ε ∈ (0, r], there exists a �nite family (gi)i∈I ⊂ Γ and a point ar,ε ∈ A
satisfying the following conditions.

† For all i ∈ I, the element gi is (2r, 2ε)-loxodromic with

(g+
i , g

−
i ) ∈ B(ξ1, ε)×B(ξ̌1, ε).

‡ For all η ∈ V6r

(
∂b(ξ̌1)

){
and (ηi)i∈I ⊂ B(η, ε), the family {βc1,č1(gi, ηi)}i∈I is δ̃r,ε-dense

in ar,εRc1,č1(ξ̌1; ξ1, η)MΓ i.e.

ar,εRc1,č1(ξ̌1; ξ1, η)MΓ ⊂ ∪i∈IB(βc1,č1(gi, ηi), δ̃r,ε).

Step 2: Choose ε ∈ (0, r] such that δ̃r,ε ≤ δ1/2. Denote by O(2) := B(ξ1, ε) × B(ξ̌1, ε).
We are going to prove the topological mixing statement for u1, v1 ∈ AMΓ, small δ1 > 0, when
U (2) = V(2) = O(2).

Let us apply Proposition 7.2 to θ which is in the interior of the limit cone, to the above open
subset O(2) ⊂ L(2)(Γ), to x0 := πA

(
a−1
r,εu1v

−1
1

)
and to δ1/2. We thus consider T0 > 0 and

a family of loxodromic elements (γt)t≥T0 satisfying the system (11). Apply †, since g−i is the

attracting point of g−1
i , we deduce for all i ∈ I

γ−1
t g−1

i B(ξ̌1, ε) ⊂ B(ξ̌1, ε).

Hence for all i ∈ I and every ξ̌ ∈ γ−1
t g−1

i B(ξ̌1, ε),

giγt
(
γ+
t , ξ̌ ; v1

)
č1

=
(
giγ

+
t , giγtξ̌ ; βc1,č1(giγt, γ

+
t )v1

)
c1

=
(
giγ

+
t , giγtξ̌ ; βc1,č1(gi, γ

+
t )Lč1(γt)v1

)
c1

∈ O(2) × {βc1,č1(gi, γ
+
t )Lč1(γt)v1}.

We discuss the cocycle terms using the decorrelation. By ‡, the set

(12) {βc1,č1(gi, γ
+
t )Lč1(γt)v1 | i ∈ I}

is δ1/2-dense in (
ar,εRc1,č1(ξ̌1; ξ1, ξ1)MΓ

)
Lč1(γt)v1.
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Since the ratio Rc1,č1(ξ̌1; ξ1, ξ1) is trivial andMΓ is a normal subgroup ofM , we deduce that the
above subset of cocycles (12) is δ1/2-dense in ar,εLč1(γt)u1MΓ. Furthermore, by equation (11)
it is δ1- dense in ar,εx0e

tθu1MΓ. By choice of x0, remark πA(ar,εx0e
tθv1) = πA(u1e

tθ). Hence

πA(u1e
tθ)MΓ ⊂

⋃
i∈I

B(βc1,č1(giγt, γ
+
t )v1, δ1).

Since u1e
tθ ∈ πA(u1e

tθ)MΓ, we choose for all t ≥ T0 an element ht ∈ {giγt}i∈I such that

u1e
tθ ∈ B(βc1,č1(ht, γ

+
t )v1, δ1).

Consider w ∈ B(v1, δ1) such that βc1,č1(ht, γ
+
t )w = u1e

tθ. Then for all ξ̌ ∈ h−1
t B(ξ̌1, ε),

ht
(
γ+
t , ξ̌ ; w

)
č1

=
(
htγ

+
t , htξ̌ ; βc1,č1(ht, γ

+
t )w

)
c1

=
(
htγ

+
t , htξ̌ ; u1e

tθ
)
c1
∈ φtθ

(
O(2) ×B(u1, δ1)

)
c1
.

Therefore, all points of such coordinates are in φtθ
(
O(2) × B(u1, δ1)

)
c1
∩ ht

(
O(2) × B(v1, δ1)

)
č1
.

Hence for all t ≥ T0, there exists ht ∈ Γ such that

(13) φtθ
(
O(2) ×B(u1, δ1)

)
c1
∩ ht

(
O(2) ×B(v1, δ1)

)
č1
6= ∅.

By choice of ε > 0, remark that{
hU
(
U (2) ×B(u, δ)

)
cU
⊃
(
O(2) ×B(u1, δ1)

)
c1

hV
(
V(2) ×B(v, δ)

)
cV
⊃
(
O(2) ×B(v1, δ1)

)
č1
.

Note that relation (13) ensures that φtθ
(
hU
(
U (2) × B(u, δ)

)
cU

)
∩ hthV

(
V(2) × B(v, δ)

)
čV
6= ∅.

Since the �ow commutes with left multiplication by Γ, we deduce that for all t ≥ T0,

φtθ
(
U (2) ×B(u, δ)

)
cU
∩ h−1

U hthV
(
V(2) ×B(v, δ)

)
čV
6= ∅.

