Übungen zu Funktionentheorie 1

Sommersemester 2020

Blatt 8

Prof. Dr. R. Weissauer Dr. Mirko Rösner

Abgabe auf Moodle bis zum 19. Juni

Bearbeiten Sie bitte nur vier Aufgaben. Jede Aufgabe ist vier Punkte wert. Für jedes Gebiet D bezeichne $\mathcal{O}(D)$ die Menge der holomorphen Funktionen $f:D\to\mathbb{C}$.

- **32.** Aufgabe: Seien V und U Gebiete mit $V \subseteq U$. Die Einschränkungsabbildung $\mathcal{O}(U) \to \mathcal{O}(V)$, $f \mapsto f|_V$ ist definiert durch $f|_V(z) = f(z)$ für $z \in V$. Zeigen Sie:
 - (a) Die Einschränkungsabbildung ist injektiv.
 - (b) Wenn $U \neq V$, dann ist die Einschränkungsabbildung nicht surjektiv.
- **33.** Aufgabe: Sei $E = \{z \in \mathbb{C} \mid |z| < 1\}$. Bestimmen Sie Aut(E), also die Gruppe der Bijektionen $f: E \to E$, sodass f und f^{-1} holomorph sind. Hinweis: Schwarz'sches Lemma und Aufgabe 8.
- **34.** Aufgabe: Sei $f \in \mathcal{O}(D)$ nicht konstant, sodass |f| in $z_0 \in D$ ein Minimum annimmt, also $|f(z)| \ge |f(z_0)|$ für alle $z \in D$. Zeigen Sie $f(z_0) = 0$. Hinweis: Maximumsprinzip.
- **35.** Aufgabe: Konstruieren Sie eine nichtkonstante holomorphe Funktion $f: \mathbb{C}^{\times} \to \mathbb{C}$ mit f(1/n) = 0 für alle $0 \neq n \in \mathbb{Z}$. Warum ist das kein Widerspruch zum Identitätssatz?
- **36.** Aufgabe: Seien $f, g \in \mathcal{O}(\mathbb{C})$ holomorph. Zeigen Sie: Wenn $|g(z)| \leq |f(z)|$ für alle $z \in \mathbb{C}$, dann gibt es eine Konstante $c \in \mathbb{C}$ mit

$$q = c \cdot f$$
.

Hinweis: Modifizieren Sie den Beweis von Aufgabe 24(c).