TOPOLOGICAL MIXING OF POSITIVE DIAGONAL FLOWS

NGUYEN-THI DANG

ABSTRACT. Let G be a connected, real linear, semi-simple Lie group without compact factors
and I' < G a Zariski dense, discrete subgroup. We study the topological dynamics of positive
diagonal flows on I'\G. We extend Hopf coordinates to Bruhat-Hopf coordinates of G, which
gives the framework to estimate the elliptic part of products of large generic loxodromic ele-
ments. By rewriting results of Guivarc’h-Raugi into Bruhat-Hopf coordinates, we partition
the preimage in I'\G of the non-wandering set of mixing regular Weyl chamber flows, into
finitely many dynamically conjugated subsets. We prove a necessary condition for topological
mixing, and when the connected component of the identity of the centralizer of the Cartan
subgroup is abelian, we prove it is sufficient.

1. INTRODUCTION

Let G be a connected, real linear, semi-simple Lie group without compact factors. Let A
be a maximal R-split torus i.e. a maximal abelian subgroup whose Lie algebra a is a Cartan
subspace, denote by a™ C a a choice of closed positive Weyl chamber and by a™ its interior,
by AT = exp(at) and AT := expa™T. Let I' < G be a Zariski dense, discrete subgroup. We
study topological mixing of the right action by translation on I'\G of one parameter subgroups
of A that are parametrized by non-trivial elements of a™.

1.1. Previous results. In the case of latticesE] i.e. I'\G has finite volume for the Haar measure,
topological mixing is a consequence of Howe-Moore [HM79] Theorem. Moore [Moo87| even
proved that it is exponentially mixing for the Haar measure.

For the isometry group SO(n,1)° of H", the Cartan subspace a is isomorphic to R. As-
sume that T" is Zariski dense, discrete and torsion free. Such right action corresponds to the
geodesic frame flow of the hyperbolic orbifold I'\H". The geodesic frame flow factors the geodesic
flow on the unit tangent bundle T'T'\H". The latter identifies with the right action of A on
'\SO(n,1)?/SO(n — 1), where SO(n — 1) is the stabilizer in SO(n) of a fixed unit vector in
T'H". The geodesic flow is topologically mixing on its non-wandering setﬂ

Denote by Q¢ the preimage in I'\SO(n, 1)V of the non-wandering set of the geodesic flow. For
convex cocompact subgroups, Winter [Winl6] and Sarkar—Winter [SW20] proved exponential
mixing for the push forward of the Bowen-Margulis-Sullivan (BMS) measure on the frame bundle.
Since this measure is supported in g, these results imply topological mixing of the frame flow.

Under no other assumption for I' than Zariski dense, Maucourant—Schapira [MS19] proved
that the frame flow is topological mixing on Qg.

For rank one (i.e. dim A = 1) locally symmetric spaces and discrete Zariski dense subgroup
admitting a finite BMS measure, Winter [Winl15] showed mixing for the frame flow.

1991 Mathematics Subject Classification. 37A17, 37B05, 37C15, 22F30.
Nattices are Zariski dense subgroups by Borel density Theorem
2For example, topological mixing is equivalent to non-arithmeticity of the length spectrum by [Dal00], which
follow, for Zariski dense subgroup from [Ben00| or [Kim06].
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1.2. Main setting. In this article, we focus on a higher rank semisimple Lie group without
compact factors G, meaning that dim A > 2 and on an infinite covolume, discrete, Zariski dense
subgroup I of G.

Let K be a maximal compact subgroup of G for which the Cartan decomposition K AT K of
elements of G holds. Denote by M := Zg(A) the centralizer subgroup of A in K.

For any 6 € a*, the nonnegative diagonal flow ¢}, corresponds to the right action by translation
on I'\G of exp(tf). When 6 € a™* \ {0}, the flow ¢}, is called positive diagonal. Nonnegative
diagonal flows ¢}, where 6 € a™, induce right actions on I'\G/M, so called Weyl chamber flows.
They are called regular when they are induced by positive diagonal flows. The latter will play
the same role in higher rank as the geodesic flow in the unit tangent bundle of the hyperbolic
orbifold.

1.3. Mixing of regular Weyl chamber flows. Conze-Guivarc’h [CG00] defined for SL(n,R)
and Zariski dense discrete subgroups a right A-invariant closed subset Q@ C I'\G/M (cf. § 5.1
for a detailed construction). Their construction generalizes to all semisimple Lie groups without
compact factors.

Definition 1.1. We denote by Q the smallest closed A-invariant subset of T\G/M containing
all periodic orbits of regular Weyl chamber flows and by Q¢ its preimage in T\G.

The closed subset € is the analogue for Weyl chamber flows of the non-wandering set of the
geodesic flow in the hyperbolic case. With Glorieux [DG20], we obtained the following necessary
and sufficient mixing condition for regular Weyl chamber flows.

Theorem 1.2 ( [DG20]). Let G be a connected, real linear, semi-simple Lie group, without
compact factor. Let T be a Zariski dense, discrete subgroup of G.

A regular Weyl chamber flow ¢}, is topologically mizing on 2 if and only if 6 € Z’(F)

The limit cone C(T") was introduced by Benoist [Ben97b|. For every Zariski dense I', he proves
that the limit cone is a closed, convex cone of at of non-empty interior.

Definition 1.3. Denote by A : G — a* the Jordan projection. The limit cone of I' which is also
called Benoist cone C(T), is the smallest closed cone of a™ containing \(T).

Mixing ratio for regular Weyl chamber flow ¢}, where 6 lies in the interior of the limit cone,
were obtained by Thirion [Thi09] for Ping-Pong groups, Sambarino [Sam15] for Hitchin repres-
entations and Edwards-Lee-Oh [ELO20| for Borel Anosov groups.

1.4. Main result. We study the topological dynamics of non-negative diagonal flows (Q¢, ¢}).
We focus on its topological mixing properties. Note that Qg is a right AM-invariant closed
subset of I'\G and a principal M-bundle over 2, where M is not necessarily connected.

Using a result of Guivarc’h-Raugi [GRO7]|, we partition ¢ into finitely many A-invariant
subsets that are dynamically conjugated to each other for nonnegative diagonal flows.

Theorem 1.4. Let G be a connected, real linear, semi-simple Lie group, without compact factors.
Let T be a Zariski dense, discrete subgroup of G.

Then there exists a normal subgroup of finite index My < Mr <« M and a partition of Qg
denoted by (Qm))mjers/my such that

(a) every S, is right AMr-invariant and a principal Mr-bundle over §2;

(b) for all 0 € a™, the dynamical systems {(Qn), #h) }imjem/my are conjugated to each other;

(c) if 0 € at™ and (Q,,), ¢p) is topologically mizing then 6 € C(T') .
If furthermore My is abelian and § € at™, then the converse of (c) is true:
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(d) (Qens> @) is topologically mizing if and only if 0 € 8(F)

We expect that condition (d) holds in the general case, because Maucourant—Schapira [MS19]
proved topological mixing of the geodesic frame flow for SO(n,1)° where M = My = SO(n — 1).
Condition (c) is a consequence of the joint work with Glorieux.

Observe that My is abelian for example: split real semisimple Lie groups i.e. SL(n,R),
Sp(2n,R), SOo(p, p), SOo(p, p+1); and also for SU(p, p+1), SU(p, p), SOo(p, p+2) and SL(n, C).
The closed, normal subgroup of finite index Mt of M containing the connected component of the
identity My of M, is defined in Guivarc’h-Raugi [GRO7] by using the elliptic part of loxodromic
elements of I'. It was also defined and studied in the appendix of [Ben05]. We call it the sign
group of T

Labourie [Lab06] proved that Mp is trivial if I is the image of a Hitchin representations. It
thus follows from the above result that in this case, there are 2" ~! disjoint subsets in I'\PSL(n, R)
that share the same dynamical behavior for non-negative diagonal flows. Consequently, positive
diagonal flows are topologically mixing on any of these subsets if and only if they are parametrized
by directions of the interior of the limit cone.

For Borel Anosov subgroups and independently, Lee-Oh [LO20] prove that there is an A-
ergodic decomposition of every BMS measure into AMp-semi-invariant and A-ergodic measures
parametrized by M/Mrp. Any pair of such measures is the same up to right multiplication by
elements of M /My, which concur with our result.

1.5. Key ideas.

Bruhat-Hopf coordinates. Denote by F() the subset of transverse pairs in the Furstenberg
boundary (cf. § 2.2) which identifies with G/AM (cf. Proposition [2.6). Thirion [Thi07] general-
ized Hopf coordinates in higher rank by parametrizing points of G/M with elements of F(2) x a.
The left action of G on G/M reads using the Iwasawa cocycle o (cf. Definition as follows

9(& €5 x) = (96,965 0(g,€) + 7).

The Weyl chamber flow reads by translating only the a coordinate without changing the first
two.

Consider the set {G;}ses of maximal Bruhat cells of G. For every s € S, we denote by F;
(resp. F<?) the projection of G, in F (resp. F®).

In Section 3, we construct Bruhat-Hopf coordinates H : Gs — .F§2) x AM that extend Hopf
coordinates (cf. Definition Proposition [3.10). Note that they differ from coordin-
ates coming from the unique Bruhat decomposition of N™M AN or their translate of the form
hN~-MAN, where h € G. The projection G — G/M reads for all s € S by preserving the
coordinates in F® and projecting the AM-coordinates to a. The right translation by AM on
G reads for all (€,&;u), € ]-'5(2) x AM and z € AM as (£,&; ux)s,.

The left action of G on itself reads in this family of Bruhat-Hopf coordinates (H;)ses equivari-
antly in the coordinates in F®?) and via left multiplication by the signed Iwasawa cocycles
(Bs'.s)s,s'es (cf. Definition of domains in G x F and codomains in AM. They extend
(cf. Proposition the Iwasawa cocycle in the sense that for all £ € F; and g € G such that
g€ € Fy, then By 5(g,§) € exp(o(g,&))M. We prove that the signed cocycles (8ss)ses are all
cohomologous (cf. Fact for the transition maps J; ¢ + Fs N Fg — AM of Definition

Furthermore, Bruhat-Hopf coordinates induce local coordinates of K in F x M by removing
the second coordinate and projecting in M the third one.

Likewise, the reader can check that Bruhat-Hopf coordinates induce local coordinates on G/N,
G/A and G/MN.
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The elliptic part of loxodromic elements. Elements of G whose Jordan projection is in the
positive Weyl chamber are called lozodromic. Denote by G!°® and T'*°* the subset of loxodromic
elements of the respective groups. Loxodromic elements (see §4) have trivial unipotent parts
and are conjugated to elements in M ATT. The part in A™", corresponding to the hyperbolic
part, is given by the Jordan projection. In [Ben96|, [Ben97b] and [Ben00], Benoist defines
(r,e)-loxodromic elements (see Definition and obtains estimates for the Jordan projection
of generic products of (r,¢)-loxodromic elements. We show that their elliptic part satisfy similar
estimates.

The elliptic part of a loxodromic element is conjugated to an element of M which is defined
up to conjugacy by M. Therefore, the latter is only well defined when M is abelian, in which
case one can extend the Jordan projection from G'* to at+ x M. Bruhat-Hopf coordinates gives
a framework to solve this technical difficulty in the general case.

Fix a loxodromic element g and denote by g* (resp. g~) its attracting (resp. repelling) fixed
point in F and by b(g™) the basin of attraction of g* (cf. Proposition . Starting from the
formula o(g,g") = A(g) satisfied by loxodromic elements, we define a multiplicative and signed
Jordan projection for g. For every s € S such that gt € Fj, we set Z(g9) := Bs.5(g,91). It
is the unique element in exp(A(g))M such that there is an element hy € G unique up to right
multiplication by A such that h;lghs = Z(g).

Using the continuous maps % s given in Definition we obtain an exact formula.

Proposition 1.5 below). Let G be a connected, real linear, semi-simple Lie group, without
compact factor.

Then for all lozodromic element g € G'°%, all integer n > 1 and £ € b(g™), for any suitable
50,581,582 € S such that (&,97, g"€) € Fs, X Fs, X Fs,

/85278() (gn’ 5) = f%sl,sz (ga gnf)ilzsl (g)n%sl,so (g; 5)

We estimate the elliptic part of generic products of (r,e)-loxodromic elements. In order to do
that, we introduce a family of constants {J,. | 0 < e < r} (cf. Definition 4.11) such that for all
r > 0, they satisfy lim._,0 . = 0 (cf. Proposition 4.10).

Proposition 1.6 (4.12|below). Let G be a connected, real linear, semi-simple Lie group, without
compact factor. For all v > 0 and € € (0,7] and every family g1,...,q1 € G of (r,e)-loxodromic
elements such that

*r < %d({g{tl,gj},ab(gi_)) for all 1 < i <1 with the convention gy = gj.
For all family (s;)o<i<i C S such that
>x Fo, D Vr(0b(g;))C for every 1 <i <1 and F., D V-(db(g7))C.

Then for all integers ny,...,n; > 1, the element g ...g7" is (2r,2¢)-loxodromic with attracting
(resp. repelling) point in B(g;t,€) (resp. B(gy ,¢)) and its extended Jordan projection satisfies

Lo (91" 91") € Z, (glm)%&m_l(glagltl)“-jﬁ (91" )%51’51(91,57;)3(6‘4]\/[7 215y.¢).

Decorrelation. Denote by M? the abelianization of M. We define an abelianized Jordan
projection for loxodromic elements .Z% : G — A++ M2 using the previous local Jordan
projections .%;. The number of connected components of M reached by the subset .Z%°(I'l°%)
suffices to understand Mr. Indeed, its abelianized M2 is the subgroup of M generated by the
projection to M of £ (T''°*). Thanks to Guivarc’h-Raugi [GR0O7, Theorem 6.4] we deduce
that the subgroup generated by £ (T'°%) is dense in AMg’. They also give a classification of
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I-invariant minimal subsets of K. We rewrite their result using Bruhat-Hopf coordinates of K
in Theorem and define the invariant subsets (2,,,; through their universal cover 1, in G.

Denote by L(T') C F the limit set of T and by L®)(T) := L(T') x L(T') N F?). The universal
cover Q¢ has Bruhat-Hopf coordinates L2 (T') x AM.

Without loss of generality, by using the joint work with Glorieux [DG20], it suffices to prove the
decorrelation Proposition i.e. that there exists (£1,£;) € L®)(I') such that for every =z € AM
and small § > 0, the orbit I'(¢;, 51 ; )¢, 1s d-dense in an Mrp-orbit of the form (&, 51 i YsaMr)e,
(for suitable ¢1,¢; € S).

The first step (Lemma is to reach all connected components of M by the left action of
finitely many (r, €)-loxodromic elements of T" of attracting point close to £;. It does not use that
M abelian.

In the second step (Lemma we construct (r,e)-loxodromic elements 71, ..., € T' that
satisfy the hypothesis of Proposition [1.6/and such that £ ({y]"..47" | n1,..,n; > 1}) is J-dense
in an My-invariant set that projects to log w4 (ysz) + Co, where Cy C a*™ is a closed convex cone
of non-empty interior. We rely on density of squares in M, as well as density lemmata deduced
from the assumption that M, is abelian.

Finally, we use an overlapping cone argument to deduce the decorrelation.

1.6. Organization of the paper. In Section 2 we recall the classical Iwasawa, Bruhat de-
compositions of Lie groups and characterize the transverse points in the Furstenberg boundary.
Section 3 is dedicated to the construction of Bruhat-Hopf coordinates. In Section 4, using Bruhat-
Hopf coordinates, we estimate the elliptic part of products of generic loxodromic elements. In
Section 5, we define the subgroup Mrp, the I'-invariant subsets of G and prove Theorem [T.4]
(a)(b). Section 6 is dedicated to the proof of decorrelation. In Section 7 we prove the necessary
and sufficient condition for topological mixing when M, abelian. In the appendix, we prove the
density lemmata.

Relation to other works. Sections 2, 5, 6, 7 and the Appendix can be found in french in
the author’s PhD thesis [Dan19]. Sections 3 and 4 improve the thesis’s construction of Bruhat-
Hopf coordinates and its estimates of the elliptic and hyperbolic parts of products of loxodromic
elements.

