# The method of Lawrence-Venkatesh in the case of the *S*-unit equation

Oberseminar Diophantine problems and p-adic period mappings

#### Milan Malčić

UNIVERSITÄT HEIDELBERG Arbeitsgruppe Arithmetische Geometrie

June 10, 2020

The following notation will be fixed throughout.

- *K* a number field with ring of integers  $\mathcal{O}_K$ .
- ► *S* a finite set of places of *K* containing all the archimedean places.
- ▶ p<sub>1</sub>,..., p<sub>r</sub> the prime ideals of O<sub>K</sub> corresponding to the finite places in S.
- $\mathcal{O}_S$  the ring of *S*-integers.

#### Reminder on S-integers

An element  $x \in K$  is called *S*-integer if  $\operatorname{ord}_{\mathfrak{p}}(x) \geq 0$  for all prime ideals  $\mathfrak{p}$  of  $\mathcal{O}_K$  different from  $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ . The *S*-integers form a subring of *K*, which contains  $\mathcal{O}_K$  as a subring. For r = 0 it is equal to  $\mathcal{O}_K$ . We have  $\mathcal{O}_S \subseteq \mathcal{O}_{S'}$  for  $S \subseteq S'$ .

Example: If 
$$K = \mathbb{Q}$$
 and  $S = \{\infty, 7\}$ , then  $\mathcal{O}_S = \mathbb{Z}[1/7]$ .

Many diophantine problems can be reduced to S-unit equations of the form

$$\alpha x + \beta y = 1 \quad \text{in } x, y \in \mathcal{O}_{S}^{\times}, \tag{1}$$

where  $\alpha,\beta$  are fixed non-zero elements of K. Such equations are well-studied:

#### Theorem

The equation (1) has only finitely many solutions.

This theorem was implicitly proved by Siegel (1921) for  $\mathcal{O}_S = \mathcal{O}_K$ and implicitly proved by Mahler (1933) for general  $\mathcal{O}_S$ . The first explicit proof is due to Lang (1960). Lawrence and Venkatesh gave yet another proof in the case  $\alpha = \beta = 1$ :

Theorem 4.1 in [LV18]

The set

$$U := \{t \in \mathcal{O}_S^{ imes} \colon 1 - t \in \mathcal{O}_S^{ imes}\}$$

is finite.

Their proof serves as a proof-of-concept of their method.

Goal for today: Study their proof.

Notation: Henceforth we write  $\mathcal{O} = \mathcal{O}_S$ .

Suppose that  $\sigma: E \longrightarrow E$  is a field automorphism of finite order m, with fixed field F. Then E/F is a finite Galois extension of degree [E:F] = m. We will need the following lemma later on.

## Lemma 2.1 in [LV18]

Let V be a finite-dimensional E-vector space, and  $\psi \colon V \longrightarrow V$  a  $\sigma$ -semilinear automorphism. Define the centralizer of  $\psi$  in the ring of E-linear endomorphisms of V via

$$\mathfrak{Z}(\psi) := \{f \colon V \longrightarrow V \text{ an } E \text{-linear map}, f\psi = \psi f\};$$

it is an *F*-vector space. Then

$$\dim_F \mathfrak{Z}(\psi) = \dim_E \mathfrak{Z}(\psi^m),$$

where  $\psi^m$  is now *E*-linear.

A priori, from  $\mathfrak{Z}(\psi)$  being an *F*-vector space we can only deduce  $\dim_F \mathfrak{Z}(\psi) \leq (\dim_F V)^2$ .

With Lemma 2.1, we get dim<sub>F</sub>  $\mathfrak{Z}(\psi) \leq (\dim_E V)^2$ .

So our naive bound improves by a factor of  $[E : F]^2$ .

In our application later:  $F = K_v$ , a finite unramified extension of  $\mathbb{Q}_p$ ;  $E = K_v(t_0^{1/m})$ , an unramified extension of  $K_v$  of degree m;  $\sigma = \operatorname{Frob}_{E/K_v} \in \operatorname{Gal}(E/K_v)$ ; so indeed  $F = E^{\sigma}$ ; V a suitable  $H_{dR}^i$ ,  $\varphi_v$  the Frobenius on V;  $\psi = \varphi_v^{[K_v:\mathbb{Q}_p]}$ .

