Lineare Algebra I

Übungsblatt 4

Aufgabe 1. (1+2+1) Punkte). Geben Sie für folgende K-Vektorräume jeweils eine Basis an:

- a) $W_1 = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid 2x_1 + x_2 = 0\}$ über $K = \mathbb{R}$.
- b) $W_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + 3x_2 + 2x_4 = 0 \text{ und } 2x_1 + x_2 + 3x_3 = 0\} \text{ über } K = \mathbb{R}.$
- c) $W_3 = \langle (i, i, 0), (0, 0, 1), (-1, -1, 0) \rangle \subseteq \mathbb{C}^3$ über $K = \mathbb{C}$.

Aufgabe 2. (2+2 Punkte).

a) Sei K ein Körper. Im K-Vektorraum K^3 betrachten wir die Unterräume

$$V := \langle (1,0,0) \rangle$$
 und $W := \langle (1,1,0), (0,1,1) \rangle$.

Zeigen Sie: $K^3 = V \oplus W$.

b) Im \mathbb{R} -Vektorraum $\mathbb{R}^{\mathbb{R}} = \mathrm{Abb}(\mathbb{R}, \mathbb{R})$ betrachten wir die Unterräume

$$U := \{ f : \mathbb{R} \to \mathbb{R} \mid f(x) = -f(-x) \text{ für alle } x \in \mathbb{R} \},$$

$$G := \{ f : \mathbb{R} \to \mathbb{R} \mid f(x) = f(-x) \text{ für alle } x \in \mathbb{R} \}.$$

Zeigen Sie: $\mathbb{R}^{\mathbb{R}} = U \oplus G$.

Hinweis: Für $f \in \mathbb{R}^{\mathbb{R}}$ betrachten Sie

$$f_g: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{f(x) + f(-x)}{2} \text{ und } f_u: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{f(x) - f(-x)}{2}.$$

Aufgabe 3. (1, 5+1, 5+1 Punkte). Seien X, Y und Z Unterräume eines Vektorraums V. Zeigen Sie:

- a) $X + (Y \cap Z) \subseteq (X + Y) \cap (X + Z)$. Finden Sie außerdem ein Beispiel, bei welchem die Inklusion keine Gleichheit ist.
- b) $(X \cap Y) + (X \cap Z) \subseteq X \cap (Y + Z)$. Finden Sie außerdem ein Beispiel, bei welchem die Inklusion keine Gleichheit ist.
- c) $X \cap (Y + (X \cap Z)) = (X \cap Y) + (X \cap Z)$.

Aufgabe 4. (2+2 Punkte). Sei \mathbb{F} ein endlicher Körper mit q Elementen und V ein \mathbb{F} -Vektorraum mit dim V=n.

- a) Zeigen Sie: V ist eine endliche Menge. Bestimmen Sie die Mächtigkeit von V in Abhängigkeit von q und n.
- b) Wie viele Untervektorräume der Dimension 1 gibt es in V?