Bruhat-Hopf coordinates were independently studied by Lee-Oh [LO20].
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2. BACKGROUND

In the whole article, G is a semisimple, connected, real linear Lie
group, without compact factor.

A classical reference for this section is [Hel0I]. Let K be a maximal compact subgroup of
G. Denote by g (resp. t) the Lie algebra of G (resp. K). Consider a Cartan decomposition
g=t®dp. Let a C p be a Cartan subspace i.e. a maximal abelian subspace of p for which the
adjoint endomorphism of every element is semisimple. Denote by m the centralizer of a in €.
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For every linear form « € a*, set g, := {v € g | Vu € a, [u,v] = a(u)v}. Note that go = mPa.
The set of restricted roots is given by ¥ := {a € a*\0 | g, # 0}. By simultaneous diagonalisation
over the abelian family of endomorphisms ad(a), we deduce the decomposition g = go Pacs Ja-
Note that X is a finite set. Let us now choose a positive Weyl chamber of a i.e. a connected
component of a \ Uyex ker(a). Denote the closed positive Weyl chamber by at and at™t its
interior. The set of positive roots, denoted by X7, is the subset of restricted roots which take
positive values in the positive Weyl chamber. This choice allows to define two particular nilpotent
subalgebras n = G, ex+ g and n_ = G e+ G-q-

Finally, denote by A := exp(a) the maximal R-split torus, A* := exp(a™) the closed positive
Weyl chamber, AT := exp(a®™™) its interior, N := exp(n) (resp. N~ := exp(n_)) the positive
(resp. negative) maximal unipotent subgroups and M the centralizer of A in K, of Lie algebra
m. By definition, A normalizes N and N~. Furthermore, for all a € A** and hy € N7 the
following convergences hold

(1) a "hia" — eq.
+oo

2.1. Furstenberg boundary. By Iwasawa decomposition ( cf. [Hel01, Chapter IX, Thm 1.3 ])
G = KAN and G = KAN~ and the maps (with the convention that N* = N)

KxAxN*f —@
(k,a,n) — kan

are diffeomorphisms. Denote by g — (kz+(g),az+(9),uz+(g)) € K x A x N* the respective
inverse diffeomorphisms. Noteﬂ that [go, o] C go forall « € ;. Hence m@a®n and mPadn_
are Lie subalgebras of g. Consequently M AN and M AN~ are closed subgroups of G.

Definition 2.1. The Furstenberg boundary is defined by F := G/MAN. Denote by k, € K a
representative of the element in the Weyl group such that Ad(k,)a™ = —a™. Set ng := MAN
and 7jg := k,70.

The map k € K — kng € F is surjective and equivariant for the left action of K. Furthermore,
the stabilizer of 79 is the closed subgroup M. Therefore, we deduce an identification of K/M
with the Furstenberg boundary.

Let us sketch the construction of a K-invariant Riemannian distance on K. Start from a
scalar product on €. Since K is a compact subgroup, its Haar measure is finite. By averaging the
scalar product on ¢ along the Haar measure on K for the adjoint action, we obtain an Ad(K)-
invariant scalar product and norm on £. Using the left action of K, we transport them on every
tangent space and obtain a left K-invariant metric which is also invariant by conjugation. Hence
K is endowed with an invariant Riemannian metric. Its induced Riemannian distance is thus
K-invariant.

Definition 2.2. Let dg be a K-invariant Riemannian distance on K. For every £,m € F for
any choice of representatives k¢, ky, € K such that keno = § and kyno = 1, we consider the
induced left K-invariant distance in F

d(ﬁ,r]) = dK(kgM, k‘nM)

Let us define the Iwasawa cocycle.

3using Jacobi identity
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Definition 2.3. For all g € G and £ € F, we denote by o(g,&) the unique elemenﬁ in a such
that for all ke € K such that keng = &,

gke € K exp(o(g,&))N.

The map o : G X F — a is the Iwasawa cocycle.

2.2. Transverse pairs in the Furstenberg boundary. The following subset of F x F is a
higher rank analogue to the set of pair of points in the geometric boundary of the hyperbolic
plane H? that parametrize oriented geodesics. It also identifies for SL(n,R) with the space of
transverse complete flags of R™.

Definition 2.4. The subset of ordered transverse pairs of F x F is defined by
F& = {(gno, g7h0) | g € G}.

Since k, is an involution, (fjo,n0) s also an ordered transverse pair. Consequently, we say that
&,n € F are transverse if any of the ordered pairs (£,m) of (n,€) are transverse.

Denote by W := Ng(A)/Zx(A) the Weyl group of G. We choose for every w € W a
representative k,, € Ng(A). Then by Bruhat decomposition [Hel0ll Chapter IX, Thm 1.4 |,

G = Upew Bk B

where B = MAN. Note that N~ = kLNkjl and that G = Uyewk, Bk, B, meaning that
N~MAN is a cell in the Bruhat decomposition of G.

Corollary 2.5 (Chapter IX, Cor. 1.9 [Hel01]). The map
N~ — N_no
n_ +— n_ng

is a diffeomorphism, its image is an open submanifold of F and its complement is a finite union
of disjoint submanifolds of stricly smaller dimensions.

Thus N™"MAN is a maximal cell for the Bruhat decomposition. We will call sets of the
form hN"MAN as well as their projection to F, where h € G, mazimal Bruhat cells. We
describe below the subset of transverse pairs in the Furstenberg boundary and include a proof
for completeness.

Proposition 2.6. The following holds,

(i) the set of transverse points to 7y is N 1o,
(ii) for alln,& € F and ky, ke € K such that kyno = n and keijo = &,

(n,€) € F® <=k 'k, € N”MAN,

(iii) for all € € F and l%g € K such that 1%5770 = &, the set of transverse points to £ is ng_no.
(iii’) for all £ € F and ke € K such that keng = €, the set of transverse points to € is ke Ntjg.

Furthermore, the G—equivariant map
G/AM — F?
gAM — (g10, g770)

is a diffeomorphism.

4because M normalises N, this element does not depend on the choice of the representative in K of &.
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Proof. (i) First remark that N~ (no,70) = (N 1o, 70). Let us now prove the converse i.e. that
any point transverse to 7o must be in N-ny. Let g € G such that (gng, 7o) € F?. Then by
definition, there exists h € G such that

(910, 70) = h(no, 7o)
On one hand hijg = 7jy, hence h € Stab(1jp) = k,M ANk, 1. Since N~ = k,Nk; ! and M A is
invariant by conjugation by k,, we deduce that
he MAN™.
On the other hand gng = hng, hence h=1g € Stab(ny) = M AN. Thus
g€ hMAN C MAN™ MAN.

Since M A normalizes N—, we deduce that g € N MAN. Hence gno € N np.

(i) Tt follows from (i) and by noticing that the pair (k,mo,keito) € F@ if and only if
(kg 'kymo,70) € F2.

(iii) Tt follows from (ii) since k, (N ~1o,70) € F?).

For the last statement, remark first that G acts transitively on F?). Furthermore

Stabg<’l70,’l70) =MANNMAN™ = AM.
We thus deduce the G-equivariance and bijectivity of the map
GJ/AM —s F®?
gAM — (gno, g7o)-

The left action of G on the Furstenberg boundary 7 = G/M AN is differentiable and so is its
action on F x F. Thus, the map g — (gno, g7jo) is differentiable. The kernel of the differential
in eg of the map g — (gno, g7o) contains m @ a. Since the maps N~ — N~y and N — Nijg
are diffeomorphisms, the differential in e of g — (gno, g70) is surjective from g to n_ & ny. By
Bruhat decomposition in the Lie algebra g =n_ @ m ® a @ n, we deduce that the kernel of the
differential in eq of g — (gno, gjo) is equal to a @ m. Thus, the map G/AM — F?) is a local
diffeomorphism in AM. Finally, by transitivity of the left G action on G/AM, we deduce that
it is a diffeomorphism. d

We parametrize the maximal Bruhat cells of the Furstenberg boundary.

Definition 2.7. Let /) € F, then for any representative h(r)) € G such that 1) = h(1)n, we
denote by b(7) := h(7)N " ng the mazimal Bruhat cell opposite to 7.

Thanks to the previous Proposition, the representative h(1}) € G is chosen up to right multi-
plication by M AN~. Remark that b(ny) = N7y and b(7jg) = N~ 79. Using this notation, the set
of Bruhat cells of F is naturally endowed with a left action of G which satisfies hb(7jy) := b(h7jo)
for all h € G.

3. BRUHAT-HOPF COORDINATES

In his thesis, Thirion [Thi07, Chapter 8 §8.G.2] introduced Hopf coordinates for SL(n,R)/M.
His construction generalizes to every semisimple Lie group without compact factors. It is defined
by the following map

H:G/M — F? xa
hM — (h?’](),h’f]o ; U(h,?’]o)).
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The left action of G and right action of A on G/M read in those coordinates as follows. For all
(9.0,t) € G xaxRand (£,¢; 2) € F@ x a,

Dh(9(&, €5 2)) = (96,98 ; 0(g,€) +x +10).

The projection G/M — F (resp. G/M — G/AM) reads as the projection to the first coordinate
in F (resp. by removing the coordinate in a).

In this section, we extend locally and equivariantly (for the left action of G and right action
of A) Hopf coordinates to G.

Any local trivialisation of G — G/AM provides local coordinates in F(2) x AM that are
equivariant for the right action of A. The restricted left G-action provides a local AM-cocycle.
In general, neither these cocycles extend the Iwasawa cocycle nor will those coordinates locally
extend Hopf coordinates. We give a general method to extend locally Hopf coordinates to
F@ x AM, while the local AM-cocycle extends the Iwasawa cocycle.

In §3.1, using Bruhat decomposition, we construct from any cross-sections s of G — F of
domain F, open sets G := s(F;) M AN of G and the local coordinate map B, : G, < F3) x AM
(cf. Definition [3.2). We set notations for the rest of the article and in Definition define
covering families of cross-sections and of the same type (i.e. that are translates of one another
by G-action).

In §3.2, we set notations for the transition functions between different sets of coordinates in
Definition In Proposition |3.6| we compute these functions in some cases and prove that the
cross-section parameters satisfy chain rule relations.

In §3.3, for every family of differentiable cross-sections (s;);e; of G — F whose domain cover
F, we read the left action of G on itself in the B,, coordinates. The behavior is the same as for
Hopf coordinates for the coordinates in F(?). We define AM-valued functions in Definition
of domain in G x F. We prove in Proposition that those functions are cocycles that encode
the information in AM for the left action of G on itself. This implies in particular that the
information contained in the second and third coordinate in F(?) x AM are not needed when one
reads the left action of G. In Fact we obtain for the cocyle a chain rule formula compatible
with the one we had for the transition functions.

In §3.4, we prove that when the cross-section s takes value in K, then the coordinate map B,
extends the Hopf coordinates. Indeed, in Proposition [3.10, we prove that when the cross-sections
(si)icr take value in K, the signed multiplicative Iwasawa cocycles (fs, s, )i jer defined in the
third paragraph generalize the Iwasawa cocycle. We obtain an equivariant and commutative
diagram with Hopf coordinates.

In §3.5, we prove in Proposition [3:11] that local coordinates of G that extends Hopf coordinates
provide local coordinates of K that take value in F x M. Furthermore, the map k7 : G — K
reads in those coordinates by keeping the first coordinate in F and projecting the last one in M.

In the last paragraph, using Bruhat decomposition and Iwasawa decomposition, we construct
two families of cross-sections of G — F defined on Bruhat cells of F: wunipotent and compact
Bruhat sections in Definition We define Bruhat-Hopf coordinates as the local extensions of
Hopf coordinates given by Proposition with respect to the compact Bruhat sections. In
Proposition [3.14] we parametrize these cross-sections.

3.1. Local trivialisations. Let s be a non-trivial cross-section of the M AN-bundle G — F,
we denote by Fj its domain. Denote by G := s(Fs)M AN the preimage of Fs by the projection

G — F, by F& = G(n0,70) = (Fs x F) N F the image of G by the projection G — F(2),
The following Fact will allow us to define the coordinate map G5 — .7-"8(2) x AM.

Fact 3.1. Let s be a differentiable cross-section of G — F.
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Then the two maps below are diffeomorphisms.

Fs X N x AM — s(Fs)NAM C G
(& u, ) — s(§ua.

Fox Nx AM — F? x AM
(&u,x) L (573(6)1”70 ; 1’)5.

Proof. By hypothesis, the map s : Fs — G is a cross-section and by Iwasawa decomposition in
NAM, we deduce that the first map is a diffeomorphism.

By Proposition [2.6] (iii’) for every & € Fj, the set of transverse points to & is s(¢)Nj. Hence
the map

Fsx N — F®?
(gau) — (575(5)7'”70)

is a diffeomorphism. Consequently, the second map is a diffeomorphism. O

Definition 3.2. For every differentiable cross-section s of G — F, we denote by By the following
differentiable coordinate map

B,:GsCG— F x AM
g = s(§ux — (gno, g7lo 5 )s-
When s is compact valued i.e. a cross-section of K — F, the same map is denoted by H.;.

In order to write in such coordinates every element of GG, we construct families of differentiable
cross-sections whose domain cover F. For all g € G and any cross-section s : F; — G, we define
the left translate by

g-s:9Fs — G
§— gs(g™'E).

This provides a left G action on the space of cross-sections of G — F. For any b € M AN, we
define the cross-section

sbh:Fs — G
& — s(&)b.

Definition 3.3. A family of cross-section (s;)ic; of the bundle G — F is covering when the
family of domains {Fs, }icr covers F i.e.

F C UiEI‘Fsi-
The family (s;);cr is of the same type if for any i,j € I there exists g;; € K such that
S; = gij . Sj.

Since F is compact and the action K ~ F is transitive, one can construct covering families
of differentiable cross-sections of the same type. We provide two such families in Definition [3.12
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3.2. Transition functions. Given two differentiable cross-sections s, s’ of G — F, we compute
the change of coordinates. This information is contained in the so-called transition map 75 ¢
below. We prove in Proposition that the cross-section subscripts in the notation J; s follow
a chain rule relation and compute for all b € M AN the transition function between s and s.b.

Fact 3.4. Let s and s’ be two differentiable cross-sections of G — F such that Fs N Fy # 0.
Then for all £ € Fs N Fyr,
az(s(€)7's'(€)) kz(s(€)7's'(€)) € AM.

Proof. For every £ € FyNFy, we denote by 7, o (§) := az(s(§)7's'(€)) kz(s(€)7's'(€)). Due to
the hypothesis that s and s’ are both cross-sections of G — F, we deduce that s'(§) € s(§)MAN.
Hence the compact part kz(s(£)™'s'(€)) is in M and 7, () is in AM. O

Definition 3.5. Let s and s’ be two differentiable cross-sections of G — F such that F;NFy # (.
We define the transition map

Tosr: Fs N For — AM

E—az(s(&) 7' (&)) kz(s(§) '),
which associate to every & € Fs N Fy, the unique element in AM such that

s'(§) € s(§)N Tas (&)-

Remark that if both s and s’ take value in K, then the transition functions takes value in M.
Let us compute the change of coordinates between By and B, .

Proposition 3.6. Let s and s’ be differentiable cross-sections of G — F such that F, N Fy # (.
Then the following holds.

(i) The map Js,s is differentiable and the identity map of s(Fs N Fe)NAM reads in By
and Bs coordinates as follows:

(FONFO) x AM — (FP 0 FP) x AM
(gaga x)s’ — (gaga z,s/ (g)m)s

(ii) For all differentiable cross-section s” such that Fs» N Fy NFs #£ O, and all £ in the triple
intersection,
z”,s(f) = js”,s’ (5)2’,5(5)
(iii) For all ¢ € Fy N Fs,
Z/,s(f) = Z,s’ (g)il'
(iv) For allx € AM and u € N,

z,s‘zu =T = z,s‘um~

The first three points enforce the computational ’chain rule’ that double cross-sections sub-
script, cancel.

