Lineare Algebra II

Übungsblatt 6

Aufgabe 1. (4 Punkte). Sei V ein euklidischer bzw. unitärer \mathbb{K} -Vektorraum endlicher Dimension und seien $f, g \in \operatorname{End}_{\mathbb{K}}(V)$ selbstadjungierte Endomorphismen. Zeigen Sie oder widerlegen Sie:

- a) f + g ist selbstadjungiert.
- b) $f \circ g$ ist selbstadjungiert.
- c) f^k ist selbstadjungiert für jedes $k \in \mathbb{N}$.
- d) $f \circ g + g \circ f$ ist selbstadjungiert.

Aufgabe 2. (4 Punkte). Ein selbstadjungierter Endomorphismus φ auf einem euklidischem bzw. unitärem \mathbb{K} -Vektorraum V endlicher Dimension heißt positiv definit (bzw. positiv semi-definit), falls $\langle \varphi(x), x \rangle > 0$ (bzw. $\langle \varphi(x), x \rangle \geq 0$) für alle $x \in V \setminus \{0\}$. Entsprechend heißt eine symmetrische bzw. Hermitesche Matrix $A \in \mathbb{K}^{n \times n}$ positiv definit (bzw. positiv semi-definit), falls $x^t A \overline{x} > 0$ (bzw. $x^t A \overline{x} \geq 0$) für alle Spaltenvektoren $x \in \mathbb{K}^n \setminus \{0\}$. Mit dem Spektralsatz zeigt man leicht: Ein selbstadjungiertes $\varphi \in \operatorname{End}(V)$ ist genau dann positiv definit (bzw. positiv semi-definit), wenn alle Eigenwerte von φ positiv (bzw. nichtnegativ) sind.

Sei nun $A \in \mathbb{K}^{n \times n}$ eine positiv semi-definite symmetrische bzw. Hermitesche Matrix. Zeigen Sie: Es existiert eine eindeutige positiv semi-definite symmetrische bzw. Hermitesche Matrix B derart, dass $B^2 = A$. Dieses B wird auch mit \sqrt{A} bezeichnet.

Aufgabe 3. (4 Punkte). Zeigen Sie, dass

$$A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \in \mathbb{C}^{2 \times 2}$$

positiv semi-definit ist und berechnen Sie \sqrt{A} .

Aufgabe 4. (4 Punkte). Sei $A \in GL_n(\mathbb{K})$. Zeigen Sie: Es existiert eine eindeutige orthogonale bzw. unitäre Matrix $U \in \mathbb{K}^{n \times n}$ und eine eindeutige positiv definite symmetrische bzw. Hermitesche Matrix $P \in \mathbb{K}^{n \times n}$, so dass A = UP.

Hinweis: Für n=1 haben wir die Polarkoordinatendarstellung $a=e^{i\theta}|a|=up$ mit $p=|a|=\sqrt{a^*\cdot a}$ und $u=ap^{-1}$. Verallgemeinern Sie dies auf beliebiges n mit Hilfe von Aufgabe 2.