Sei K eine endliche Erweiterung von \mathbb{Q} mit Ganzheitsring \mathcal{O} . Sei \mathbb{A}_K der Adele-Ring zu K und \mathbb{I}_K die Idele-Gruppe.

- **1. Aufgabe:** Die Idele-Norm $||x|| = \prod_v |x_v|_v$ ist trivial auf den Hauptidelen, also dem Bild der diagonalen Einbettung $K^{\times} \hookrightarrow \mathbb{I}_K$. Hinweis: Betrachten Sie zunächst $K = \mathbb{Q}$.
- **2. Aufgabe:** Der Quotientenraum \mathbb{A}_K/K ist kompakt, aber \mathbb{I}_K/K^{\times} ist nicht kompakt. Hinweis: Verwenden Sie starke Approximation.
- **3. Aufgabe:** Die Abbildung $\mathbb{I}_K \to \mathbb{A}_K, x \mapsto x$ ist nicht stetig.
- **4. Aufgabe:** Zeigen Sie, dass der projektive Limes $\varprojlim_{\mathfrak{m}} \mathcal{O}/\mathfrak{m}$ isomorph ist zum Ganzheitsring $\widehat{\mathcal{O}} = \prod_{v \not \infty} \mathcal{O}_v$. Hier durchläuft \mathfrak{m} alle ganzen Ideale in \mathcal{O} .
- **5.** Aufgabe: Charakterisieren Sie die Hecke-Charaktere von endlicher Ordnung. Zeigen Sie, dass diese unter der Abbildung $\chi \mapsto \chi \circ c$ genau den verallgemeinerten Dirichlet-Charakteren entsprechen.
- **6. Aufgabe:** Sei L/K eine endliche Körpererweiterung. Konstruieren Sie einen Isomorphismus $\mathbb{A}_L \cong \mathbb{A}_K \otimes_K L$.