Proof. (i) note that s'(Fs N Fo)NAM = s(Fs N Fe)NAM = G, N Gy since s and s’ are both
cross-sections of G — F. We want to write every element in G4, N G4 in Bs and By coordinates.
By Definition the first two coordinates in F?) do not depend on s and s’. We only need to
compute the change in the last coordinate. Fix an element g € s'(FsNFy)NAM and denote by

(f,f ; X)g € ]-"5(,2) x AM its coordinates with respect to the section s’. Using Fact on g and
', there exists a unique element ug € N such that g admits the following decomposition

9= ' (§ugz.
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Let us deduce the last B coordinate of g by finding its decomposition in s(FsNFy)NAM. Since
£ € Fy N Fy, by Definition there exists a unique element uy 5(£) € N such that

Sl(f) = s(f)us',s(g)z,s’ (5)

Then we replace it in s'(§)ugz,

§'(Qugr = s(Qus s(§) o (ug.

Since AM normalizes N and J; ¢ (§) € AM, we deduce the following s(Fs N Fs)NAM decom-
position of g,

9= S/(é-)uél' = S(ﬁ) (us’,s(g)'ys,s’ (E)ugfys,s’ (§>_1) 2,8’ (6)-7;

Hence, the Bs-coordinates of g is (5,5 3 Tssl (§)m)s.

(ii) is a direct consequence of the relation BSBS_/,l = BSB;1 BSIBS_,,l where each map is restricted
to S(fs// NFe N fS)NAM

(iii) follows from (ii) since eansr = Ts,5 = Ts,5 Ts s

(iv) we recall that for all z € AM and u € N the section s.zu (resp. s.ux) is defined for every
& € Fs by s.xu(§) = s(§)zu (resp. s.ux(§) = s(§)ux). Using that AM normalises N, we deduce
the unique decomposition in s(Fg)NAM,

sau(€) = s(€) (zuz™t) .

Hence the maps J; 5.5y and T 5.4, are constant equal to z. O

3.3. Cocycle. Fix a covering family of differentiable cross-sections (s;);c; of G — F and let us
read in (B, )ier coordinates the left action of G on itself. The left action of G on the first two
coordinates in F(?) is given by g(&,€) = (g€, g€).

In Proposition 3.8} we prove that the AM-valued function defined below, called signed Iwasawa
cocycle, contains the remaining information on the third coordinate. Its domain is in G x F,
meaning that the information contained in the second and third coordinate in F() x AM are
not needed when one reads the left action of G.

In Fact [3:9] we prove a chain rule relation for the cross-section parameter subscripts of the

cocyle. Such a relation is compatible with the one we had for the transition functions.

Definition 3.7. Let s, s1 be differentiable cross-sections of G — F.
For every g € G and & € Fy, such that g& € Fy,, we denote by Bs, s,(g,&) the unique element
in AM such that

950(§) € 51(9€)Bs1,50(9, N
When s1 = sg, we set Bs, := Bs,,s0-
Whenever sy and s1 take value in K, the cocycle B, s, is called signed (multiplicative) Iwasawa
cocycle or in a shorter way, signed cocycle.

Proposition 3.8. Let sy, s1 be differentiable cross-sections of G — F.

For all g € G and every element in G4, of coordinates (€,€; x)sy € .7-"5((?) x AM such that
g€ € Fs,, we denote by g(f,f ; x)SO its left multiplication by g. Then the latter’s coordinates
with respect to sy are

(2) 9(&.€5 x), = (96,985 Baiso(9:6)), -

For every covering family of smooth cross-sections (s;)ic; of G — F, for every i,j, k € I, all
& € Fs, and gj,grx € G such that g;&; € F; and grg;& € Fs, then we have the cocycle relation

(3) Bsk,si (gk?gj)é-l) = Bsk,sj- (gkagJ§l> ﬁs]-,si (gj7€7,)
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For all y € AM, for every element of coordinates (£,€ ; x)s,, denote by (£,€ ; x)4,y its right
multiplication by vy, then

(4) (&5 @)soy = (6,€; 2Y)s0-

As in Proposition concerning the transition functions, and enforce the ’chain rule’
that double cross-sections subsequent subscript cancel. Equation provides a key argument
for the properties given in §5 Proposition of the invariant subsets of G for the dynamics of
nonnegative diagonal flows.

Proof. Because AM normalizes N, the following diagram is G-equivariant for the left action of

G and commutative.
ge G
/ m

gN € G/N G/AM ~ F® 3 g(no, 7o)

gno € F

Thanks to the lower left side G/N — F of the diagram we deduce that local trivializations of
G — F induces local trivializations of G/N — F, of fiber AM. Indeed, for every differentiable
cross-section s : Fs — G, the map Fs x AM — G/N that associates to (£ ; z)s € Fs x AM the
element s(§)aN € G/N is the inverse of a local coordinate system.

Let (s;)ier be a covering family of cross-sections of G — F. Then the cocycles (8s,,s,)i,jer of
Definition and the left action of G on F encode the left action of G on G/N. Indeed, let
hN € G/N be an element of coordinates (£ ; x)s, € Fs, X AM and g € G such that g§ € F,.
By the restricted coordinates map, we write hN = s;(§)xN. Hence

ghN = gs;(§)xN.

By Definition of S, s, there exists a unique v € N such that gs;(§) = 5;(£)8s,,s, (9. &)u.
Replacing it in the expression of ghN and using that AM normalizes N, we get

GhN = 55(9€)Bs,.0, (9, JuaN = 55(96)Bs, . (9, ) (z~ " ua ).
Hence ghN has coordinates (g€ ; Bs;.s,(9,6)7)s,-

Thanks to the higher right hand side of the diagram, the same cocycles (ﬂsw)iyjel combined
with the left action of G on F(® allow us to write in local trivialisations the left action of G on
itself. Hence, equation (2) holds.

The cocycle relation given by equation follows from the equivariance of the diagram for
the left action of G.

For equation , note first that for every cross-section s of G — F, the subset s(Fs)NAM
is invariant by right AM-translation. Furthermore, right translating by AM preserve the parts
of the decomposition in s(F,)N. Finally, this translates in ]-"5(2) x AM to a trivial action in the
F@ coordinates and a translation in the third AM coordinate. O

Lastly, let us combine the relations between the transition maps and the cocycles for the
coordinate system (Bs,);cr-

Fact 3.9. Let s, s(, s1, 8, be differentiable cross-sections of G — F. Then for all g € G and
§ € Fso N Fyy such that g§ € Fs, N Fy,

55’1,56 (975) = Z/l,sl (gé-) 651,80(.9’5) Zo,sg (5)
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Note that cross-section subscript that are doubled, cancel out with our notations.

Proof. Let (f,f; T)s € (]:56 ﬂfso)(2) X AM and g € G such that g€ € Fr N Fs,. By equation
of the previous Proposition [3.§] for the local coordinates given by s} and s,
g(fag ; x)s{) = (gfagg ; 55'1756 (gag)x)s”l

Then by the transition identity of Proposition (i) between sj, and so on the left side of the
previous equation,

g(gag 5 1’)56 = g({,fv ) %0,56 (g)x)so
Again by the cocycle identity on the right hand side between sg and s1,

g(gag; x)s() = (95795; 551,50(9,5)20,56(5)33)51-

Lastly, the transition identity between s; and s} on the right side of the equation yields

(95795; 63’1,56 (gag)x)s/l = (957955 2’1,51 (95)551,50 (975)750,56 (f)l')s’l
O

3.4. Local extensions of Hopf coordinates. Given a family of covering differentiable cross-
sections (s;);cr of G — F, the associated cocycles do not extend the Iwasawa cocycle. Hence, in
a general setting, the maps (Bs,);cr do not extend Hopf coordinates of G/M.

We prove that when the cross-sections (s;);c; take value in K, the signed multiplicative
cocycles (Bs, s, )i,jer generalize the Iwasawa cocycle. We obtain an equivariant and commutative
diagram with the Hopf coordinates.

Proposition 3.10. Let s be a compact valued, differentiable cross-section of G — F, then H,
extends the Hopf coordinates restricted to GsM i.e. the following diagram is commutative.

G, FP 5 AM 3 (¢,€; 2),

. |

G/MH}-@) X a> (f,g; 1ong)

Moreover, it is equivariant with the left action of G, i.e. for all £ € Fs, for all g € G and all
compact valued section s’ such that g€ € Fy, the element

9(&.€5 2)s = (96,985 By s(9,)2)s
projects in G/M to
9(&,€5 logaa) = (g€, g€ 5 0(g,€) +logza).

Similarly, it is equivariant with the right action of A i.e. for all (£,€; ) € ]-'5(2) x AM and all
0 € a\ {0}, the element

J)é(gvga x)s = (f,é; meté)s
projects to

P56, € logwa) = (6,€; logwa +0).

The proof in §7 of the main mixing Theorem of this paper, relies on key results (Cf.
Proposition below) of the joint work [DG20] on mixing of regular Weyl chamber flow on
I'\G/M. These results provide the arguments in F(?) x A. By constructing local extensions of
Hopf coordinates, we provide a first technical background step in the construction of the invariant
sets and in the proof of mixing.
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Proof. Recall that the lower part of the diagram reads as gM +— (gno, 970 ; o(g,m0)). The
upper part reads as g — (gno, 970 ; ©)s where x is the component in M A given by the Iwasawa
decomposition of s(gny)~!g. Commutativity of the diagram then follows from the hypothesis
s(Fs) C K and the Deﬁnitionof the Iwasawa cocycle exp(a(g,n0)) = az(g9) = az(s(gno) tg).

Let us check the left G-equivariance. Let s and s’ be compact valued differentiable cross-
sections. By Proposition the left G-action that sends elements of G to Gy is given in
the AM-coordinate by the cocycle S, 5. Since s and s’ take value in K, the maps H, and H
are local extensions of the Hopf coordinates where the left G-action is given in the a-coordinate
by the Iwasawa cocycle. Hence the equivariance.

The last part follows from the commutativity of the diagram and Proposition that
describes how to read in coordinates the right multiplication by elements of AM. O

3.5. Local coordinates of K. We prove that every differentiable compact valued cross-section
of G — F also induces local coordinates of K that take value in F x M. We read the map k7 in
those coordinates.

By endowing K with the left G-action defined for every g € G and k € K by g.k = kz(gk),
we make the projection G-equivariant.

Proposition 3.11. Let s be a differentiable compact valued cross-section of G — F. Then the
restriction to the first and last coordinates of Hs provide local coordinates of K as follows.

Fs X M — s(Fs)M C K
(&5 ¢)s > s(§)e
Furthermore, the map kz : G — K reads in coordinates as
FPO x AM — Fo x M
(6,65 @)s — (&5 zar)s

and for every covering family of compact valued cross-sections (s;)ic; of G — F, the M-
coordinate of the cocycles (Bs, s, )i jer parametrize the left G action on K.

In §5, we use the Proposition above to rewrite in local coordinates the results of Guivarc’h—
Raugi [GRO7] on the action of T" on K. The relations of these coordinates with the extended
Hopf coordinates of G allow us to construct the invariant sets in I'\G for the dynamics of the
nonnegative diagonal flows. Proposition [5.12]is a direct consequence of the properties of the
extended Hopf coordinates and of the results of Guivarc’h-Raugi.

Proof. The map k — kng allows to identify F with K/M. Consequently, every compact valued
differential cross-section induces a local trivialization.

Let s be a compact valued differential cross-section of G — F. Then s(Fs)M C K. Co-
ordinates in .7-'3(2) x AM are the same as unique decompositions in s(Fs)N AM where the N part
is associated to the second coordinate in F and the AM part the last coordinate. Since AM
normalises N and M commutes with A, the compact part of the Iwasawa decomposition K AN
of every element in s(F;)NAM is given by the product of its elements in s(Fs) and M. Hence,

the following diagram

¢ X% k M rF
g = kz(9) — gno
reads in local B, coordinates as

FO%xAM — F,xM — F,
&85 2)s — (&5 2Mm)s — &
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Let (s;)icr be a family of covering differentiable cross-sections of K — F. That the left G action
in K reads as the projection in M of the cocycles (/BS¢,Sj)Z- jer DOW follows from the equivariance
of the second diagram in local coordinates. O

3.6. Bruhat-Hopf coordinates. We define two (covering) families of cross-sections of G — F
defined on maximal Bruhat cells of F: wunipotent and compact Bruhat sections. We define
Bruhat-Hopf coordinates as the extensions of Hopf coordinates on maximal Bruhat cells of G
(Cf. Proposition . In Proposition we prove that every unipotent (resp. compact)
Bruhat section is parametrized by a point of F and an element in AM (resp. M).

By Corollary of Bruhat decomposition, the map

N~ — N7no = b(70)
U — ung

is a diffeomorphism. Denote by [e] its inverse.

Definition 3.12. A unipotent Bruhat section is a left translate by G of the map [e]. We denote
them by [h] := h-[e] where h € G. For every h € G, the unipotent Bruhat section [h] has domain
hN~ng = b(hi)g), codomain hN~ and is defined for all § € b(h7jy) by

[P(€) = hle](h™"¢).

A compact Bruhat section is the compact component in the K AN decomposition of a unipotent
Bruhat section, meaning that for every h € G, the associated compact Bruhat section is defined
by kz o [h].

Bruhat-Hopf coordinates (resp. Bruhat coordinates) are the families of coordinates of G given
by covering families of compact (resp. unipotent) Bruhat sections.

The relations between Bruhat coordinates and Bruhat-Hopf coordinates play an important
role in the estimates of the elliptic part of products of loxodromic elements of §4 as well as in the
proofs of decorrelation in §6. In the rest of the section, we lighten the notations for unipotent
and compact Bruhat sections.

For every h € G, the unipotent Bruhat section [h] and the compact Bruhat section kz o [h]
share the same domain: the maximal Bruhat cell b(h7)y) opposite to hijy. Using compactness of
F, one can choose finite families of covering Bruhat sections of any type.

For every £ € F, we pick a compact element h¢ € K such that hgjo = €. The choice of
this compact family (hé)ée £ C K determines a covering family of unipotent Bruhat sections.
Abusing notation, we denote each of them by

(€] == [he]-

Likewise, we determine a choice of compact Bruhat section for every domain b(f) where £ € F.
We denote them by

k() == kz o [¢].

Remark 3.13. The Proposition below implies that for any h € G such that hijy = £, there is a

unique element x, € AM such that [h] = [£].z.. ) .
Similarly, any compact Bruhat section s is determined by its domain b(§) with £ € F and an

element c € M such that s = k().c.
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Recall that kz_ (resp. az_) denotes the coordinate in K (resp. A) in the Iwasawa decom-
position G = KAN~ and that for every cross-sections s,s’ of G — F, for all £ € F, N Fy, we
defined 7 o (§) as the unique element in AM such that

s'(§) € s(ON Tos0(6)-

We compute the transition functions for particular cases of unipotent Bruhat sections.

Proposition 3.14. The following holds.

(1) For every u, € N, then [u,] = [e] i.e.

Tel[u.] = €AM-
(2) For every x, € AM and u, € N—, then [z.ui] = [e].xx = [usz,] i.e.
el fweu] = Tx = Te] [unw.]-
(3) For every h € G, then [h] = [kz—(h)].az_(h) i.e.
Tz (w1, 1n) = az-(h).

Proof. Note that for every h € N~ AM, because hijg = 7jo, then F,; = Fje) = b(j0).

