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Notations and preliminaries

The following notation will be fixed throughout.

I K a number field with ring of integers OK .

I S a finite set of places of K containing all the archimedean
places.

I p1, . . . , pr the prime ideals of OK corresponding to the finite
places in S .

I OS the ring of S-integers.

Reminder on S-integers

An element x ∈ K is called S-integer if ordp(x) ≥ 0 for all prime
ideals p of OK different from p1, . . . , pr . The S-integers form a
subring of K , which contains OK as a subring. For r = 0 it is
equal to OK . We have OS ⊆ OS ′ for S ⊆ S ′.

Example: If K = Q and S = {∞, 7}, then OS = Z[1/7].



The S-unit equation (in two unknowns)

Many diophantine problems can be reduced to S-unit equations of
the form

αx + βy = 1 in x , y ∈ O×S , (1)

where α, β are fixed non-zero elements of K . Such equations are
well-studied:

Theorem

The equation (1) has only finitely many solutions.

This theorem was implicitly proved by Siegel (1921) for OS = OK

and implicitly proved by Mahler (1933) for general OS . The first
explicit proof is due to Lang (1960).



Lawrence and Venkatesh gave yet another proof in the case
α = β = 1:

Theorem 4.1 in [LV18]

The set

U := {t ∈ O×S : 1− t ∈ O×S }

is finite.

Their proof serves as a proof-of-concept of their method.

Goal for today: Study their proof.

Notation: Henceforth we write O = OS .



Interlude: Linear Algebra

Suppose that σ : E −→ E is a field automorphism of finite order
m, with fixed field F . Then E/F is a finite Galois extension of
degree [E : F ] = m.
We will need the following lemma later on.

Lemma 2.1 in [LV18]

Let V be a finite-dimensional E -vector space, and ψ : V −→ V a
σ-semilinear automorphism. Define the centralizer of ψ in the ring
of E -linear endomorphisms of V via

Z(ψ) := {f : V −→ V an E -linear map, f ψ = ψf };

it is an F -vector space. Then

dimF Z(ψ) = dimE Z(ψm),

where ψm is now E -linear.



A priori, from Z(ψ) being an F -vector space we can only deduce
dimF Z(ψ) ≤ (dimF V )2.

With Lemma 2.1, we get dimF Z(ψ) ≤ (dimE V )2.

So our naive bound improves by a factor of [E : F ]2.

In our application later:
F = Kv , a finite unramified extension of Qp;

E = Kv (t
1/m
0 ), an unramified extension of Kv of degree m;

σ = FrobE/Kv
∈ Gal(E/Kv ); so indeed F = Eσ;

V a suitable H i
dR , ϕv the Frobenius on V ;

ψ = ϕ
[Kv :Qp ]
v .

ψ is indeed σ-semilinear, as ϕv is τ -semilinear and σ = τ [Kv :Qp ],
where τ = FrobE/Qp

. Note that τ |Kv = FrobKv/Qp
.



Recalling the tools for Thm. 4.1

Recall the notation:

I π : X −→ Y a smooth proper morphism of smooth
O-schemes,
π : X −→ Y its base change to K .

I Fix
1 a place v of K such that

I the prime number p below v satisfies p > 2,
I Kv/Qp is unramified,
I no prime above p lies in S ,

2 an embedding ι : K ↪−→ C,
3 a cohomology degree i ≥ 0,
4 a point y0 ∈ Y(O).

I For y ∈ Y(O), we have
ρy : Gal(K/K ) −→ AutH i

ét(Xy ×K K ,Qp).



More notation

I The residue disks at y0:

Uv := {y ∈ Y(O) : y ≡ y0 mod v},
Ωv := {y ∈ Y(Ov ) : y ≡ y0 mod v},
Uss
v := {y ∈ Y(O) : y ≡ y0 mod v and ρy is semisimple}.

Remark

In fact, Faltings shows that all the representations we consider are
semisimple, so Uv = Uss

v . This requires the full weight of his
argument. To give an independent proof, Lawrence and Venkatesh
need to contemplate Uv − Uss

v . In the case of the S-unit equation,
this is the subject of [LV18, Lemma 4.4 (Generic simplicity)].



Recalling Prop. 3.4

I Let V := H i
dR(Xy0/K ), with base changes along v resp. ι

denoted by Vv resp. VC.
I H the K -variety of flags in V with the same dimensional data

as the Hodge filtration on V , and h0 ∈ H(K ) the point
corresponding to the Hodge filtration on V .

I Let ϕv : Vv −→ Vv be the τ -semilinear Frobenius coming
from crystalline cohomology.

I Let Γ be the Zariski closure of the monodromy
µ : π1(YC(C), y0) −→ GL(VC). Note that Γ acts on HC(C).

