Übungen zur Höheren Mathematik für Physiker II

Blatt 6

Prof. Dr. R. Weissauer Mirko Rösner Sommersemester 2014

Abgabe bis 23.05.14 um 11:15 in INF 288.

- **1. Aufgabe:** (2+2=4 Punkte) Sei $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ die Wurzelfunktion $f(x) = \sqrt{x}$. Zeigen Sie:
 - (a) f ist stetig in jedem $x \in \mathbb{R}_{>0}$,
 - (b) f ist stetig in 0.
- **2.** Aufgabe: (2+2=4 Punkte) Sei (M,d) ein metrischer Raum und $N \subseteq M$ eine nichtleere Teilmenge. Man definiert den Abstand eines Punktes $x \in M$ zu N als $d(x,N) = \inf_{y \in N} d(x,y)$.
 - (a) Sei $A \subseteq M$ abgeschlossen und $x \in M$. Zeigen Sie $d(x, A) = 0 \Leftrightarrow x \in A$.
 - (b) Seien $K\subseteq M$ eine nichtleere folgenkompakte und $A\subseteq M$ eine nichtleere abgeschlossene Teilmenge mit $K\cap A=\emptyset$. Der Abstand beider Mengen voneinander ist

$$d(A, K) = \inf_{k \in K, a \in A} d(a, k).$$

Zeigen Sie, dass d(A, K) > 0.

- **3. Aufgabe:** (1+1+2=4 Punkte) Sei (M,d) ein metrischer Raum, sei $A \subseteq M$ eine abgeschlossene Teilmenge und für $x \in M$ sei $h(x) := \max(0, 1 d(x, A))$. Wir betrachten eine beliebige stetige Funktionen $f: X \to \mathbb{R}_{>0}$. Zeigen Sie:
 - (a) Die Funktion $f_n(x) = h(x)^n \cdot f(x)$ ist stetig für $n \in \mathbb{N}_0$.
 - (b) Die Funktionenfolge $(f_n)_n$ ist monoton fallend, das heißt $f_n(x) \geq f_{n+1}(x)$ für alle $n \in \mathbb{N}_{>1}$ und $x \in M$.
 - (c) Für jedes $x \in M$ existiert der Grenzwert $g(x) := \lim_{n \to \infty} f_n(x)$ und es gilt

$$g(x) = \begin{cases} f(x) & x \in A, \\ 0 & x \notin A. \end{cases}$$

Falls Sie Aufgabe 2 nicht gelöst haben, können Sie die Aussage von 2 a) dennoch hier verwenden.

4. Aufgabe: (2+1+3=6 Punkte) Sei $L: \mathbb{R}^n \to \mathbb{R}^m$ eine lineare Abbildung zwischen euklidischen Räumen mit $n,m \in \mathbb{N}_{\geq 1}$. Die (n-1)-dimensionale Einheitssphäre ist

$$S^{n-1} := \left\{ x \in \mathbb{R}^n \, | \, \sum_{k=1}^n x_k^2 = 1 \right\}.$$

- (a) Zeigen Sie: $S^{n-1} \subseteq \mathbb{R}^n$ ist beschränkt und abgeschlossen in \mathbb{R}^n .
- (b) Zeigen Sie: $L = 0 \Leftrightarrow ||L|| = 0$.
- (c) Zeigen Sie: L ist injektiv genau dann, wenn $\inf_{0 \neq x \in \mathbb{R}^n} \frac{\|L(x)\|}{\|x\|} > 0$. Hinweis: Es genügt, das Infimum über $x \in S^{n-1}$ zu bilden. (Warum?)