Let us prove (1) i.e. that for all u, € N~ and £ € Fj,; then [u.](§) € [e](§)N. Since
[u](€) = u[e](u;€) for every & € b(1j), then by Definition @ of [e], we deduce that [u.] takes
value in N~. Hence [¢](€) " [u.](€) € N~. Furthermore, using that [e] and [u,] are cross-sections
of G — F, we deduce [e](€) " [u.](€) € N~ N MAN. Therefore, by uniqueness of the Bruhat
decomposition [e](§) ™ u.](€) = eq and T (u,] = €am-

For statement (2), for all (u,,z.) € N~ xAM and § € Fi, then [z,u,](§) = z.u.le](u; 'z 1E).
Using that AM normalizes N, we deduce that the map & — [r,u.](&)z; ! is a differentiable
cross-section of G — F taking value in N~ and of domain b(7j). Hence, by uniqueness of
the Bruhat decomposition in N~ NAM, we deduce that y[ -1 = ean. Now we apply
Proposition [3.6] (ii) on transition functions to deduce that

= ez ]

el, [z us].x

eAM:Z 1.

el [zaus].zrt Tuta ]y [Tats] 2y

Then point (iv) of the same Proposition yields 9[ ~1 =z, !, hence

T s |, [Tr s ] T
'ﬁ[.e],[m*u*]m*_l = €AM-

For the second part of the equality, note that [u.z.] = [z«(z; 'u.x.)]. Since AM normalizes N,
the conjugated term is in N~ and the rest follows from the previous point.

For statement (3), we write the KAN~ decomposition h = kz_(h)az_(h)uz_(h). Then by
properties of the left action of G on [e], we deduce that

h-fe] = kz_(h) - laz_(R)uz_(B))
Hence by statement (2), we deduce [h] = [kz—(h)].az—(h). O

4. PRODUCTS OF LOXODROMIC ELEMENTS

Recall that an element of G is unipotent (resp. elliptic, hyperbolic) if it is conjugated to an
element in N (resp. K, A). By semisimplicity of the Lie group, every element g € G admits a
unique decomposition g = g.gng., called the Jordan decomposition, where g., g, and g,, commute
and g, (resp. gn, gu) is called the elliptic part (vesp. hyperbolic part, unipotent part) of g.

Definition 4.1. For any element g € G, there is a unique element \(g) € a™ such that the
hyperbolic part of g is conjugated to exp(A(g)) € A*. The map X : G — a* is called the Jordan
projection.
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An element g € G is lozodromic if A\(g) € a*T. Denote by G (resp. T''°) the subset
of loxodromic elements of G (resp. I'). Since any element of N that commutes with AT is
trivial, the unipotent part of loxodromic elements is trivial. Furthermore, the only elements of
K that commute with AT are in M. We deduce that the elliptic part of loxodromic elements
is conjugated to elements in M. Therefore, g is loxodromic if and only if there exists h € G such
that h='gh € MA*TT,

Hence, for every loxodromic element g € G, there exists hy € G and m(g) € M so that we
can write g = hgm(g)eA(g)hg_l. However, for every m € M we can also write

g = (hgm)(m~"m(g)m)e*? (hgm)~".

Which means that the angular part m(g) is only well defined up to conjugacy by M. We thus
use specific cross-sections of G — G/AM, to study the elliptic part of products of loxodromic
elements.

For every loxodromic element g € G, denote by g™ := hny and g~ := hny. The Iwasawa
cocycle of g on gV is equal to its Jordan projection (see for instance [DG20), Fact 2.6])

a(9,9") = Mg)-
In §4.1, by using differential cross-sections of G — F that factor the projection G — G/AM, we
extend locally and to loxodromic elements the previous formula.

In §4.2, we recall the dynamical properties of the left action of loxodromic elements on the
Furstenberg boundary. This leads us to another definition of (r, £)-loxodromic elements, where r
is a positive number that measures the distance between the attracting point of the loxodromic
element and the boundary of its basin of attraction and € measures how contracting it is. Using
the Bruhat sections of G — F, we give another proof that every loxodromic element, iterated
enough times, will become (r, €)-loxodromic.

In §4.3, we compute for every loxodromic element, the signed cocycle given by the unipotent
Bruhat section supported on the basin of attraction and on each point of the basin. Benoist in
[Ben00] gave estimates for the Jordan projection of products of loxodromic elements involving
the Jordan projection of each term and some explicit error term maps. We improve those error
term maps into so-called Ratio maps that take value in AM and obtain an exact formula in
Proposition |4.9

We define in §4.4 a family of equicontinuity constants §,.. for compact Bruhat sections. We
claim the construction can be adapted for any family of covering K-valued cross-sections of
G — F of the same type.

In the last paragraph, we estimate simultaneously the elliptic and hyperbolic part of products
of generic loxodromic elements in Proposition [£.12] extending the estimates of Benoist to the
elliptic part. The proof is based on a Ping-Pong argument.

4.1. Extended Jordan projections for loxodromic elements. For every loxodromic ele-
ment g € G, denote by g* := hny and g~ := hng. Let us define a multiplicative and local
extension to M AT of the Jordan projection of loxodromic elements.

Definition 4.2. Let s be a differentiable cross-section of G — F. For every loxodromic element
g € G such that g* € F, we denote by

Zi(g) = Bs(g,97).

For compact or unipotent Bruhat sections, such a map is called a signed Jordan projection (for
lozodromic elements).

Fact 4.3. Fiz a family of unipotent Bruhat sections denoted by ([¢])ecF of respective domains
b(§). Let g € G be a lozodromic element. The following holds.
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(1) For every h € G such that h~'gh € MA™, we have Z;(g) = h™'gh.
(2) Denote by hy the element of Bruhat coordinates (97,97 ; eanr)(g-]-

%g—](g) = -=g[h_q](g) = hglghgr
Let s be a cross-section of G — F such that g* € F,. Then

(3) Zs(g) = ng],s(g-&-)ﬂ iﬂ[g—](g) e?[gfLs(g"‘),
(4) Zi(g) € M @),

Proof. (1) By Definition of the cocycle, Bj)(g,9™) is the unique element in AM such that

glhl(g™) € [h)(g7) B (9,97 )N.

By Definition of the unipotent Bruhat section, [h](g7) = hle](h~1g™). Since gt = hnp, we
deduce that [h](g") = hle](no) = h. We rewrite the inclusion, with the definition of the extended
Jordan projection B (g,97) = L) (9)

gh € hZ(g)N.
Since h™'gh € MA™", we deduce that %;(g) € MATT and the N-coordinate is trivial, i.e.
gh = hZp(9).

(2) The unipotent Bruhat section [¢g~] shares the same domain as [h]. By Remark [3.13] these
cross-sections are defined only up to their domain and by right multiplication by an element in
AM. Since h, the unique element in hM A of Bruhat coordinates (g1, g™ ; eaM)[g-], then

9(9% 97 5 eam)g-1 =097 5 Big-1(9,97))1g-1-
Using properties of the right translation by AM in Bruhat coordinates, we deduce that
ghg = hgc%g*](g)'

(3) Follows first from the identity of Fact between transition functions and cocycle. Then
using that g™ is a fixed point for the action of g on F, we apply Proposition (i) on .7 -1 (g7).
(4) Follows from (3) because we are conjugating by an element in AM. O

4.2. Dynamical action on the Furstenberg boundary. We study the left action of loxo-
dromic elements on the Furstenberg boundary. We give an alternative proof that the basin of
attraction is the Bruhat cell opposite to the repelling point. This leads to a Definition [.5] of
(r, e)-loxodromic elements using the K-invariant distance on F. We give another proof that large
iterates of loxodromic element are (r,¢)-loxodromic.

Proposition 4.4. Let g € G be a lozodromic element.
Then gT is an attracting point for the action of g on the Furstenberg boundary. Furthermore,
the basin of attraction of g is b(g™), the Bruhat cell opposite to its repelling point.

The classical proof uses the fundamental representations of G introduced Tits (cf. [Sam1d4]
Corollary 3.12]) and involves the notion of simultaneaous proximality in those representations (
cf. [Ben97b]). We only rely here on Bruhat decomposition and the convergence ().

Proof. Let us first assume that g € MATT. Then gt = g and g~ = 7jp and we are going to
prove that its basin of attraction is b(j).

Since M A normalizes N~ , we deduce that g stabilizes the Bruhat cell b(7)p). Indeed, for every
Uy € N7, then gu.no = gu.g 'n9 € N~ 1n9. Furthermore for any u, € N—, then ¢"u,g™" — eg
when n — +oo. This implies that b(7)g) is in the bassin of attraction of 7.

Conversely, let £ € F be in the basin of attraction of 7y. Choose for every element in the Weyl
group w € W a representative k,, € N (A) and recall that k, € Nx(A) denotes an element such
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that N~ = k, Nk, '. Apply Bruhat decomposition G = k, U, ew Bk, B where B = M AN. Then
there exists u, € N~ and k,, € Nk (A) such that & = u.ky,no. Now ¢"& = g"u.g™" (¢"kwno)-
Since ¢ is in the basin of attraction and ¢g™u.g™" converges to eg, we deduce that g"k,n9 — no.
Using that k,, normalizes M A, we deduce that g"k,no = kuy (k;lgnkw)no = kyno- The sequence
is stationary at k.9, by uniqueness of the limit k,,ny = n9. Hence k,, € M and £ € N~ nq.

In the general case, let g € G be a loxodromic element. Consider the unique element hy, € G
given by Fact 3] such that

hy'ghy = L-1(9) € MATT.

Hence, the attracting point of g is hyno = g™ and its basin of attraction is hyb(i) = b(¢g™). O

We give a definition of (r,e)-loxodromic elements which is slightly different from what the
reader may find in [Ben97b] or [Ben00] because it does not use the notion of simultaneous
proximality in the fundamental representations of G given by Tits. However, using our choice of
distance on F and the intrinsic characterization of the basin of attraction of loxodromic elements,
one can check that both definitions are equivalent.

For all € > 0, all £ € F, we set the following notation.

V.(0b(€))" := {¢ € F | d(€,0b(€)) > e}

Definition 4.5. Let r > 0 be a positive number and ¢ € (0,r]. An element g € G is (r,¢)-
loxodromic if it satisfies the following conditions.

(i) The element g is lozodromic and r < $d(g™,db(g7)).
(ii) It maps the compact set V-(9b(g™))¢ into the ball B(g™,¢).
(iii) The restriction of g to Ve(8b(g™)) is an e-Lipschitz map.

These remarks follow from the previous definition.

1) If an element is (r,€)-loxodromic, then it is (7, )-loxodromic for every e < ¢/ < r.

2) If an element is (r,e)-loxodromic, then it is (r,’)-loxodromic for every r > € > e.

3) If g is is (r,e)-loxodromic, then ¢g” is also is (r,&)-loxodromic for every n > 1.
Note that loxodromic elements that are not sufficiently contracting, for instance those too close
to eq, will never satisfy the second condition for being (r, £)-loxodromic. However, we give below
another proof that every loxodromic element, iterated a large enough amount of times will be
(r, e)-loxodromic.

Proposition 4.6. Let g € G be a lozodromic element.
Then for all positive number r < d(g*,0b(g7)) and all ¢ € (0,r], there exists an integer
Ny > 1 such that for alln > N, ., the element g™ is (r,e)-lozodromic.

The Proposition above is used in the Ping-Pong arguments of §6.3 : in the proofs of decorrel-
ation.

Proof. Let g € G be a loxodromic element and fix » < £d(g*",db(g7)) and € € (0,7]. By choice
of these parameters, condition (i) holds.

Note that V.(8b(g7))C is a compact subset of b(g~), which by Proposition is the basin
of attraction of g*. Hence {gnvg(ﬁb(g’))c}nzl is a sequence of compact sets in the basin of
attraction shrinking towards g*. Consequently, condition (ii) holds for every n > N sufficiently
large.

Let us now prove that there exists an integer N, . such that for every n > N, . the restriction
of g" to V.(db(g™))® is an e-Lipschitz map. By Fact [4.3) we consider the element h, € G such
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that h;lghg = Z4-1(g)- Using that AM normalises N~, we express the action of g on b(g™) in
the unipotent charts [g~](b(¢™)) = hg N~ by

c(g) :hyN= —> hgN™
hgtis — hg(Lg-)(9)uxLig-1(9) ).

The chosen metric on F is induced by the identification K/M ~ F. Furthermore, the compact
Bruhat section k(g~) : b(¢g™) — K defined by kz o [¢g7] is a differentiable chart of b(g™).
Therefore, any upper bound of the differential of the map

k(g™ )(b(g™)) — k(g™ )(b(g7))
kz(hgu.) — kz o c(g)(hgus).

restricted to k(g™ )(V-(db(g~))) provides a Lipschitz constant for the map
Ve(0b(g7)° — b(g7)
& — g€

Set Cr.c == SUP,_c(g-1B(g+e) 1Du Kzl SUDy, -1y, (ab(g- )8 1 Du. ozl

At every point, the eigenvalues of the differential of ¢(g) are ~{e*‘)‘(’\(g))}aez+ where ¥ is the
set of positive roots. Denote by ¢, := min,cx+ a(A(g)). Since g is loxodromic, ¢, is a positive
number and we obtain the uniform exponential decay of the differential of ¢(g) i.e. for every
n>1,

sup || Dy, c(g")]| < e
u*eth*

By hypothesis on 7 and ¢, we deduce that B(g",£) C V.(0b(g™))¢. Let n > Ny. Then by choice
of ¢, and C, ., we deduce that Cme*"gg is a Lipschitz constant for the action of g™ restricted
to this compact subset of the basin of attraction. Since this sequence decays exponentially fast,
there exists N, . > Ny such that for every n > N, ., then CT,Ee_”ég < ¢ and condition (iii) is
satisfied. a

4.3. Cocycle on the basin of attraction. Let g be a loxodromic element. We prove in
Lemma that the cocycle in Bruhat coordinates (3|4-), applied to g and every point £ in b(g™)
is everywhere equal to the signed Jordan projection #7,-1(g). Then we define the so-called ratio
maps which allow us to write in Proposition [4.9] the relation between the signed cocycle of g on
every point £ in its basin of attraction and any local signed Jordan projection of g, provided that
it is well defined.

Lemma 4.7. For all loxodromic element g € G, alln > 1 and every £ € b(g™),
6[9‘] (gnv 5) = %g_] (g)n

We give a different proof from Lee-Oh [LO20], using Bruhat coordinates.

Proof. Denote by hy the element of G of Bruhat coordinates (g7, ¢~ ; ean)[g-1- By Fact We
deduce that gh, = hy,%1,-1(9)-
By property of the unipotent Bruhat section, for every £ € b(g~) = hyN 19, there exists a
unique ue € N~ such that & = hyueno and hyue reads in Bruhat coordinates as (£, 97 ; ean)ig-]-
On one hand, by definition of the cocycle and because b(g™) is the basin of attraction of g™,
for all n > 1, the element g"hyue reads as

g"(&,97 5 eam)g-1 = (9", 97 5 Big-1(9"8) g1
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Note that Bjy-)(g9", &) is the unique element in AM such that g"hyue € hg N~ B4-1(g", &) N. That
the second coordinate remains equal to g~ means that the part in NV is trivial.
On the other hand, using the definition of the signed Jordan projection,

9" hguig = hgLg-1(9)"ue = hg(Llg1(9)" e L1y~ (9) ") Lo (9)"-
Since AM normalizes N—, we deduce that Zj,-1(g)"ueZ,-1(9)"" € N, hence
9" hgue € hyN™=Z14-1(9)"

This allows us to deduce by uniqueness of the Bruhat decomposition in hyN~MAN that
Big-1(9", &) = Lig-1(9)"- O

Definition 4.8. Given two cross-sections s1, sy and a Bruhat cell b(€), then for all &, € F,,Nb(E)

and & € Fs, Nb(&) we define the ratio
R0 (E:€1,60) = T, 19(61) Tg o, (E2)-

When s1 = s, we shorten the notation %s, ‘= Xs, s,. For every loxodromic element g € G
such that g* € Fs, Nb(g™), for all £ € Fs, Nb(g™), set

%51752 (975) = %51,52 (gi;g+>§)‘

The regularity of the ratio map depends on the regulatity of the transfer maps which in turn
depend on that of the cross-sections. Because the transition functions between the unipotent
and compact Bruhat sections take value in AM, for any compact Bruhat sections s1, s, the ratio
map s, s, is continuous on its domain and takes value in AM.