 $\psi$  is indeed  $\sigma$ -semilinear, as  $\varphi_{\nu}$  is  $\tau$ -semilinear and  $\sigma = \tau^{[K_{\nu}:\mathbb{Q}_{p}]}$ , where  $\tau = \operatorname{Frob}_{E/\mathbb{Q}_{p}}$ . Note that  $\tau|_{K_{\nu}} = \operatorname{Frob}_{K_{\nu}/\mathbb{Q}_{p}}$ . Recall the notation:

- $\pi: \mathcal{X} \longrightarrow \mathcal{Y}$  a smooth proper morphism of smooth  $\mathcal{O}$ -schemes,
  - $\pi \colon X \longrightarrow Y$  its base change to K.

► Fix

- (1) a place v of K such that
  - the prime number p below v satisfies p > 2,
  - $K_v/\mathbb{Q}_p$  is unramified,
  - no prime above p lies in S,
- 2 an embedding  $\iota \colon K \hookrightarrow \mathbb{C}$ ,
- (a) a cohomology degree  $i \ge 0$ ,
- (a) a point  $y_0 \in \mathcal{Y}(\mathcal{O})$ .
- ▶ For  $y \in \mathcal{Y}(\mathcal{O})$ , we have  $\rho_y \colon \operatorname{Gal}(\overline{K}/K) \longrightarrow \operatorname{Aut} H^i_{\operatorname{\acute{e}t}}(X_y \times_K \overline{K}, \mathbb{Q}_p).$

► The residue disks at *y*<sub>0</sub>:

$$\begin{split} &U_{v} := \{ y \in \mathcal{Y}(\mathcal{O}) \colon y \equiv y_{0} \mod v \}, \\ &\Omega_{v} := \{ y \in \mathcal{Y}(\mathcal{O}_{v}) \colon y \equiv y_{0} \mod v \}, \\ &U_{v}^{ss} := \{ y \in \mathcal{Y}(\mathcal{O}) \colon y \equiv y_{0} \mod v \text{ and } \rho_{y} \text{ is semisimple} \}. \end{split}$$

#### Remark

In fact, Faltings shows that all the representations we consider are semisimple, so  $U_v = U_v^{ss}$ . This requires the full weight of his argument. To give an independent proof, Lawrence and Venkatesh need to contemplate  $U_v - U_v^{ss}$ . In the case of the *S*-unit equation, this is the subject of [LV18, Lemma 4.4 (Generic simplicity)].

#### Recalling Prop. 3.4

- Let V := H<sup>i</sup><sub>dR</sub>(X<sub>y0</sub>/K), with base changes along v resp. ι denoted by V<sub>v</sub> resp. V<sub>C</sub>.
- ▶  $\mathcal{H}$  the *K*-variety of flags in *V* with the same dimensional data as the Hodge filtration on *V*, and  $h_0 \in \mathcal{H}(K)$  the point corresponding to the Hodge filtration on *V*.
- ▶ Let  $\varphi_{v}$ :  $V_{v} \longrightarrow V_{v}$  be the  $\tau$ -semilinear Frobenius coming from crystalline cohomology.
- ▶ Let  $\Gamma$  be the Zariski closure of the monodromy  $\mu \colon \pi_1(Y_{\mathbb{C}}(\mathbb{C}), y_0) \longrightarrow \operatorname{GL}(V_{\mathbb{C}}).$  Note that  $\Gamma$  acts on  $\mathcal{H}_{\mathbb{C}}(\mathbb{C}).$

Prop. 3.4 in [LV18]

Suppose that

$$\dim_{\mathcal{K}_{\nu}} Z(\varphi_{\nu}^{[\mathcal{K}_{\nu}:\mathbb{Q}_{p}]}) < \dim_{\mathbb{C}} \Gamma \cdot h_{0}^{\iota}$$

where Z(...) denotes the centralizer in  $GL_{K_v}(V_v)$ . Then  $U_v^{ss}$  is contained in a proper  $K_v$ -analytic subvariety of  $\Omega_v$ .

