Lineare Algebra II

Übungsblatt 11

Aufgabe 1. (2+2 Punkte). Sei R ein Hauptidealring und $f: L \to M$ ein Homomorphimsus zwischen endlich erzeugten freien R-Moduln. Zeigen Sie:

- a) Es existiert ein freier Untermodul $F \subseteq L$ mit $L = \ker f \oplus F$.
- b) Es existieren Basen x_1, \ldots, x_m von L und y_1, \ldots, y_n von M sowie Elemente $\alpha_1, \ldots, \alpha_r \in R \setminus \{0\}, r \leq \min\{m, n\},$ so dass $f(x_i) = \alpha_i y_i$ für $i = 1, \ldots, r$ und $f(x_i) = 0$ für i > r. Zusätzlich kann man $\alpha_i \mid \alpha_{i+1}$ für $1 \leq i < r$ erreichen.

Aufgabe 2. (2+2 Punkte).

- a) Sei M ein endlich erzeugter freier \mathbb{Z} -Modul und sei $L\subseteq M$ ein Untermodul. Sei e_1,\ldots,e_d ein Basis von M und f_1,\ldots,f_d ein Erzeugendensystem von L. Insbesondere gibt es $a_{ij}\in\mathbb{Z}$, so dass $f_i=\sum_{j=1}^d a_{ij}e_j$ für alle $i=1,\ldots,d$. Wir betrachten die Matrix $A:=(a_{ij})$.
 - Zeigen Sie: Ist $\det(A) \neq 0$, so ist f_1, \ldots, f_d eine Basis von L und der Restklassenmodul M/L ist endlich und für seine Kardinalität |M/L| gilt $|M/L| = |\det(A)|$.
 - *Hinweis*: Folgende Tatsache könnte nützlich sein: Für jede Matrix $B \in GL_d(\mathbb{Z})$ gilt $det(B) = \pm 1$ (warum?).
- b) Sei $(a,b) \in \mathbb{Z}^2 \setminus \{(0,0)\}$. Zeigen Sie: Für das Ideal $\mathfrak{a} := (a+b \cdot i\sqrt{2})$ im Ring $\mathbb{Z}[i\sqrt{2}]$ gilt $|\mathbb{Z}[i\sqrt{2}]/\mathfrak{a}| = a^2 + 2b^2$.

Aufgabe 3. (4 Punkte). Bestimmen Sie alle abelschen Gruppen mit 1400 Elementen (bis auf Isomorphie).

Hinweis: Geben Sie eine Liste abelscher paarweise nicht isomorpher Gruppen an, so dass jede abelsche Gruppe mit 1400 Elementen zu einer dieser isomorph ist. Begründen Sie, warum dies der Fall ist.

Aufgabe 4. (2 + 2 Punkte). Sei K ein Körper, V ein K-Vektorraum und $f\colon V\to V$ ein K-Endomorphismus.

- a) Sei V f-zyklisch. Zeigen Sie, dass dann jeder f-invariante Unterraum $U \subseteq V$ ebenfalls f-zyklisch ist.
- b) Sei $K = \mathbb{Q}$ und $V = \mathbb{Q}^3$. Finden Sie ein Beispiel für einen K-Endomorphismus f von V, so dass V f-zyklisch ist.