Using the ratio map, the following statement follows from Lemma [4.7]

Proposition 4.9. For all lozodromic element g € G'°%, all integer n > 1 and & € b(g™), for any
choice of compact (Bruhat) sections so, 1,52 such that (§,g7, g"¢) € Fsy X Fs; X Fey,

(5) ﬁsz,so (gn’ 5) = '@51,52 (ga gng)iljsl (g)n%sl,so (ga g)

Proof. Using first the transition functions between sq, sg and [¢g~], then applying Lemma on
the middle term and finally using the transition function between [¢g~] and s in the middle term,
we get

Bsz,so(gnvg) = Zz,[g*](gng) 5[9*](.9”’6) %g*],so(g)
= T ig-10"8)  Lg1(9")  Tlg-1.50 ()
= Tas19-109") Tig-1,. (07) L1 (9") T 19-1(97) Tig=1,50 (€)-

Finally, using Definition and the properties of the transition functions, we check that
zg,[g*](gng)zg*],sl (g+) = ‘%81752 (g;gng)—l and zl,[g*](g+)<9[g*],so (5) = ‘@51750 (g; f) O

4.4. Equicontinuity constants. The first term on the left side of the equation , will converge
towards Zs, s,(9;97)"! = ean as n goes to infinity. Therefore, when n is large enough, the
signed cocycle B, s,(g™, &) is well approximated by %, (9)"%s, s,(g;€). In the next paragraph
§4.4, we define a suitable distance on AM and the so-called equicontinuity constants §, . that
control this approximation for (r,¢)-loxodromic elements.

After constructing a distance of AM, that is symmetric and left and right invariant, we
introduce for every r > 0 and ¢ € F, a family (5T75(§))Ee(07,.} of equicontinuity constants of a
continuous fonction defined over a compact set. These constants are thus positive and converge
to zero when ¢ goes to zero. Furthermore, using the K-invariance of the distance on F and the
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action of K on the compact and unipotent Bruhat sections, we show that these constants do not
depend on the choice of £ € F.

Let us now choose a distance on AM which is left and right AM invariant i.e. for every
x,y,z,w € AM, then dan (wxz, wyz) = dan(z,y). The maximal R-split torus A is an abelian
group of finite dimension so any norm on its Lie algebra a will induce by the exponential map a
suitable distance on A. Since M is the centralizer of A in K, it is sufficient to construct an M
invariant distance between arc connected points and setting an infinite distance otherwise. We
will then endow AM with the distance d s induced by the product group structure A x M.

Now we construct an M-invariant norm on the Lie algebra of M. Starting from an euclidean
norm on m, we make it Ad(M)-invariant by taking its average with respect to the Haar measure
on M. Since M is compact, its Haar measure is finite. Therefore, the average is an Ad(M)-
invariant norm on m. It induces an Ad(M)-invariant scalar product on T,,, M. By transporting
it on the tangent space over every point by left multiplication by M we obtain a left invariant
metric. The induced riemannian distance on M is only defined between arc connected points
and is, by construction, left M-invariant and invariant by conjugation. This suffices to deduce
the M-invariance of such a distance.

Recall that for every £ € F, then [f] denotes a choice of unipotent Bruhat section of domain
b(€) and k(€) := kg o [€] is the associated compact Bruhat section. Therefore k(F) denotes the
family of such compact Bruhat sections.

Proposition 4.10. Let r > 0. Consider the compact, symmetric and invariant by conjugacy by
K subset

Ky :={h € K [hV,(9b(ijo)) C Var(0b(i]0))}-
For every £ € F, denote by

6re(€) = sup {dAM(e@s(g; &1,8),eam) | &1 € V3r(5b(§:))c and & € B(§175)}~

seK,-k(g)
Then the following holds.

(a) For every r > 0 and every € € (0,r], the constant 6, (7o) is non-zero and

5r,s (ﬁO) — 0.

e—0

(b) For every £ € F, the equality holds 5, (i) = 6,.-(£).
Proof. First, by M-invariance of the distance we deduce that

dan(Zs(€ 5 &1,6),eam) = dam (T, 14(&1) , T, 1g(62))-

(a) Because the Bruhat sections and the Iwasawa decomposition are differentiable, by Defini-
tion of the transition maps, the map

Ky x Vo, (0b(ii))® — AM
(C, f) — ‘%-k(ﬁo)’[ﬁo] (5)

is continuous. It is defined over a compact set and using the Definition [£.§ of the ratio map,
we notice that d, (7)) is for every € > 0 bounded above by the equicontinuity constant of this
map and bounded below by the equicontinuity constants for the restriction to K. x Vgr(ab(ﬁo))c.
Hence the positivity and convergence to zero.
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(b) Let I € K such that € = I}y and k(€) =1 - k(ijo). Since 1Va,.(Ob(j))E = Vo, (0b(€))E, note

that 6, (&) is associated to the continuous map
K, X Vo, (0b(i7))® — AM
(€,€) 7= Tat-ktio).1-lo] (16)-

Recall that the transition function is the unique element in AM such that

(cl - k(170)) (1) € (I~ [170]) (1) N Tet-(i) 1- 701 (1€)-

By first applying the definition of the translation [ - s(1£) = Is(£), then multiplying by /=1 on the
left, we obtain

(17101 <k (110)) (€) € [0) ()N Tt 1-[170] (1) -
Therefore T (7o) .1-170] (1§) = Ti-1c1-k(70),[70] () Since K. is invariant by conjugation, in partic-
ular {7'K,l = K,. The continuous maps associated to 57«75(5) and 0, (o) coincide, hence the
constants are equal. O

Definition 4.11. Let r > 0. We define the family of equicontinuity constants
Or 1= sup sup {dAM(%’s(f; £1,6),ean) | €1 € Vs (0b(€))E and & € B(fhf)}-

E€F  s€K,-Kk(€)

4.5. Estimates for products of generic loxodromic elements. Let gi,...,q; € G!°F be
loxodromic elements. Taking the convention that go = g;, we say the (ordered) family is generic
if gj'_l, g; are transverse for every 1 <4 <[ or in other words gj'_l € b(g; ). The statement below
gives new information on the elliptic part of a product of generic very contracting loxodromic
elements. However, because the elliptic part of loxodromic elements is well defined only up to
conjugation and M is not abelian in general, we need to specify the choice of diagonalisation of
each loxodromic element via a family of cross-sections s;.

Proposition 4.12. Let r > 0 and € € (0,7], let g1,...,q1 € G be a generic family of (r,¢)-
loxodromic elements such that
*r< %d({gf_l,g;r},ab(g;)) for all 1 < i < with the convention gy = g;.
Fiz a choice of compact Bruhat sections (s;)o<i<i such that
*x Fo, D Vr(9b(g;))C for every 1 <i <1 and F., D V-(db(g7))C.
Then for all & € V-(9b(g7))C and for all integers ny,...,n; > 1,

le,so (g?l“-g?lag()) S gsl (glnl)%sz,sl_1(gl»g;_l)mgsl (g?l)%sl,so (91750)B(€AM7 (2l - ]-)57",6)'

ny

Furthermore, g"...g7" is (2r,2¢)-lozodromic with attracting (resp. repelling) point in B(g;",e)
(resp. B(gy ,€)) and its extended Jordan projection satisfies

zel (glm ---g?l) € Zel (glm )’@5178171 (gla gl+_1)~-~$91 (9?1 )%sl,sl (gl , g?_)B(eAMv 2l6r,s)-

Benoist in [Ben0(, Lemma 3.6] gave a proof that ;" ...g{"" is (2r, 2¢)-loxodromic with attracting
(resp. repelling) point in B(g;",¢) (resp. B(g; ,¢)). Using the fundamental representations of G
given by Tits and simultaneous proximality of loxodromic elements, he defined some error terms
v(g;,€) € a, equicontinuity constants ¢, . and proved the following estimate

HMg?l...gm =Y (i) + u(gi,gr_mH < s,

1<i<l
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The statement in the above Proposition is multiplicative, taking value in AM, replacing \ with
the signed Jordan projections .Z;, and v with the ratio maps %, s, ,. It gives information on
both the elliptic and hyperbolic part of product of generic loxodromic elements.

Finally, this Proposition is an important component in the proofs of §6 for decorrelation.

Proof. Let us prove the estimate for the signed cocycle, the extended Jordan projection’s estimate
will follow from the Definition[4.2) that for every loxodromic element g and a suitable cross-section
s such that g7 € F,, then %Z,(g) = Bs(g,97).

For all 1 <j <1, we set & := g}”...g?lﬁo. At each step starting from j = 1, the element g;

is (r,¢)-loxodromic and &_; € Ve(9b(g;))® N F,,_,. Hence & = g7’&_1 € B(g/,e), which by
choice of s; and r < %d(g;', db(g; )UIb(g;,,)) is inside Vr(ab(g;+1))c ﬂVr(ab(gj_))G C Fs,;. We
deduce, by induction, that &; € B(g;',s) C Fs, forevery 1 <j <1
By the cocycle relation and recognizing £; for every 1 < j <1 -1,
Bitso (191" €0) = Borsiza (91 9127 91 60) Bsiv,s0 (911" 91"+ €0)
= le,sl_l (glnl 9 glfl) Bs,_l,so (gzl_lEl g{Ll 9 50)
= 68178171 (glm ) fl—l) e 55]'75]'—1 (g;lj ) fj—l) e 651780 (9?1’50)'
We will first prove that the first term on the right hand side is in a 26, . neighbourhood
of L (/" )%s,s,, (91 ; g;~,). It will then follow by induction that every term of the form
65j,5j—1(g;l.7,§j71) where 2 < j < [ is 20, . close to .Z, (g}”)%’si’sfl(gj ; gj_l). Finally, we
prove that the last term is in a d, . neighbourhood of %5, (97" )%s, s, (91; &0)-
Let us apply Proposition then replace g;"' &1 with &

ﬂsl,sl71(g[ma£l—l) == %Sl (gl ) glnlgl—l)71 fsl(gl)m %Sl,sl—l(gl ) gl—l)
=R (913 &) Loy (9)™ Ry i1 (915 &-1).

By Definition of the ratio Zs, (g1 ; &)~ = %, (9, ; 9,&)~". Since & € B(g;",¢) and by
choice of r < £d(g;t, db(g; ")), we deduce by Definition of 6, that Zs, (g1 ; &) € Blean,dr.c)-
The first term is small, it remains to show that the third term is close to %s, s, ,(9; 19,9, 1)-
By definition of the ratio map,

Rsysi2 (97390 6-1) = Ty (91) Tiasis (&-1)
= 95,,[;”](9?) y[hl],sl,l(gltﬁ
T i) 97 1) Ty (G-1)
=R (9390,951)  Roisa (95920, &-1)-
Hence, the cocycle can be written as follows,
Borsi 1 (91" &1-1) = B (g1 &) Lo (@)™ Rorsi (915 91) Ror (97597715 6-1)-

Finally, by choice of r < %d(g;r_l, 0b(g, )) and by Definition of 4, ., the third term is small i.e.
s, (9739 1,&-1) € B(eam,6rc). Given that the distance in AM is symmetric and invariant
by conjugation, we deduce that

Borsioi (97 61-1) € Loy (90)™ Rsysi_r (915 91-1) Bleans, 26r.c).
By induction, for every 2 < j <1
Bssuss (957 65-1) € Lo, (95)" Rsys;-4(95 5 95-1) Bleans, 26,.c).
Now for Bs, s, (97" &0), by Proposition and by replacing g7''&o with &
Borso (9175 60) = s, (913 97 €0) ™" Loy (91)™ Ky 51 (915 &0)-
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Similarly, by choice of r and by definition of 4, ., we deduce that

551780 (9?1750) € iﬂsl (gl)nl %sl,sl (gl ; 50) B(eAMa 6?",6)-
Hence,

551,80 (glnlmg?lagO) S gsl (glnl)%sl,sl71(gl»gi_l)mgsl (g?l)%sl,so (glvfo)B(eAJWv (21 - 1)57",5)'

Finally, for the extended Jordan projection, we apply the cocycle estimate for the attracting
ny

point gt of g/"...g7" with cross-section sg = s;. By [Ben00, Lemma 3.6], it is in B(g;", ¢), there-
fore by choice of r < £d(g;", db(gy)), we deduce that Zs, s, (91, 97) € Xs, 5,(91,9; ) Bleans, r.c).

Hence .Z;, (g, ...91") € 2, (glm)%s“m_l(glaglJr—l)"'gm(g?l)%slm (glvglJr)B(eAMa 2l6re). O
Definition 4.13. Let 0 < e <r. A semigroup I' C G is strongly (r,e)-Schottky if

(i) every element is (r,€)-loxodromic,
(ii) d(h™,0b(h' 7)) > 6r for all h,h' €T.
We also write that I" is a strong (r,e)-Schottky semigroup.

5. INVARIANT SETS

’ In this section, I' < G is a Zariski dense subsemigroup of G. ‘

In the first paragraph, following [DG20], we construct the non-wandering set Q& C T\G/M
for regular Weyl chamber flows. We notice that it is the smallest closed A-invariant subset of
I'\G/M containing all the periodic orbits of the flows qbg\(rm).

Denote by §~2G the preimage of € via the projection G — I'\G/M. Such a subset is closed,
left T-invariant and right AM-invariant. Denote by My the connected component of the identity
of M. In the second paragraph, following Guivarc’h-Raugi [GRO7]|, we introduce the sign group
Mr, a normal subgroup of finite index of M containing M. One can find another construction
of the sign group in [Ben05].

Finally, using Guivarc’h—Raugi’s classification of I'-invariant subsets of K (cf. Theorem [5.9)
we construct a partition of left I'-invariant right AMrp-invariant subsets of §~Zg. We prove in Pro-
position [5.12] that the topological dynamics of diagonal flows on these subsets are all conjugated.

5.1. In the space of Weyl chamber.

Definition 5.1. A point n € F is a limit point if there exists a sequence (Vn)n>1 in T such that
((%)*Haarf)n>1 converges weakly towards the Dirac measure in 1.

The limit set of I', denoted by L, (T), is the set of limit points of T. It is a closed, T'-invariant
subset of F.

Denote by L_(T) the limit set of T~' and finally let L(®)(T') = (L+(F) x L_ (F)) NFA.

Note that when I is a subgroup, then L, (T) = L_(T') and L®)(I') is the subset of pair of
points of L, (T') in general position. For the hyperbolic plane, we get the product of the usual
limit set minus the diagonal.

By [Ben97b] Lemma 3.6, the set of pairs of attracting and repelling points of loxodromic
elements of T is dense in L (I') x L_(T"). Therefore, using Hopf coordinates and the construction
of attracting and repelling points of loxodromic elements, L(*)(T") identifies with smallest closed
I-invariant subset of G/AM containing

{hWAM | 3y € T'°% such that hy 'yh, € MA++}.

Theorem 5.2 (Theorem 4.5 [DG20]). The (diagonal) action of T on L*)(T) is topologically
transitive, i.e. there are dense I'-orbits.
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The transitivity, along with the background work on Bruhat-Hopf coordinates, is one of the
main arguments in the proof of the main mixing Theorem [7.1]in §7.

Definition 5.3. We denote by Q the subset of non-wandering Weyl chambers, defined through
the Hopf parametrization by:

Q:=H"YLP() x a).
This is a T-invariant and right A-invariant subset of G/M. When T is a subgroup, we denote
by Q :=T\Q the quotient space.
By Theorem the quotient 2 is the smallest closed A-invariant subset of I'\G/M containing
the following subset
{¢D§(7)(hA,M) | v €T and h>'yh, € MA++}.

Note that in rank one, the above set is the reunion of all periodic orbits for the geodesic flow.

5.2. The sign subgroup. Denote by M := M/[M, M] the abelianisation of the compact
group M and by m,, : M — M® the projection. Abusing notations, 7., also denotes the
projection AM — AM.

Fact 5.4. For all cross-sections s and s’ the projection into AM® of the signed translation maps
Y and Ly coincide on the intersection of their domains i.e. for every loxodromic element g € G
such that g* € Fy N Fy, then

Tab (gs(g)) = Tab (fs’ (g)) .
Proof. By Definition [£.2] of the signed translation map, we write
gs’ (g) = ﬁs’ (g7g+)

First apply the relations between the signed cocycles and transition functions of the Fact [3.9}
then using that that g% is fixed by g, we deduce that

Lo(9) = To s(97)Bs(9,97) Tos (g7).