#### We choose

$$egin{aligned} \mathcal{Y} &= \mathbb{P}_{\mathcal{O}}^1 - \{0, 1, \infty\} \ &= \mathbb{A}_{\mathcal{O}}^1 - \{0, 1\} \ &= \operatorname{Spec} \mathcal{O}[\mathcal{T}, \mathcal{T}^{-1}, (\mathcal{T} - 1)^{-1}]. \end{aligned}$$

Then  $\mathcal{Y}(\mathcal{O}) = \{t \in \mathcal{O}_{S}^{\times} : 1 - t \in \mathcal{O}_{S}^{\times}\} =: U.$ 

Let  $\pi: \mathcal{X} \longrightarrow \mathcal{Y}$  be the Legendre family of elliptic curves, so that its fiber over t is (the smooth proper model of) the elliptic curve  $E_t: y^2 = x(x-1)(x-t).$ 

We fix an arbitrary  $y_0 \in \mathcal{Y}(\mathcal{O})$ , and an arbitrary v that fulfils the desired conditions we recalled. We choose i = 1, so that  $V_v = H^1_{dR}(X_{y_0}/K_v)$ . Then  $\dim_{K_v}(V_v) = 2$ . We need  $\dim_{K_{v}} Z(\varphi_{v}^{[K_{v}:\mathbb{Q}_{p}]}) < \dim_{\mathbb{C}} \Gamma \cdot h_{0}^{\iota}$  to hold.

Claim: The left-hand side could be as large as 4.

#### Proof.

Indeed,  $\varphi_{v}$  could be a scalar, in which case  $Z(\varphi_{v}^{[K_{v}:\mathbb{Q}_{p}]}) = \operatorname{GL}_{K_{v}}(V_{v})$ . The claim now follows since  $\dim_{K_{v}}(V_{v}) = 2$  and the algebraic group  $\operatorname{GL}_{2}$  has dimension 4.

# Claim: The right-hand side is 1.

#### Proof.

Indeed,  $\Gamma \cdot h_0^{\iota} \subseteq \mathcal{H}_{\mathbb{C}}(\mathbb{C}) = \{1\text{-dimensional subspaces of } V_{\mathbb{C}}\}.$ Fix a basis of  $V_{\mathbb{C}}$ . So  $\operatorname{im}(\mu)$  lies in  $\operatorname{GL}_2(\mathbb{C})$ , and  $\mathcal{H}_{\mathbb{C}}(\mathbb{C}) = \mathbb{P}^1_{\mathbb{C}}(\mathbb{C}).$ By [Lit],  $\operatorname{im}(\mu)$  is a finite-index subgroup of a conjugate of  $\operatorname{SL}_2(\mathbb{Z}).$ Such groups are Zariski-dense in  $\operatorname{SL}_2(\mathbb{C}).$ So  $\Gamma = \operatorname{SL}_2(\mathbb{C}).$  Thus  $\Gamma \cdot h_0^{\iota} = \mathbb{P}^1_{\mathbb{C}}(\mathbb{C}).$ 

The inequality 4 < 1 does not hold, so we can't apply Prop. 3.4.

Let  $m \in \mathbb{N}$ . Suppose that we can modify the Legendre family so that each fiber is a disjoint union of m elliptic curves.

Then the splitting of  $X_{y_0,\mathbb{C}}$  into geometric components induces a splitting  $V_{\mathbb{C}} = \bigoplus_{i=1}^{m} V_j$ , with  $\dim_{\mathbb{C}}(V_j) = 2$  for all j.

One should then be able to deduce (from the monodromy of the unmodified Legendre family) that dim<sub> $\mathbb{C}</sub> \Gamma \cdot h_0^{\iota} = m$ .</sub>

On the other hand,  $\dim_{K_v}(V_v) = 2m$ , so our naive bound for the centralizer amounts to  $4m^2$ .

So both the monodromy and the centralizer grow, whence the false inequality 4 < 1 becomes the false inequality  $4m^2 < m$ , and we seemingly gain nothing...

## But...



Suppose that, because of the disconnectedness of the fibers,  $V_v$  obtains the structure of an *E*-vector space, where  $E/K_v$  is a certain finite unramified extension of degree *m*.

Lemma 2.1 then improves our naive bound by  $m^2$ , i.e. we get

$$\dim_{K_{\nu}} Z'(\varphi^{[K_{\nu}:\mathbb{Q}_p]}) \leq 4m^2/m^2 = 4$$

where Z'(...) is now the centralizer in  $GL_E(V_v)$ . The reason we may shift our interest from Z to Z' is that the Gauss-Manin identifications are in a certain way compatible with the *E*-linear structure.

Altogether, the false inequality  $4m^2 < m$  becomes the potentially correct inequality 4 < m. We won't be able to choose m freely in the rigorous proof, e.g. it will have to be a power of 2. So we will need to ensure that  $m \ge 8$ . This won't be a problem. (Indeed, as we shall see, we could force m to be arbitrarily large.)

