Dr. Mirko Rösner

Sei K eine endliche Erweiterung von \mathbb{Q} mit Ganzheitsring \mathcal{O} und fixierter Einbettung in den Minkowski-Raum \mathbf{R}_X für $X = \text{Hom}(K, \mathbb{C})$ durch $j: K \to \mathbf{R}_X$, $x \mapsto (\tau(x))_{\tau}$.

- 1. Aufgabe: Sei $\mathfrak{a} \neq 0$ ein gebrochenes Ideal in K. Zeigen Sie:
 - (a) Das duale Gitter zu $\Gamma = j(\mathfrak{a})$ ist $\Gamma' = j(\mathfrak{a}^{-1}\mathfrak{d}^{-1})^*$ mit der Differente \mathfrak{d} zu K/\mathbb{Q} .
 - (b) Das Covolumen des Gitters ist $\operatorname{vol}(\mathbf{R}_X/\Gamma) = \sqrt{|d_K|}\mathcal{N}(\mathfrak{a}).$
 - (c) Für die Diskriminante $d_{\mathfrak{a}}$ von \mathfrak{a} gilt $d_{\mathfrak{a}}^{-1} = d_{(\mathfrak{a}\mathfrak{d})^{-1}}$.
- 2. Aufgabe: Berechnen Sie explizit die Eulerfaktoren der Dedekind'schen ζ -Funktion zum Körper $\mathbb{Q}(\sqrt{-1})$ der Gauß'schen Zahlen.
- **3. Aufgabe:** Für $x \in \mathcal{O}$ gilt $|\tau(x)| = 1$ für alle Einbettungen $\tau : K \to \mathbb{C}$ genau dann wenn x eine Einheitswurzel ist.
- **4. Aufgabe:** Sei $K = \mathbb{Q}(\mu_m)$ der Körper der m-ten Einheitswurzeln. Zeigen Sie:

$$\zeta_K(s) = \prod_{\mathfrak{p}|m} (1 - \mathcal{N}(\mathfrak{p})^{-s})^{-1} \prod_{\chi} L(\chi, s)$$

als Produkt über Primideale \mathfrak{p} , welche m teilen, und Dirichlet-Charactere χ modulo m.

5. Aufgabe: Sei $\chi: \mathrm{Cl}_K \to \mathbb{C}^{\times}$ ein Charakter der Idealklassengruppe. Zeigen Sie:

$$\zeta_K(\chi, s) = \sum_{\mathfrak{a}} \chi(\mathfrak{a}) \mathfrak{N}(\mathfrak{a})^{-s}$$

über die ganzen Ideale $0 \neq \mathfrak{a} \subseteq \mathcal{O}_K$ konvergiert für Re(s) > 1 lokal gleichmäßig, besitzt eine meromorphe Fortsetzung nach \mathbb{C} und erfüllt die Funktionalgleichung

$$Z(\chi,s) = \chi(\mathfrak{d})Z(\overline{\chi},1-s) \quad , \quad Z(\chi,s) = Z_{\infty}(s)\zeta_K(\chi,s)$$

mit $Z_{\infty}(s) = |d_K|^{s/2} \pi^{-ns/2} \Gamma_K(s/2)$ und dem Differentenideal \mathfrak{d} zu K/.