The middle term is an extended Jordan projection and the first and last term are inverse (see
Proposition [3.6] (iii) on transition functions). Hence

Lo(9) = To,5(97)L(9) Tor s (g7) 7
The claim then follows by projecting the relation into the abelian group AM®. |

Denote by .Z?° the map that associates to every loxodromic element g € G the projection into
AM® of any signed Jordan projection. We call this map the abelian signed Jordan projection.
Denote by 7y the projection AM® — Mab.

Definition 5.5. Denote by I''°F the subset of lozodromic elements of T. We define the abelian
sign group of I' by

ME? = magen (o007 ).
The sign group of T', denoted by My is given by Mp = m,,' (M2).

The following Theorem will imply non-arithmeticity in AM2® of the abelian signed Jordan
projections of T'.

Theorem 5.6 (Theorem 6.4 [GROT7|). The closed subgroup spanned by £ (T''°%) is of finite
index in AMA.
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Corollary 5.7. The closed subgroup spanned by £ (T'°%) and the sign group Mr are related
as follows.
(Lab(Tlow)y = AMEP.

Proof. Denote by H := (£ (T'lox)). By definition, it is a closed subgroup of AM. In particular,
AM® /H is Hausdorff. According to the previous Theorem [5.6] it is a finite group. By endowing
it with the discrete topology, we deduce that the morphism

©:A— AM®/H
a+— aH

is a continuous map that takes value in a finite group. Since A is connected, ¢ is constant to
eaH, hence p(A) = AH = H and A C H.

By Definition of the sign group, H C AM2b. Conversely, for every x € A and m € M2,
there exists y € A such that ym € H. We now write xm as a product zm = (ry~!)ym. In the
right hand side, the first term is in A hence in H and the second term is in H, hence xm € H.
We thus conclude that H = AMg. O

Theorem 5.8 (Theorem 8.2 [Ben05],Theorem 1.9 [GRO7]). The following holds.

(a) Mr is a closed normal subgroup of finite index of M and contains the connected com-
ponent of the identity M.

(b) There exists an integer pr € [0, dim a] such that Mr /My is isomorphic to (Z/ZZ)pF.

(¢) Mp-1 = k,Mrk ' where k, € Ny (A) is an element such that Ad(k,)a™ = —a¥.

(d) For all g € G, the groups satisfy Myr,—1 = Mrp.

When G is a split, real linear, algebraic group, Y. Benoist in [Ben97a] studies the following
conditions:

(C1) There exists a Zariski dense subgroup I' C G such that Mr = M.
(C2) There exists a Zariski dense subgroup I' C G with M1 2 Mj such that the sign group of
every Zariski dense subgroup of I' strictly contains M.

In particular, he proves for SL(m, R) that both conditions hold when m is a multiple of 4, in fact
(C2) is true for all m. . However, when m is even but not divisible by 4, condition (C1) is false
i.e. the sign group of every Zariski dense subgroup of SL(m, R) is non trivial.

5.3. I'-invariant subsets of G. The G-equivariant projection K — F endows K with a fiber
bundle structure of fiber M over the Furstenberg boundary. We apply a result of Guivarc’h—
Raugi [GRO7| to the left action of G on K. Denote by L (I') the preimage in K of the limit set
L(T") ¢ F. Then the closed right M-invariant and left T-invariant subset Lg(I') C K partitions
into |M/Mry| closed, I'-invariant, minimal subsets. Furthermore, these invariant subsets are right
Mr-invariant. Lastly, using Iwasawa decomposition, we partition QG into left I'-invariant and
right AMp-invariant subsets of G.

Theorem 5.9 (Theorem 2 [GRO7] ). The following holds.

1) Le(T) € K partitions into |M/Mr| closed, minimal I'-invariant subsets i.e. in each
partition, every I'-orbit is dense.

2) There is an indexation of this partition by M/Mr i.e. La(I') = Upnjent/my L) (I') such
that for every m € M,

eM

3) Ewvery element of the partition turns out to be right Mr-invariant.
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Recall that for every compact Bruhat section s, the map g € G5 — kz(g) € K reads in B;
coordinates for the source and target as

FP x AM — Fyx M
& a)s— (€5 var)s.

Bruhat-Hopf coordinates make the following diagram commutative and equivariant for every
compact Bruhat section s.

@AM ~G,cG—>F, x M ~s(F,)M C K

HH(FP xa) € G/M ————— F,

Let us now translate Theorem [5.9] using the right side of the diagram.

Corollary 5.10. Let s be a compact Bruhat section of K — F. Then the following holds.

1) For every element in Lc(T) of coordinates (€ ; x), € (Fs N L(T)) x M, there eists a
unique element [m] € M/Mr such that (£ ; x)s is in Ly, (I'). Furthermore, the T'-orbit
I'(&; x)s is dense in Ly, (T).

2) For every element in Ly, (T") of coordinate (§ ; x)s and for all m € M, the translate of
coordinate (§ ; xm)s is in Ly, (T).

3) For every element in Ly, (') of coordinate (£ ; x)s and for all c € My then the element
of coordinate (& ; xc)s remains in Ly, (T).

Denote by Q¢ the preimage in G of Qc G/M by the projection G — G/M. It is a closed, left
I-invariant and right AM-invariant subset of G. For every compact Bruhat section s € k(F),

the intersection QG N s(Fs)NAM reads in Bruhat-Hopf coordinates as
By (Qc N s(Fs)NAM) = (L&) N FP) x AM.

In other words, every element of coordinate (¢£,7 ; x), € L(®(T') x AM with & € F, is in Qc. The
previous Theorem and left side of the diagram allow us to partition it into closed left I'-invariant
and right AMrp-invariant subsets. To simplify notations, for every x € AM, we denote by x; its
projection in M.

Definition 5.11. For every m € M, we denote by ﬁ[m] = Ly (F)ANOQG and Q) = F\ﬁ[m}.
In other words, ﬁ[m] is the subset of elements of coordinate (£,n ; x)s € L®(T') x AM whose
compact Iwasawa projection of coordinate (§ ; xnr)s is in Ly, (T), for every suitable compact
Bruhat section s.
Proposition 5.12. The sets ﬁ[m], with [m] € M /Mr satisfy the following properties.

(a) The left T-invariant and right AMp-invariant subsets ﬁ[m] form a partition of ﬁg, i.€e.

QG = |_| ﬁ[m}
[m]eM /Mr

(b) For every m € M, then (Nl[m] = ﬁ[emm.
(c) For all [m] € M /My, the dynamical systems (Qn, ¢) and (Qe,,, #h) are conjugated.
Proof. The left T'-invariance in (a) is a consequence of the first point of Theorem and of the

left -invariance of Qg. It also follows from the same point that the subsets (ﬁ[m])[m] M/ Mr
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form a partition of Qg. The right AMp-invariance is due to the right Mp-invariance of L, (I")
and the properties of the Bruhat-Hopf coordinates given by Proposition 3.8/ and Proposition |3.11
Point (b) is a direct consequence of the second point of Theorem and the compatibility of
the Bruhat-Hopf coordinates with the compact Iwasawa projection.
Point (c) follows from the commutativity of the right action by multiplication by M with that
of A, because every element of M commute with every element of A. O

6. DECORRELATION

In the remaining parts of this paper, unless it is specified otherwise
in the statements, I' < G is a Zariski dense subgroup of G.

We construct a pair of points (£1,&) € L®)(T') and show that there exists (r,e)-loxodromic
elements in I' of attracting and repelling points in an e-neighbourhood of these points and whose
signed cocycle are dense in an Mp-invariant set.

Consider the family of equicontinuity constants d, . of Definition To simplify notations,
we introduce the family of constants

Ore = (8dima+ 4dim My + 5)6, .
In this section, we prove the following Proposition.

Proposition 6.1. Assume that M is abelian. Then there exists

1) (&.&) € L),
2) a real positive number

0<m < %d(&,ab(gl)),

such that for all r € (0,r1] and € € (0,7], for any choice of compact Bruhat sections c1, ¢ with

* \\C
B(fl,r) - ]:01 and Vg, (8b(§1)) C ]:51
there exists a finite family (¢;)icr C T and a point a,. € A that satisfy the following conditions.
T For all i € I, the element g; is (2r, 2¢)-lozodromic with

(gj_vgi_) € B(€176) X B(glvg)'

1 For allm € Vg, (8b(£1))c and (n;)ier C B(n, €), the family {Be¢, ¢ (9i,m:) Yier is Sr,g—dense
in areHe, e (81561, ) Mr i.e.

ar,e%cl,él (fﬁflﬂl)MF - UieIB(ﬁcl,él (Qi, 771'), Sr,s)-

In the first paragraph, we construct (Cf. Lemma families of finite products of loxodromic
elements whose signed cocycle reach all the connected components of AMr.

In the second paragraph, we prove the density, in an My orbit of AMr that projects into a
convex cone of non-empty interior of a*™, of the signed Jordan projection of a family of products
of loxodromic elements. More specifically, we construct in Lemma [6.4

(a) a convex cone of non-empty interior Co C a™™,

(b) a pair of transverse points (£, &) € L®(T),

(c¢) a real positive number ¢ > 0.
for which there exists, for all 0 < ¢ < r < ry an (r,e)-Schottky generating family F,.. =
(71, -y Y1), of at most 4 dim a + 2 dim M elements, such that the signed Jordan projection of the
elements of the form

{reAt  na,eng > 1}
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are 214, .-dense in a translate in AMp of exp(Cp)My. Note that the constants 4, . converge to 0
as € goes to 0.

In the third paragraph, we prove Proposition by combining the previous Lemmata with
an overlapping cone argument.

6.1. The connected components of AMr. Since M /M is abelian, the projection in M /M of
every signed Jordan projection does not depend on the choice of the cross-section. The following
Lemma does not require that My is abelian.

Lemma 6.2. Denote by p the integer such that My /My is isomorphic to (Z/2Z)P and by war/a,
AM — M/M, the projection.

Then for all & € L (T'), there exists hy, ..., h, € T'°% such that taking the notation hy := &,
the following holds.

(i) For every choice of cross-sections s1, ..., Sp such that h:‘ € Fs, forall1 <i <p, the set
{7 an/aa, (L, (hi)) hi<i<p forms a basis of the vector space Mr /M.
(ii) For all 1 <i < p, the pair (hj |, h;) € L®(T) is transverse.
(iil) Assume now that so,s, are compact Bruhat sections of respective domains b(hy) and
b(h;), then there exists my, € M and a large integer N € N such that for all v € {0,1}?,
foralln > N,

2 2
7TM/]\/[() (ﬂspmpvso(hpn+up"'h‘1n+yl ) 50)) =V

For the first step of the proof of this Lemma we use the non-arithmeticity Corollary [5.7] to
choose p loxodromic elements in I'. We order them. For the second step, since the repelling
point of the ith element is not necessarily transverse to the attracting point of the ¢ — 1th term,
we conjugate inductively these elements. Thanks to the Fact below, the abelianised Jordan
projection of the conjugated element will remain in the same connected component of AMr. To
obtain the third point, we use the explicit formula of the cocycle given by Proposition [£.9] and
the cocycle relation and combine it with a Ping-Pong argument. Finally, the corrective term
m, € M of the cross-section is chosen using the Definition of the ratio maps.

1

Fact 6.3. For all u € G and all loxodromic element g € G, the conjugate ugu™" is loxodromic

of attracting point ug™ and basin of attraction ub(g~) = b(ug™). Furthermore,
L% (ugu™t) = L%(g).

Proof. By Proposition a loxodromic element ¢ has attracting point ¢ in F and its basin
of attraction is the Bruhat cell opposite to its repelling point b(g~). By Fact 4.3| consider
hy € G such that Z,-(g9) = h;lghg. Since the Jordan projection is invariant by conjugation,
ugu~"' is also loxodromic and diagonalised by uhgy. Therefore, its attracting point is ug™ of
basin of attraction b(ug™). The abelian signed Jordan projection relation comes from Fact
by choosing to compute .Z,.[,—)(ugu™") = Z,-(g) and then using Fact [6.3) to argue that the

O

abelian signed Jordan projection does not depend on the choice of the cross-sections.

Proof of Lemma[6.4 Since Z/2Z is a field, Mt /My is a vector field over it. By Corollary [5.7] the
abelian signed Jordan projection of I'*°* spans AME® i.e. AM2 = (Lb(Tlor)). Because M is
a closed normal subgroup of M and My O [M, M], we deduce that Mgb/M§® = Mr/M,. Using
that this is a discrete vector space and projecting the abelian signed Jordan projection to M?°,
we get

My /My = M /Mg® = <7TM”b/Mgb (fab(rlom))>~
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The left and middle sides are Z/27Z vector space of dimension p. The right hand side provides
us with a generating set of the vector space, we extract a basis from it. Hence there exists
g1, - gp € T such that

MF/MQ = <7rMab/M61b (ﬁ“b(gp)), ...,ﬂ-Ma,b/Mélb (.Z“b(gl))>

Now using that Mg /Mg = Mr /My, we deduce for every suitable choice of compact Bruhat
sections by, ..., by, that

My /My = <7TM/M0 (L, (9p)) s s Tt Mo (Lo, (91)) >

By the above Fact|6.3} condition (i) holds for every family hq, ..., h,, such that for everyi =1, ...,p
the element h; is a conjugate of g;.

Let us now construct hj,...,h,. Set up := eg and go+ = &. We are going to choose by
induction uq, ..., u, € I' such that for every i =1,...,p,

(g utgr) € (La(T) x L)) N F.
Repelling points of loxodromic elements lie in L_(T") i.e. for every i = 1,...,p,
g7 € L_(I).

By minimality of the action of I'"* on L_(T') and because there are no isolated points in this
subset, we choose u; € I such that ul_lgl_ also lies in the Bruhat cell opposite to &), meaning
that u g7 € L_(I) Nb(&). By Proposition [2.6] we deduce the first step (€9, u; ' g7) € L&)(T).
Using the same minimality arguments on the action of "' on L_(T"), we proceed as such to
construct u; given ui, ..., u;—1 such that (u; g, u;'g;) € L&(T). Now that uq,...,u, € T
are chosen, we set for every i = 1,...,p

hi = u;lgiui.
By the above Fact condition (i) holds. Furthermore, because I is a subgroup, every h; is a
loxodromic element of I" with
(hf hi) = (ui g uytg7)-

The family hq, ..., h, verifies condition (ii) by construction of the u,.

Let us now check condition (iii). Choose s1,...,s, compact Bruhat sections of respective
domains b(hy ), ...,b(h, ) and set s; = so. For all ny,...,n, > 1, denote by n := (n1,...,n,) and
forall i =1,...,p we set

Eim = h R E.

Let us compute the signed cocycle s, s, (hp?...h}*, €&o). We want to understand which connec-
ted component of AM these cocycles can reach. Condition (ii) ensures that S, 5, , (h;'",&—1,n) is
well-defined for every 1 < i < p. Hence we start by applying the cocycle relation, then we apply
the exact formula of Proposition (4.9| using that the domain of s; is b(h;) for every 1 < i < p.

Bopso(hp? . 7Y, €0) = Baysp—r (hy? "1 o) oon Bey 5o (BT, €0)
= Bspspr (hp? Ep—1.1) - Bsasi (M5, €1.0) Bsy 150 (P15 60)
= K, (hp;gp,ﬂ)_l gsp(hp)np %sp,spfl(hmgpfl,ﬂ)
Ry (ha; €)™ Loy(h2)™ Rey sy (ho;€1n)
Rs, (h1:€10) 7" Loy (M) R, 50(h1; o).
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Condition (i) allow us to deduce that the products of the middle terms .Z, (h,)"»...%s, (h1)™

take value in the connected component of AMp corresponding to the projection of n in (Z / 2Z)p
that we denote by v. Then

(6) TM /M, (gsp (hp)np ....,g/psl (hl)nl) = V.

Note that this equation does not depend on the choice of compact Bruhat section sy, ...,s, of
same domains.