Theorem 4.1 in [LV18]

The set

$$U := \{t \in \mathcal{O}_S^{ imes} \colon 1 - t \in \mathcal{O}_S^{ imes}\}$$

is finite.

Structure of the proof:

- (I) Setup and reduction to Lemma 4.2,
- (II) "Generic simplicity" (Lemma 4.4),
- (III) Modified Legendre family and main argument (Lemma 4.2),
- (IV) "Big monodromy" (Lemma 4.3).

We will focus on (III), and sketch or assume the rest.

Let m be the largest power of 2 dividing the order of the group of roots of unity in K.

We may freely enlarge K and S (this only makes U larger), so w.l.o.g. assume that  $m \ge 8$  and S contains all the places above 2.

Define  $U_1 := \{t \in U : t \notin (K^{\times})^2\}$ . A short elementary argument shows that  $U \subseteq U_1 \cup U_1^2 \cup U_1^4 \cup \ldots \cup U_1^m$ .

Hence it suffices to show that  $U_1$  is finite.

The definitions of m and  $U_1$  ensure that, for every  $t \in U_1$ , the degree of the cyclic Galois extension  $K(t^{1/m})/K$  is m.

By Hermite-Minkowski, the set

$$\{K(t^{1/m}): t \in U_1\}/K$$
-isomorphy

is finite.

Fixing a cyclic Galois extension L/K of degree m, we see that it suffices to show that

$$U_{1,L} := \{t \in U_1 \colon K(t^{1/m}) \cong L\}$$

is finite.

Choose a prime v of K such that

- (i) the Frobenius at v generates Gal(L/K);
- (ii) the prime p of  $\mathbb{Q}$  below v is unramified in K;
- (iii) no prime of S lies above p.

Side note: Property (i) implies that v is inert in L and that the degree of the unramified extension  $L_v/K_v$  is also m. Property (ii) implies that  $K_v/\mathbb{Q}_p$  is unramified. In summary, it suffices to prove the following lemma.

Lemma 4.2 in [LV18]

In the situation as above, the set

$$U_{1,L,v} := \{t \in U_{1,L} \colon t \equiv t_0 \mod v\}$$

is finite for any fixed  $t_0 \in \mathcal{O}$ .

For the proof of Lemma 4.2, we will need:

Lemma 4.4 in [LV18] (Generic simplicity)

Let L' be a number field and p' an odd prime number that is unramified in L'. There are only finitely many  $z \in L'$  such that

- z and 1 z are both p'-units, and
- ▶ the Galois representation of Gal(*L*'/*L*') on the Tate module *T<sub>p'</sub>(E<sub>z</sub>) = H<sup>1</sup><sub>ét</sub>(E<sub>z,L'</sub>, Q<sub>p'</sub>)* of the elliptic curve *E<sub>z</sub>*: *y<sup>2</sup> = x(x − 1)(x − z)* is not simple.

Let 
$$\mathcal{Y} = \mathbb{P}^1_{\mathcal{O}} - \{0, 1, \infty\}$$
 and let  $\mathcal{Y}' = \mathbb{P}^1_{\mathcal{O}} - \{0, \mu_m, \infty\}.$ 

Let  $\mathcal{X} \longrightarrow \mathcal{Y}'$  be the Legendre family and let  $\pi$  be the composition

$$\mathcal{X} \longrightarrow \mathcal{Y}' \xrightarrow{u \mapsto u^m} \mathcal{Y},$$

which we call the Modified Legendre family. The geometric fiber  $X_t$  over  $t \in Y(K)$  is

$$\coprod_{z^m=t} E_z$$

where  $E_z$  is the curve  $y^2 = x(x-1)(x-z)$ .

**Crucial observation**:  $X_t$  is a priori a *K*-scheme, but the factorization  $X \longrightarrow Y' \longrightarrow Y$  induces on  $X_t$  the structure of a  $K(t^{1/m})$ -scheme via the morphism  $X_t \longrightarrow Y'_t \cong \operatorname{Spec} K(t^{1/m})$ .

In particular,  $V_{\nu}$  is naturally a vector space over  $K_{\nu}(t^{1/m})$ . Note that  $K_{\nu}(t^{1/m})/K_{\nu}$  is unramified and  $[K_{\nu}(t^{1/m}):K_{\nu}] = m$ , as we have previously observed in a side note.