�

Appendix : density Lemmata

Lemma 7.3. Let C be a compact connected abelian real linear Lie group and V be a �nite
dimensionnal real vector space.

Then for all subset E ⊂ V ×C that span a dense subgroup in V ×C, for all small real number
δ > 0, there exists a �nite subset Fδ ⊂ E of at most 3 dimV + 2 dimC elements such that the
subgroup generated by Fδ is δ-dense in V × C.

It a consequence of the following Lemma.

Lemma 7.4 (Lemma 6.1 [DG20]). Let V be a �nite dimensionnal real vector space.
Then for all subset E ⊂ V that span a dense subgroup in V , for all small real number δ > 0

and all basis B ⊂ E of V , there exists a �nite subset Fδ ⊂ E of at most 2 dimV elements such
that the subgroup generated by B ∪ Fδ is δ-dense in V .

Proof of Lemma 7.3 . By Corollary 3.7 of [BtD85], the group C is isomorphic to a torus. Con-

sequently, its universal cover C̃ is a real vector space of dimension dim(C).

Fix a small real number δ > 0. Denote by Ṽ = V × C̃ the universal cover of V × C. Then Ṽ
is a real vector space of dimension d̃ = d+ dimC.

We want to apply Lemma 7.4 on this vector space. Let us �rst construct out of E a subset

that spans a dense additive subgroup. Denote by p : Ṽ → V × C the covering map. Fix a

basis (b1, ..., bd, bd+1, ..., bd̃) of Ṽ such that (p(b1), ..., p(bd)) is a basis of V ×{0} and the additive
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subgroup generated by (bd+1, ..., bd̃) is the kernel of the covering map ker(p). With such a basis,

we explicit the isomorphism between Ṽ /〈bd+1, ..., bd̃〉 and V × C. Then the following subset

D̃ := V ect(b1, ..., bd)×
(dimC∏

j=1

[0, 1[bd+j

)
,

is a fundamental domain of the covering. Consider now the subset of elements of this fundamental
domain that project into elements of E,

Ẽ := p−1(E) ∩ D̃.

We deduce that Ẽ∪{bd+1, ..., bd̃} spans a dense additive subgroup of Ṽ . Fix now a subset B′ ⊂ Ẽ
such that πV (p(B′)) is a basis of V .

Apply now density Lemma 7.4 on Ṽ , for the subset Ẽ ∪ {bd+1, ..., bd̃} and choice of basis

B′ ∪ {bd+1, ..., bd̃}. There exists and we choose a �nite subset F̃ ⊂ Ẽ of at most 2d̃ elements,

such that F̃ ∪B′ ∪ {bd+1, ..., bd̃} spans a δ-dense additive subgroup of Ṽ .

Finally, we project F̃ ∪B′∪{bd+1, ..., bd̃} to V ×C using the covering map. Then p(F̃ ∪B′) ⊂ E
is a �nite subset of at most 3d + 2 dimC elements that spans a δ-dense additive subgroup of
V × C. �

Lemma 7.5. Let C be a compact connected abelian real linear Lie group and V be a �nite
dimensionnal real vector space. Fix δ > 0 a small real number.

Then for all �nite subset F ⊂ V × C that spans a δ-dense subset of V × C, there exist an
element vF ∈ V such that the semigroup genenerated by F is δ−dense in(

vF +
∑
f∈F

R+πV (f)

)
× C.

Proof. We adapt a proof of Y. Benoist [Ben00, Lemma 6.2].
Consider the compact subset of V

D̃ :=

{∑
f∈F

tfπV (f)

∣∣∣∣ 0 ≤ tf ≤ 1

}
.

Then D̃ × C is a compact subset of V × C. By hypothesis, the additive subgroup generated by
F is δ−dense in V × C. Then, applying compacity, we choose a �nite subset X ⊂ 〈F 〉 that is
δ-dense in D̃ × C, i.e. such that

D̃ × C ⊂
⋃
x∈X

B(x, δ).

Denote by 〈F 〉+ the subsemigroup generated by F . Choose an element of the additive sub-
semigroup h ∈ 〈F 〉+ such that hX ⊂ 〈F 〉+. Such a choice is possible because V × C is abelian.

Then the translate h(D̃ × C) is δ-covered by hX ⊂ 〈F 〉+, i.e.

(14) h(D̃ × C) ⊂
⋃
x∈X

B(hx, δ) ⊂
⋃

x∈〈F 〉+

B(x, δ).

Remark now that

h(D̃ × C) = (πV (h) + D̃)× πC(h)C = (πV (h) + D̃)× C.
Denote now by L the close convex cone generated by πV (F ), i.e. L :=

∑
f∈F R+πV (f). Then,

by translating on the left by 〈F 〉+ in the previous equality, a translate of L appears on the right
hand side i.e.

〈F 〉+
(
(πV (h) + D̃)× C

)
=
(
(πV (h) + L)× C

)
.
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Finally, combining with (14), we deduce that 〈F 〉+ is δ-dense in
(
(πV (h) + L)× C

)
i.e.(

(πV (h) + L)× C
)
⊂

⋃
x∈〈F 〉+

B(x, δ).

�
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