It remains to control the connected components of AM in which the ratio terms take value.
First, by a Ping-Pong argument, we choose a large integer N which will allows us to control
the sequence (§; ,)1<i<p- Then we slightly modify the choice of s1, ..., s, while preserving their
domains. Lastly, we check that under these modifications the ratio terms are AMj valued.

Let us start by the Ping-Pong argument. For all i = 2,...,p denote by b%(h;,h;_;) the
connected component of b(h; ) Nb(h;_,) containing h; ;. By condition (i) then & € b(h])
and hi" € b(hy ). By Proposition applied on the loxodromic element h;, there exists a large
integer N3 > 1 such that for every ny > Nj, the element h]'¢ is sufficiently close to hi" to
satisfy

h?lfo = gl,m S bo(hz_,hl_)
Agsume for any ¢ = 1, ..., p the following induction hypothesis, that there exists a large integer
N;_1 such that for every n € ([N;—1,+00) NN)” and every j =1,...,i — 1

§in € bo(hj_-s-p h; ).

In particular &_1, € b(h; ). Also, by condition (ii) then hf € b(h;, ). As before, we apply
Proposition on h; to choose a large integer N; > N;_; such that for all n € ([Nl-, +00) ON)p,
h?igifl,ﬂ =&in € bo(h;+1> h;)

Since N; is larger that N;_;, the induction hypothesis is inherited for every j = 1,....7 i.e.

§jm € bY(hi 1, h; ). Hence, by induction, there exists a large integer N > 1 such that for all

n € ([N,+o0)NN)” and all i = 1,...,p
(7) &in € BO(Riy 1, hy).

Now that the large integer N is chosen, assume that n € ([2N, +00) ﬂN)p. Let us now modify
the sections by right multiplication by elements of M and prove that the ratio terms for the new
family of compact Bruhat section take value in AMj. Recall the Definition [£:8] of the ratio map.

Rsiysioi(hii&im1n) = Zi,[h;](hf’)ﬁh;],si_l(&—1,@)-

By Definition |3.5| of the transition functions, the domain of s, s, , (h;;.) is b(h; ) Nb(h;_;). Set
mo = ep. By induction, we multiply si,...,s, on the right by elements m4,...,m, € M such
that for every ¢ = 1, ..., p the restriction to the connected component containing h;tl of the map

b®(hi  hi_y) — AM

gi—l — %si.mi,si,l.mi,l (hi; fi—l)

takes value in AMj. In particular, by choice of N such that condition holds, we deduce that
all Zs, m;.si1.mi_1 (hi; &i—1,n) term take value in AM,. Replacing them in the cocycle expression,
we write

ﬂsp.mp,so (hgp-"h?lng) = %sp.mp(hp; fp,g)71 zep.mp(hp)np %sp.mp,sp_l.mp_l (hp; §p—1,g)
. <%sl.ml (hl; 61,@)_1 gsl.ml (hl)nl %sl.ml,so (hl; 60)
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Let us now prove that the left hand terms of the form Zs, m,(hi;& )" take value in AMj.
Recall that,

Using that the domain of s;.m; is b(h; ), we deduce that Zs, m,(hi;.) is well defined on it.
Furthermore, by Proposition (iii)
-1 .
7 = Ty

Szmz;[h;] )8i-My "

Hence by continuity of the transition functions defined in a connected set, we deduce that the
continuous maps &; € b(h; ) > R, m, (hi; &)~ take value in AM.

Finally, since all ratio terms take value in AM, and by equation @, we deduce condition (iii)
that for all v € {0,1}?, all n of the form (2n + v;)1<i<p such that n > N,

AL/ M, (ﬂsp,mpvso(h;jp...h?l,50)) = Ta1 Mo (Lo, (hp) "7 . Ly (R1)™) = v

6.2. The connected component AM,.

Lemma 6.4. Assume that M, is abelian and that T is a Zariski dense subsemigroup. Then
there exists

(a) a convex cone of non empty interior Co,
(b) a pair of transverse points (£y,&0) € L3)(T),
(c) a real positive number ro > 0,

such that for all v € (0,70] and ¢ € (0,7] and any Bruhat section s of domain b(&y),
there exists Fr.. CI' and x,. € AMr such that the following holds.

O F,. is a finite subset of at most 4dim a + 2dim M, elements.

& F.. is a subset of a strong (r,)-Schottky Zariski dense subsemigroup.

& There exists an ordering of Fy. = (71,..., 1) such that v{ = & and fyl+ = &y, for which
every element of the form w = ~"'..A{"" with ny,...,n; > 1, satisfies

(U)+,w_) € B(E()ag) X B(é@vg)'
& For such an ordering, the set

Lo (A 1y sy > 13)
is LA, Or.c-dense in exp(Co)x, e Mo, where Lang, = 8dima + 4dim My + 1.

The family of constants §, . is given in Definition[{.11], for every r > 0, they converge to 0 when
€ goes to 0.

The first step of the proof is given by the following Lemma, which is a consequence of [Ben97bl
Proposition 4.3]. We give a reference for a proof. The last steps involve the non-arithmeticity of
Corollary [5.7] and density Lemmata of the appendix. These statements require that M
is abelian.

Lemma 6.5 (Lemme 5.6 [DG20]). Let I' C G be Zariski dense subsemigroup. For all 0 in the
interior of the limit cone C(T'), there exists a finite set S C T, a positive number ro > 0 such that
(i) 0 is in the interior of the convex cone C(A(S)) :=>_ s RiA(g),
(ii) the elements of A(S) form a basis of a,
(iii) for all r € (0,79] and € € (0,7], there exists an integer N > 0 such that for alln > N,
the family Sy, := (g")ges spans a Zariski-dense strong (r,)-Schottky semigroup of T.

geSs
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Proof of Lemma . First fix 0 in the interior of the limit cone. Apply Lemma Set Cg :=
>_ges RiA(g). By (i), it is indeed a convex cone of non-empty interior. Let us now order the
elements S := (g1, ..., gr,) Where rg = dima by (ii). By (iii), for any integer n sufficiently large,
Sn spans a strong (r,)-Schottky Zariski dense subsemigroup. We deduce that g is in the
basin of attraction of g;, meaning that gfc € b(g; ), which by Proposition is the same as
(94,.91) € LO(T).

Let 7 € (0,70] and ¢ € (0,7], fix a compact Bruhat section sy of domain b(&y). Let us choose
F.. CT'. Consider a large integer N such that for every n > N, the subset S,, spans a Zariski
dense, strong (r, )-Schottky subsemigroup.

By Theorem [5.8] the group Mr /My is isomorphic to (Z/2Z)P. Consequently, for every element
m € My, its square m? is in My. In particular, for every loxodromic element v € I and any
suitable compact Bruhat section s such that v+ € F,,

Z,(v?) = (L))" € AM,.

Since My is abelian and a normal subgroup of Mr, we deduce that the multiplicative Jordan
projection of squares does not depend on the choice of s and coincides with .Z. We therefore
remove the subscript. Denote by I', the Zariski dense subsemigroup generated by Ss,. By
Corollary [5.7] and using that M is abelian,

(Z9(T,)) = AMEL > AM.

Let us prove that the subset of squares .#(T',,)? spans a dense subgroup of AMj. Every element
x € AM, admits a square root that we denote by /r € AMjy. Now we approximate it in
(£%(Ty,)). For all § > 0, there exists a finite number of integers (k;)jc; C Z and a finite
number of elements (;),cs such that

\/5 € B( H fab(’}/j)kj, \/S>

j€d

Taking the squares, we obtain the approximation by squares,
x € B( H.ﬁf(’yj)%j,é).

j€d

Hence
(ZL(,)?) = AM,.

Apply density Lemma in AMj for the family of squares .£(I';)%. Consider F)_ of at most

3dima + 2dim M elements such that the subgroup spanned by squares X(FAEF is 4, .-dense
in AM,. Denote by

Frei= 83, U{¥* |y € F.}.

The subgroup spanned by Z(F...) is 6, .-dense in AMy. Apply now density Lemma [7.5] to such
a family. There exists v, . € a such that the subsemigroup generated by Z(F ) is 6, .-dense in

exp <v + ) R+)\(7)>MO.

’YeFr,a
Now since F). . contains Sa, and by choice of Cy,
Co C Z RyA(M),
’YEFT,E

we deduce 9, .-density of the subsemigroup generated by .Z(F,..) in exp(v, e + Co) M.
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Let us now compute .. € AM. We order F,.. = (v1, ..., ) such that v, := g7 and 7, := g2".
Fix compact Bruhat sections si, ..., s; such that for every : = 1,...,1

B(v},e) C F,.

We assume that for every i = 2,...,1 then %, s, ,(7i,7;",) € AMy. Since %, s, , (i, .) restric-
ted to the connected component of b(vy;") N Fs, , containing ~;" , takes value in a connected
component of AM, by multiplying s; on the right by an element of M one can always assume
that this restricted map takes value in AMy. Set %; := %, s,_, (Vi,7; ;) with convention that
sop = s; and y9 = 7y, and

Tre = eXP(Vp.e)RB)... oK .

Let us now check O &, >, M. Since Ss, contains dima elements and generates the strong
(r,e)-Schottky I',, and by choice of F} _, the subset F, . satisfies both O, &.

By choice of ordering v; = g; = & and v = g5, = &. Apply Proposition for all
ni,...,n; > 1 the element w = 7" .4} is loxodromic and satisfies (w*,w™) € B(&, ) x B(, €).
Hence < is satisfied.

Furthermore, by Proposition [4.12] we estimate the Jordan projection

fsl (w) S Zsl(’yl)nl%l...gsl (’yl)nl,%l B(EAM, 215,«,5).

Note that %, ..., %> take value in the abelian group AM, by choice of ss,..,s;. Furthermore,
the 7, are squares, hence integer powers of %, (7;) take value in AM, and we can remove the
subscript. Hence by reordering the terms in AM,,

L, (w) e L(m)™...L ()" %K. % B(eAM7 2l5m).
The first part of the left hand side
{ZL)"..L(v)™ | n1y.eynyg > 1}
coincides with the subsemigroup of AM, generated by .Z(F; ) which is §, .-dense in

78,

exp(Co) exp(vy) Mo.
We deduce that
{Z, (") [y ey > 13}
is (21 + 1)d, -dense in
exp(Co) exp(vy.e )Mo Z)... %1 = exp(Co) Moy,

using that My centralises A. Since My is a normal subgroup, we deduce (2] + 1)d, .-density in
exp(Co) Moz, = exp(Co)xy . My. By ©, then I < 4dim a + 2 dim My, hence

214+ 1)6,. < (8dima + 4dim My + 1)0, -
and condition & is satisfied. O

6.3. Proof of Proposition Let us first find the pair (¢1,£;) € L®)(T) using the previous
Lemmas of this section. Consider the pair of transverse points (&,&) € L (T) given by
the decorrelation in AM, Lemma (b). Apply Lemma to & to reach every connected
component of AMr. There exists loxodromic elements hq,...,h, € I'o* such that taking the
notation A := &, the following holds.

(i) For every choice of sections si,...,s, such that hj' € F,, for all 1 < i < p, the set
{m a1, (Ls, (hi)) }1<i<p forms a basis of the vector space Mr/Mj.
(ii) For all 1 < i < p, the pair (h;" |, h;) € L&)(T") is transverse.

1—17"%
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(iii) Assume now that s, s, are compact Bruhat sections of respective domains b(h;) and
b(h, ), then there exists m, € M and a large integer N € N such that for all v € {0,1}?,
foralln > N,

7-‘-]\/[/]\/[0 (ﬂspmp,s[)(h?)TH’Vp“'h?n‘H’l ) 50)) =V

Since h;r has no reason to be transverse to &, we need the following choice. By density of

attracting and repelling points of loxodromic elements in L(2) (T"), there exists a loxodromic
element hpyi € I'°® such that

(P15 €0) € L(T)
(hy hyyy) € LP(T)
Such a choice is always possible because there are no isolated points in the limit sets Ly (I"). Set

now

(8) (61551) = (h;_JrlagO)'

Let us now find the positive number ;. Consider the real number ¢ given by Lemma [6.4] (c).
We set

ra_ Lo+ -y Lo+ -
rhimint { At . 0b(0) aln o(h ) |

By (ii), choice of h,11 and using that hq, ..., hyy1 are loxodromic, we deduce that both ry and |
are positive real numbers. This leads us to define the positive real number

(9) r1 = inf(ro, ry).
Let r € (0,71] and € € (0,r]. Fix a choice of compact Bruhat sections ¢, ¢; such that
B(&,7) C Fo, and Vi, (9b(61))8 C Fo,.

Reaching every connected component of AMp
By Proposition on loxodromic elements h1, ..., hy41, there exists a large integer NV, . > 1 such
that for every n > N, ., each h?' are (r,e)-loxodromic.

Since & is in the basin of attraction of hq, then by Proposition [4.4l we choose another integer
N; > 1 such that for all n > N; large enough, hi'é € B(hf,e). Set Ny := sup(N1, Ny_). By a
Ping-Pong argument using the dynamical properties of (r,e)-loxodromic elements, this implies
that for all ni,...,n, > N, then hp”..h1" ¢ € B(h;‘,e). For all n := (np,...,n1) family of
positive integers, denote by &, ,, := hp?...h1'&. By Proposition for all £, € B(h},¢), then

ﬁcl,spmp(h?ﬁrlv gp) = '%61 (thrl; h;zoilfp)_1$(hp+1)2n%cl,spmp (thrl; §p)

Note that by choice of ¢ < ry the balls B(h,},€) resp. B(hzﬂ,s) are included in connected
components of b(h, )N F, resp. Fe, Nb(h, ). Therefore, using that h2%, is (r, €)-loxodromic
when n > Ny, the restriction to B(h},e) of B, s,m,(h27%,,.) to B(h}, ) is constant mod AM.
For all n > Ny, the map

([N2,00) NN)” — AM
0 Bey oo (Rt hy? kT €o)
reaches every connected components of AMr. Indeed, by the cocycle relation
/801,30 (hf,Lth h?l ) 50) = Bchspmp (h?ﬁ_l, gpﬁ)ﬁspmp,so (th h?l ) gO)a

and by (iii), we control which connected component of AMr the right term hits, the left term
being constant mod AM; as discussed above. Thus, for all v € {0,1}? ~ Mr /M, there exists
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and we choose n,(v),...,n1(v) > Nz such that if we denote by

{ o
T = Bcl,so (h[u],fo)
then TAM/AM, (x[u]) =V

A particular subset of loxodromic elements of I'

Consider now the subset F; ., the point z,. € AMr and the convex cone of non-empty interior
Co given by Lemma[6.4] They satisfy

O F,. is a finite subset of at most 4 dim a + 2 dim M elements.
& F, . is a subset of a strong (r, ¢)-Schottky Zariski dense subsemigroup.
¢ There exists an ordering of F,.. = (71, ...,7) such that v, = & and +," = &, for which
every element of the form w = ;" .../ with ny,...,n; > 1, satisfies
(U/+,’UJ7) € B(&Oag) X B(é()?E)'
& For such an ordering, the set

Lo (A 1y sy > 13)
is lans,0r c-dense in exp(Co)xy,c Mo where Lapg, = 8dima + 4dim My + 1.

We are going to choose (g;)icr among elements of the form hp,jv,"...71"", where ng,...,n; > 1 are
integers and v € {0,1}7.

By choice of r1, we deduce } for all elements of

{hp -t I na,omp > Tand v € (Z/2Z)P}.

Meaning that all elements of the set above are (2r, 2¢)-loxodromic with attracting and repelling
points in B(&1,¢) x B(&1,¢).

