Lineare Algebra II

Übungsblatt 2

Aufgabe 1. (4 Punkte). Sei $U \subseteq \mathbb{R}^4$ der von den Vektoren (1, 1, 0, 1), (1, -2, 0, 0), (1, 0, -1, 2) erzeugte Untervektorraum. Finden Sie eine Orthonormalbasis von U.

Aufgabe 2. (2 + 2 Punkte). Sei $V = \mathbb{K}^n$ (für $\mathbb{K} = \mathbb{C}$ oder \mathbb{R}) mit Standardbasis X und sei $U \subseteq V$ ein Unterraum mit Orthogonalbasis u_1, \ldots, u_r . Nach Vorlesung ist die orthogonale Projektion auf U gegeben durch

$$p_U \colon V \to V, \qquad x \mapsto \sum_{k=1}^r \frac{\langle x, u_k \rangle}{\|u_k\|^2} u_k.$$

a) Zeigen Sie: Die Darstellungsmatrix $A_{p_U,X,X}$ ist gegeben durch

$$A_{p_U,X,X} = \sum_{k=1}^r \frac{1}{\|u_k\|^2} u_k \cdot \overline{u_k}^t.$$

Dabei bedeutet $\overline{u_k}^t$, dass u_k transponiert und komplex konjugiert wird, und $u_k \cdot \overline{u_k}^t$ ist das Matrizenprodukt von $u_k \in \mathbb{K}^{n \times 1}$ mit $\overline{u_k}^t \in \mathbb{K}^{1 \times n}$.

b) Sei nun n=3 und U der von $(1,1,1)^t$ und $(-i,0,i)^t$ erzeugte Unterraum von \mathbb{C}^3 . Berechnen Sie die Matrix $A_{p_U,X,X}$.

Bestimmen Sie ferner eine Basis des orthogonalen Komplements U^{\perp} .

Aufgabe 3. (4 Punkte). Sei $V = \mathcal{C}([-1,1],\mathbb{R})$ der \mathbb{R} -Vektorraum aller stetigen Abbildungen $[-1,1] \to \mathbb{R}$ mit Skalarprodukt $\langle f,g \rangle := \int_{-1}^{1} f(x)g(x)dx$.

Sei $W = \{a_0 + a_1t + a_2t^2 \mid a_0, a_1, a_2 \in \mathbb{R}\} \subseteq V$ der Unterraum aller Polynomfunktionen vom Grad ≤ 2 . Wir betrachten die orthogonale Projektion $p_W \colon V \to W$ von V auf W, gegeben durch die gleiche Vorschrift wie in Aufgabe 2 oben.

Berechnen Sie $p_W(t^4)$. Dabei bezeichnet t^4 die Abbildung $t \mapsto t^4$ aufgefasst als Element von V.

Fun Fact: Auch für den (unendlich-dimensionalen) Vektorraum V kann man zeigen, dass orthogonale Projektionen die Distanz minimieren, d.h. für jedes $f \in \mathcal{C}([-1,1],\mathbb{R})$ gilt

$$||f - p_W(f)|| < ||f - w||$$
 für alle $w \in W, w \neq p_W(f)$.

In diesem Sinne ist $p_W(f)$ die bestmögliche Approximation von f durch ein Polynom vom Grad ≤ 2 .

Aufgabe 4. (2+2 Punkte).

a) Seien $x_1, \ldots, x_n \in \mathbb{R}^n$ linear unabhängig und sei $P = P(x_1, \ldots, x_n)$ das von ihnen aufgespannte Parallelotop in \mathbb{R}^n . Argumentieren Sie mit der Definition des Volumens aus der Vorlesung, dass

$$Vol(P) = |\det(x_1| \dots |x_n)|,$$

wobei $(x_1 | \dots | x_n)$ die $n \times n$ -Matrix mit Spalten x_1, \dots, x_n bezeichnet.

b) Sei $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ eine bijektive lineare Abbildung und sei P ein von n linear unabhängigen Vektoren aufgespanntes Parallelotop in \mathbb{R}^n . Zeigen Sie:

$$Vol(\varphi(P)) = |det(\varphi)| \cdot Vol(P).$$

Was passiert, wenn φ nicht bijektiv ist?