*Proof of Lemma 4.2*: The proof won't be an application of Prop. 3.4, but rather an argument similar to the proof of Prop. 3.4, with added complication coming from the interaction of the fields K and L.

Fix a  $t_0 \in U_{1,L}$ . Need to show:

$$U_{1,L,v} := \{t \in U_{1,L} \colon t \equiv t_0 \mod v\}$$

is finite.

By Lemma 4.4,  $U_{1,L,v} - (U_{1,L,v})^{ss}$  is finite.

By Lemma 2.3,  $(U_{1,L,v})^{ss}$  produces finitely many isomorphy classes of representations.

Fix an isomorphy class of pairs  $(K(t^{1/m}), \rho_t|_{\mathcal{G}_{K(t^{1/m})}})$ . Via restriction we get an isomorphy class of pairs  $(K_v(t^{1/m}), \rho_t|_{\mathcal{G}_{K_v(t^{1/m})}})$ . By *p*-adic Hodge theory, it corresponds to an isomorphy class of the data

$$D_t := \left( H^1_{\mathsf{dR}}(X_t/{\mathcal{K}_{\mathcal{V}}}) ext{ as } {\mathcal{K}_{\mathcal{V}}(t^{1/m})} ext{-module}, ext{Frob}, ext{Fil} 
ight).$$

We see that it suffices to show that

$$\underline{\underline{U}}_{1,L,\nu} := \{t \in U_{1,L,\nu} \colon D_t \text{ is in the fixed class}\}$$

is finite.

One can show that the Gauss-Manin connection induces a  $K_{\nu}$ -isomorphism  $K_{\nu}(t^{1/m}) \cong K_{\nu}(t_0^{1/m})$  such that the identifications

$$\mathsf{GM} \colon V_{\mathsf{v}} = H^1_{\mathsf{dR}}(X_{t_0}/K_{\mathsf{v}}) \stackrel{\sim}{\longrightarrow} H^1_{\mathsf{dR}}(X_t/K_{\mathsf{v}})$$

are compatible with the structure of  $K_{\nu}(t^{1/m}) \cong K_{\nu}(t_0^{1/m})$ -modules.

Hence the period map



factors as



Altogether, it follows that

$$\Phi\left(\underline{\underline{U}}_{1,L,\nu}\right) \subseteq \bigcup_{i=1}^{m} a \ Z_{\alpha_i} \text{-orbit}$$
(2)

where  $\{\alpha_1, \ldots, \alpha_m\} = \mathsf{Gal}(K_v(t_0^{1/m})/K_v)$  and

 $Z_{\alpha_i} := \{ \alpha_i \text{-linear isomorphisms } V_v \longrightarrow V_v \text{ that commute with } \varphi_v \}.$ 

Let 
$$\psi := \varphi_{v}^{[K_{v}:\mathbb{Q}_{p}]}$$
. We can replace  $Z_{\alpha_{i}}$  by  $Z_{\alpha_{i}}(\psi)$  in (2).

The Lie algebra of the latter is

 $\mathfrak{Z}_{\alpha_i} := \{\alpha_i \text{-linear endomorphisms } V_{\nu} \longrightarrow V_{\nu} \text{ that commute with } \psi\}.$ 

It is isomorphic to  $\mathfrak{Z}_{id} =: \mathfrak{Z}$ , and  $\dim_{K_v} \mathfrak{Z} \leq 4$  by Lemma 2.1.

Hence the right-hand side of (2) is contained in a Zariski-closed subset of dimension  $\leq 4$ .

To conclude the proof of Lemma 4.2 by applying Lemma 3.3, it remains to show that  $\dim_{\mathbb{C}} \Gamma \cdot h_0^{\iota} > 4$ . Indeed, knowing the monodromy of the (unmodified) Legendre family, one deduces that  $\dim_{\mathbb{C}} \Gamma \cdot h_0^{\iota} = m$ . This is the subject of Lemma 4.4 (Big monodromy). Since  $m \ge 8 > 4$ , this completes the proof.

# [Lit] Daniel Litt.

Variation of hodge structures.

Notes for Number Theory Learning Seminar on Shimura Varieties. Available at http://virtualmath1.stanford. edu/~conrad/shimsem/2013Notes/Littvhs.pdf.

[LV18] Brian Lawrence and Akshay Venkatesh. Diophantine problems and p-adic period mappings. Preprint, 2018. Available at https://arxiv.org/abs/1807.02721v3.