Cocycle estimates § 5
By equation recall that £y = & =7 . Let ng,...,n; > 1 be integers. Then by choice of r < 7

and e < 7, the element v = 7,"..A7" is (r, £)-loxodromic, of attracting point in B(7;",¢) and

repelling point in B(v; ,¢). By Proposition on loxodromic element v and 7 € Ve, (9b(£1))C,
by Definition of the equicontinuity constant 4, ., we deduce

580,51 (rY? 77) € D%S() (7)%80,61 (77 n)B(eAM) 67‘,8)'

Now, Zsy.e, (Vi) is 0y« close to s, &, (V137" ,n). Hence using & = " and & = 7, we deduce
Bsoier (1:1) € Loy (V) Ps,21 (1; €0, 1) Bleans, 26,.).-
For all v € {0,1}?, by the cocycle relation,
ﬁcl ,C1 (h[u]'% 77) = ﬁcl,so (h[u] ) ’Yn)ﬁso,(h (7? 77)

By a Ping-Pong argument on 71, ...,y we deduce that yn € B(v;",¢). Similarly, the same type
of argument on the (, ¢)-loxodromic elements 17", ..., hir®), h2%, yields that

Bey,so (h[u}ﬁn) € Ber,so (h[u]vV;_)B(eAM7 5T,8)-
Using 7;“ = &o and the definition of x[,, we deduce the following estimate

ﬁcl,él (h[u]'% 77) € x[l/]ozﬂso (7)%50761 (glv 507 77)B(€AM, 367“,8)'

To recover the term %, ¢ (51; &1,7) as in I, one can check using the definition of the Ratio maps

that Zs,e, (§1:€0,1) = Ze,s0(§1:61.60) ™ Zer 1 (€1, €1,1). Denote by yo = Zey 5o (E1:61.60)
Then for all v € (Z/2Z)P, all v € {7 .47 | ny,...;n; > 1} and all 5 € Ve, (9b(£1))C,

(10) ﬁcl,él (h[u]'% 77) € x[y]gso (’7)2/01%)01,&1 (gl; 517 U)B(eAM7 367”,5)-
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Overlapping cone argument
Using & on the Jordan term, we deduce that for every n € VGT(ab(fl))G, the subset of cocycles

{Berer (hpy*-1m) [ ey oo = 1}

is (3414, )0 c-dense in the translated cone x(,) exp(Co)zr,c Mo YoZe, ¢, (€1;€1,m). The left terms
[, ensures that when v varies in (Z/2Z)?, all connected components of AMr are reached. Denote
by ma : AM — A the projection. Using that Cy is convex of non-empty interior, we deduce that
there exists a,. € A such that the intersection, over the number of connected components of
AMr, of the projection in A of these translated cones, contains a,. . exp(Cop), i.e.

arcexp(Cy) C ﬂ N (x[y] exp(CO)xrngOyo).
ve(Z/22)P
Hence the disjoint union of translated cones contains a, . exp(Co)Mr i.e.
ar.e exp(Co)Mr C |_| ) exp(Co) e Mo Yo-
ve(Z,/22)P
Hence by right multiplication by Z., ¢ (€1;€1,m), we deduce that
ar.c exp(Co)MrZey o, (E1:€1,m) C | | @) exp(Co)are Mo yoZey o1 (€15 €1,m).
ve(Z/22)P
Using the (3 + laa, )0r,c density of cocycles in the disjoint union on the right yields
a”l",& eXp(CO)MF‘%Cl,El (517517”) C U 561,51 (h[u]vfl"'V{Ll?n)B(eAM? (3 + lAMO)é'r;E)'

ve(Z/2L)p
n,...,n>1

By compacity, we choose a finite family
(9i)ier CA{hpyy" A1 |0,y > 1and v € (Z/2Z)P}
such that for all € Vg, (9b(£;))C,
aT,EMF‘%Cl,él (él; gla 77) C U B(ﬁcl,él (gza 77)7 (3 + ZAM(])(ST,E) .
il
Set ST,E = (8dima + 4dim My + 5)0, . = (lam, + 4)0,-. Finally, we apply for every family

(mi)ier C B(n,e) the Proposition on Be, .z (g9i,m:;) and by Definition the ratio maps
Rey o1 (€15 €1,1m;) are Oy close to Xe, ¢, (§15€1,7), hence |

ar,sMF%cl,él (él; &1, 77) - U B(ﬂcl,él (gh ni)7 6r,a)-
il
7. CONDITIONS FOR TOPOLOGICAL MIXING
We prove the following necessary and sufficient conditions.

Theorem 7.1. Let G be a real linear, connected, semisimple Lie group of non-compact type (i.e.
without compact factors) and T be a Zariski dense subgroup of G. For all € a*™, the following
topological mixing conditions occur.

(NC) If the dynamical system (Q,,), ¢p) is topologically mizing then 6 € C(T').

(SC) Assume that the connected component of the identity My of M is abelian. Then the
converse is true i.e. if 0 is in the interior of the Benoist cone, then the dynamical system
(Qerns ®4) is topologically mizing.
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7.1. Necessary condition. Let § € a™*. We prove that if the dynamical system (Q,,], ¢p) is
topologically mixing, then @ is in the interior of the limit cone C(T').

Since this dynamical system factors (2, ¢}), we deduce topological mixing of the regular Weyl
chamber flow. Using now 6 € a™t and the necessary and sufficient condition for mixing [DG20],

we deduce that
o

6 e C(T).

7.2. Sufficient condition. The key arguments are given by Theorem decorrelation Pro-
position [6.1 and the Proposition [7.2] below.

Let & € a™™" be in the interior of the limit cone. We want to prove that for all non-empty
open sets U,V C Q,,], there exists T' > 0 such that for every ¢t > T,

SL(U) NV £ 0.

It is equivalent to prove that for all non-empty open sets U,V C Q[EM], there exists 7' > 0
such that for every ¢t > T,

Uet? NTV £ 0.

By Theorem 5.2} the action of ' on L) (T) has dense orbits. The latter are the first and
second Bruhat-Hopf coordinates of ﬁ[e ]+ Using that left and right actions commute, we align U
and V in the same AM orbit as a right AM-invariant subsets given by Proposition [6.1} of first
and second Bruhat-Hopf coordinates in a neighbourhood of (&3, 51)

We apply the Proposition to # and the neighbourhood of (£;,&;): the Jordan projection
of the elements in 4 € I'** such that (y,47) is in that neighbourhood of (£1,€;) is dense in
affine half-lines of direction 6. We thus construct elements in I' that will satisfy the mixing
statement up to right multiplication by M. Finally decorrelation Proposition allows to
choose very contracting loxodromic elements in I' whose attracting and repelling points are in a
neighbourhood of (&1, 51) and whose signed Jordan projection are dense in an Mrp-invariant set
of AM.

Proposition 7.2 (Proposition 5.4 [DG20]). Fiz 60 € a™" of norm 1 in the interior of the limit
cone C(T).

Then for every nonempty open subset O2) c L2N(T), for all xo € A and 5y > 0 there ezists
Ty > 0 such that for all t > Ty there exists a lozodromic element v, € I' with

{ (Vi) e 0P
exp ()\(%)) € B(xoew, 50)

Recall that for every compact Bruhat section s of the M-bundle K — F, we denote by F; its
domain, by G4 := s(Fs)M AN the domain of the Bruhat-Hopf coordinates map H; that takes

value in .F§2) X AM. Denote by 74 the projection AM — A.

(11)

Proof of Theorem[7.1] (SC). Let 6 € a*™ be in the interior of the limit cone.
We want to prove the following statement given in Bruhat-Hopf coordinates: for all non-empty
open sets U ¢ LG)(T') and V) < LEN(T), for all u,v € AMy and § > 0, there exists T > 0

such that for every t > Ty, for all compact Bruhat sections ¢y, cy such that U2 c .7-'6([2,) and
Ve c 72,

¢ (U x B(u,8)), NT(V? x B(v,4)), #0,
meaning that there exists h; € I' such that

U® x Bue?,9)),, Nh(V® x B(v,9)),, # 0.
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Consider the pair (£1,€;) € L®)(I), the real positive number r; > 0 given by Proposition
and the associated compact Bruhat sections ¢y, ¢;.

Step 1: Apply topological transitivity of the action of I on L(®)(I") given by Theorem
Then there exists hy, hy € T' such that

{hUU(Q) > (61,&1)
V@ 5 (€6,6).

By left T' invariance and right AMr invariance of SNZ[eM}, there exists uy,v7 € AMr such that in
Bruhat-Hopf coordinates,

ho(U® x B(u,d)), > (€161 w)e,
{hV(V(2) X B(v,5))CV S (€1,€1 5 v1)g,.
Choose r € (0,71] and 6; > 0 small enough such that in Bruhat-Hopf coordinates
ho (UP % B(u,6)) D (B(&,7) x B(1,r) x B(u1,61)),,
{hv (V& x B(v,9)), D (B(&,7) x B(&i,r) x B(v1,61)),, -

By Proposition for all £ € (0, 7], there exists a finite family (g;);c; C I' and a point a,. € A
satisfying the following conditions.

cu

cv

1 For all i € I, the element g; is (2r, 2¢)-loxodromic with
(95.9;) € B(&1,¢) x B(&, ).

1 For all n € Vg, (3b(51))c and (n;)ier C B(n,¢), the family {8, ¢, (9, 7:) bier is gr,s—dense
in ar,e@cl,(n (61; gla n)MF ie.
e Rey oy (€13 60, MM C Uier B(Bey o1 (9 Mi)s 01 )

Step 2: Choose ¢ € (0,7] such that §,. < 8;/2. Denote by O®) := B(¢&1,¢) x B(y,¢).
We are going to prove the topological mixing statement for uy,v; € AMp, small 6; > 0, when
U =y = @,

Let us apply Proposition [T.2] to § which is in the interior of the limit cone, to the above open
subset O ¢ LT, to ¢ := 74 (a;,gulvfl) and to 6;/2. We thus consider Ty > 0 and
a family of loxodromic elements (v;);>7, satisfying the system (1I). Apply f, since g; is the
attracting point of g;l, we deduce for all i € T

% g 'B(&,e) € B(ése).
Hence for all i € I and every £ € v, 'g; ' B(&1,¢),
9ive (V5 €5 v) = (9% 90%E 5 Beven (9076, 7 )v1)
= (9% 9%E 5 Beren (9057 Ze ()01,
€ 0@ x {Ber.er (90,7 ) L, (v )vr }-
We discuss the cocycle terms using the decorrelation. By I, the set
(12) {Ber,e1 (9057 ) Loy (v)vr i € I}
is 01 /2-dense in

(ar,e@cl,él (€161, E1)MF>-$&1 (y¢)v1-
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Since the ratio %, ¢ (él; &1,&1) is trivial and Mp is a normal subgroup of M, we deduce that the
above subset of cocycles is 01/2-dense in a,.%s (7;)u1 Mr. Furthermore, by equation
it is 01- dense in a, .zoe®u; Mr. By choice of zg, remark 74(a, cv0e'?v1) = ma(ure?). Hence

ma(ure®)Mp C | B(Bey e (97,7 o1, 01).
iel
9) Mr, we choose for all ¢ > Tjy an element h; € {g;V; }ics such that
uret® € B(Be, ., (he, v )v1,01).
Consider w € B(vy,6;) such that B, & (hs, v )w = uiet®. Then for all € € h; ' B(£y,¢),
he (€5 w), = (hevd 1€ s Bey e (hey v w)
= (i ed Ulete)cl € ¢to(o(2) x B(uy,01))

Since uje?® € 74 (use

C1 :
Therefore, all points of such coordinates are in ¢} (0(2) X B(uq, 61))01 n ht(O(Q) X B(vl,él))
Hence for all t > T}, there exists hy; € I' such that

(13) (bg (0(2) X B(ul,él))cl n ht (0(2) X B(’Ul, (51)) 75 @

¢1

61.

By choice of ¢ > 0, remark that
ho (UP x B(u,5))
hy (V® x B(v,6))

> (0% x B(uy,61))
> (0¥ x B(vy,61))

cu C1

cy él ’
Note that relation ensures that ¢} (hy (U®? x B(u,é))CU) N hehy (V@ x B(v,é))év # 0.
Since the flow commutes with left multiplication by I'; we deduce that for all ¢ > Ty,
t(14(2) -1 (2
oy (U™ x B(u,é))CU N hy hihy (VP x B(v,0)) . #0.

cv

APPENDIX : DENSITY LEMMATA

Lemma 7.3. Let C be a compact connected abelian real linear Lie group and V be a finite
dimensionnal real vector space.

Then for all subset E C V x C that span a dense subgroup in V x C, for all small real number
6 > 0, there exists a finite subset Fs C E of at most 3dimV + 2dim C' elements such that the
subgroup gemerated by Fy is §-dense in V x C.,

It a consequence of the following Lemma.

Lemma 7.4 (Lemma 6.1 [DG20]). Let V' be a finite dimensionnal real vector space.

Then for all subset E C V' that span a dense subgroup in V, for all small real number § > 0
and all basis B C E of V, there exists a finite subset Fs C E of at most 2dim V' elements such
that the subgroup generated by B U Fs is 6-dense in V.

Proof of Lemma . By Corollary 3.7 of [BtD83], the group C is isomorphic to a torus. Con-
sequently, its universal cover C' is a real vector space of dimension dim(C).

Fix a small real number § > 0. Denote by V =V x C the universal cover of V x C. Then V
is a real vector space of dimension d = d 4+ dim C.

We want to apply Lemma [7.4] on this vector space. Let us first construct out of E a subset
that spans a dense additive subgroup. Denote by p : V — V x C the covering map. Fix a
basis (b1, ..., b, bay1, ..., bg) of V such that (p(b1), ..., p(bq)) is a basis of V x {0} and the additive
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subgroup generated by (bgy1,...,b;) is the kernel of the covering map ker(p). With such a basis,
we explicit the isomorphism between V/(bgy1,...,b;) and V x C. Then the following subset

dim C
D := Vect(by, ..., bg) x ( H [0, 1[bd+j>v

j=1
is a fundamental domain of the covering. Consider now the subset of elements of this fundamental
domain that project into elements of F,

E = p Y E)N D.
We deduce that EU{bgy1, ..., b;} spans a dense additive subgroup of V. Fix now a subset B’ C E
such that 7y (p(B’)) is a basis of V.

Apply now density Lemma on V, for the subset E U {bgi1,...,b 7} and choice of basis
B' U {bg41,...,b;}. There exists and we choose a finite subset F C E of at most 2d elements,
such that F U B’ U {bi41,...,b;} spans a o-dense additive subgroup of V.

Finally, we project ﬁUB’U{bd+1, ...;b3} to V' x C using the covering map. Then p(ﬁUB’) CFE

is a finite subset of at most 3d 4+ 2dim C' elements that spans a d-dense additive subgroup of
VxC. O

Lemma 7.5. Let C be a compact connected abelian real linear Lie group and V be a finite
dimensionnal real vector space. Fix § > 0 a small real number.

Then for all finite subset F C V x C that spans a §-dense subset of V x C, there exist an
element vp € V such that the semigroup genenerated by F is —dense in

(W + ZR+7TV(f)> x C.

fer

Proof. We adapt a proof of Y. Benoist [Ben00, Lemma 6.2].
Consider the compact subset of V'

D= {Ztﬂrv(f) ’ 0<ty; < 1}.

fer

Then D x C is a compact subset of V' x C. By hypothesis, the additive subgroup generated by
F is 6—dense in V x C. Then, applying compacity, we choose a finite subset X C (F) that is
S-dense in D x C, i.e. such that
DxCc | B9
zeX

Denote by (F'); the subsemigroup generated by F'. Choose an element of the additive sub-
semigroup h € (F')4 such that hX C (F);. Such a choice is possible because V' x C'is abelian.

Then the translate h(D x C) is d-covered by hX C (F), i.e.

(14) WD xC) c | Bha,d) ¢ |J B(x,9).
zeX ze(F) 4+
Remark now that
h(D x C) = (7v(h) + D) x ©c(h)C = (zy (h) + D) x C.

Denote now by L the close convex cone generated by mv (F), i.e. L:=3 . pRymy(f). Then,
by translating on the left by (F'), in the previous equality, a translate of L appears on the right
hand side i.e.

(F)+ ((r(h) + D) x €) = ((mv (k) + L) x C).
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Finally, combining with (14), we deduce that (F), is d-dense in ((my (h) + L) x C) i.e.
(rv(h)+L)yxC)c |J B(,9).

TE(F) 4
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