Lineare Algebra II

Übungsblatt 7

Aufgrund des Feiertags nächste Woche gibt es auf diesem und dem nächsten Übungsblatt nur 3 Aufgaben.

Aufgabe 1. (1+2+1) Punkte). Wir betrachten die durch

$$F(x) := 3x_1^2 + 8x_1x_2 + 3x_2^2 + \sqrt{2}x_1 + \sqrt{2}x_2$$

definierte Abbildung $F: \mathbb{R}^2 \to \mathbb{R}$, sowie die Quadrik $C:=\{x \in \mathbb{R}^2 \mid F(x)=\frac{6}{7}\}$. Mittels Hauptachsentransformation der Form $x \mapsto y = Tx + v$ für ein $T \in \mathrm{O}(2)$ und ein $v \in \mathbb{R}^2$ möchten wir C auf die Normalform $\frac{y_1^2}{c_1^2} - \frac{y_2^2}{c_2^2} = 1$ mit Konstanten $c_1, c_2 \in \mathbb{R}$ bringen. Dann ist ersichtlich, dass C eine Hyperbel ist.

- a) Schreiben Sie F in die Form $F(x) = x^t A x + b^t x$ mit einer symmetrischen Matrix $A \in \mathbb{R}^{2 \times 2}$ und einem Spaltenvektor $b \in \mathbb{R}^2$ um.
- b) Finden Sie eine orthogonale Basiswechselmatrix $S \in O(2)$, so dass $D = S^t A S$ Diagonalgestalt hat und zeigen Sie, dass dann mit $x \mapsto z = S^t x$ die Gleichung von C in $z^t D z + b^t S z = \frac{6}{7}$ überführt wird.
- c) Schreiben Sie die Gleichung $z^tDz + b^tSz = \frac{6}{7}$ mittels quadratischer Ergänzung in die Form $\frac{(z_1+\alpha)^2}{c_1^2} \frac{(z_2+\beta)^2}{c_2^2} = 1$ mit geeigneten Zahlen $\alpha, \beta, c_1, c_2 \in \mathbb{R}$ um. Mit $x \mapsto y = S^tx + \binom{\alpha}{\beta}$ ist dann die Hauptachsentransformation vollzogen.

Aufgabe 2. (1+2+1 Punkte). Sei C eine Quadrik in \mathbb{R}^2 , d.h. es gibt eine symmetrische Matrix $A \in \mathbb{R}^{2 \times 2}$, einen Spaltenvektor $b \in \mathbb{R}^2$ und ein $c \in \mathbb{R}$, so dass für $q(x) := x^t Ax + 2b^t x + c$ die Gleichung $C = \{x \in \mathbb{R}^2 \mid q(x) = 0\}$ gilt. So ein C nennt man auch einen allgemeinen Kegelschnitt. Wir bezeichnen mit $\tilde{A} = \begin{pmatrix} A & b \\ b^t & c \end{pmatrix}$ die zusammengesetzte Matrix wie in der Vorlesung. In dieser Aufgabe möchten wir untersuchen, ob der Kegelschnitt C tatsächlich der Schnitt eines Doppelkegels in \mathbb{R}^3 mit einer Ebene ist.

- a) Für $x \in \mathbb{R}^3$ sei $Q(x) := x^t \tilde{A}x$. Zeigen Sie: C kann als Schnitt der Nullstellenmenge von Q mit der Ebene $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 = 1\}$ aufgefasst werden.
- b) Zeigen Sie: Sind alle Eigenwerte von \tilde{A} ungleich Null und haben das gleiche Vorzeichen, so gilt $C = \emptyset$.
- c) Zeigen Sie: Ist rg $\tilde{A}=3$ und $C\neq\varnothing$, so gibt es eine Matrix $T\in \mathrm{O}(3)$ und Zahlen $\alpha,\beta>0$, so dass für die orthogonale Transformation $x\mapsto z=Tx$ des Koordinatensystems gilt:

$$Q(x) = 0 \iff \alpha z_1^2 + \beta z_2^2 - z_3^2 = 0.$$

Die Nullstellenmenge von Q ist also ein elliptischer Doppelkegel.

Aufgabe 3. (4 Punkte). (Erinnerung: In unserer Konvention haben Ringe immer ein Einselement und Ringhomomorphismen schicken das Einselement auf das Einselement.) Sei R ein kommutativer Ring. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- (i) R ist ein Körper.
- (ii) $R \neq 0$ und jeder Ringhomomorphismus $R \rightarrow S$ in einen Ring $S \neq 0$ ist injektiv.
- (iii) R besitzt genau zwei (verschiedene) Ideale.