Prop. 3.4 in [LV18]

Suppose that

dimKv Z (ϕ
[Kv :Qp ]
v ) < dimC Γ · hι0

where Z (. . .) denotes the centralizer in GLKv (Vv ).Then Uss
v is

contained in a proper Kv -analytic subvariety of Ωv .



Proof of Thm 4.1: First attempt

We choose

Y = P1
O − {0, 1,∞}

= A1
O − {0, 1}

= SpecO[T ,T−1, (T − 1)−1].

Then Y(O) = {t ∈ O×S : 1− t ∈ O×S } =: U.

Let π : X −→ Y be the Legendre family of elliptic curves, so that
its fiber over t is (the smooth proper model of) the elliptic curve
Et : y2 = x(x − 1)(x − t).

We fix an arbitrary y0 ∈ Y(O), and an arbitrary v that fulfils the
desired conditions we recalled.
We choose i = 1, so that Vv = H1

dR(Xy0/Kv ). Then
dimKv (Vv ) = 2.



We need dimKv Z (ϕ
[Kv :Qp ]
v ) < dimC Γ · hι0 to hold.

Claim: The left-hand side could be as large as 4.

Proof.

Indeed, ϕv could be a scalar, in which case

Z (ϕ
[Kv :Qp ]
v ) = GLKv (Vv ). The claim now follows since

dimKv (Vv ) = 2 and the algebraic group GL2 has dimension 4.

Claim: The right-hand side is 1.

Proof.

Indeed, Γ · hι0 ⊆ HC(C) = {1-dimensional subspaces of VC}.
Fix a basis of VC. So im(µ) lies in GL2(C), and HC(C) = P1

C(C).
By [Lit], im(µ) is a finite-index subgroup of a conjugate of SL2(Z).
Such groups are Zariski-dense in SL2(C).
So Γ = SL2(C). Thus Γ · hι0 = P1

C(C).

The inequality 4 < 1 does not hold, so we can’t apply Prop. 3.4.



Heuristic ideas for second attempt

Let m ∈ N. Suppose that we can modify the Legendre family so
that each fiber is a disjoint union of m elliptic curves.

Then the splitting of Xy0,C into geometric components induces a
splitting VC =

⊕m
j=1 Vj , with dimC(Vj) = 2 for all j .

One should then be able to deduce (from the monodromy of the
unmodified Legendre family) that dimC Γ · hι0 = m.

On the other hand, dimKv (Vv ) = 2m, so our naive bound for the
centralizer amounts to 4m2.

So both the monodromy and the centralizer grow, whence the false
inequality 4 < 1 becomes the false inequality 4m2 < m, and we
seemingly gain nothing...



But...



Suppose that, because of the disconnectedness of the fibers, Vv

obtains the structure of an E -vector space, where E/Kv is a
certain finite unramified extension of degree m.

Lemma 2.1 then improves our naive bound by m2, i.e. we get

dimKv Z
′(ϕ[Kv :Qp ]) ≤ 4m2/m2 = 4

where Z ′(...) is now the centralizer in GLE (Vv ). The reason we
may shift our interest from Z to Z ′ is that the Gauss-Manin
identifications are in a certain way compatible with the E -linear
structure.

Altogether, the false inequality 4m2 < m becomes the potentially
correct inequality 4 < m. We won’t be able to choose m freely in
the rigorous proof, e.g. it will have to be a power of 2. So we will
need to ensure that m ≥ 8. This won’t be a problem. (Indeed, as
we shall see, we could force m to be arbitrarily large.)



Proof of Thm. 4.1: Second attempt

Theorem 4.1 in [LV18]

The set

U := {t ∈ O×S : 1− t ∈ O×S }

is finite.

Structure of the proof:

(I) Setup and reduction to Lemma 4.2,

(II) “Generic simplicity” (Lemma 4.4),

(III) Modified Legendre family and main argument (Lemma 4.2),

(IV) “Big monodromy” (Lemma 4.3).

We will focus on (III), and sketch or assume the rest.



(I) Setup and reduction to Lemma 4.2

Let m be the largest power of 2 dividing the order of the group of
roots of unity in K .

We may freely enlarge K and S (this only makes U larger), so
w.l.o.g. assume that m ≥ 8 and S contains all the places above 2.

Define U1 := {t ∈ U : t /∈ (K×)2}. A short elementary argument
shows that U ⊆ U1 ∪ U2

1 ∪ U4
1 ∪ . . . ∪ Um

1 .

Hence it suffices to show that U1 is finite.



The definitions of m and U1 ensure that, for every t ∈ U1, the
degree of the cyclic Galois extension K (t1/m)/K is m.

By Hermite-Minkowski, the set

{K (t1/m) : t ∈ U1}
/
K -isomorphy

is finite.
Fixing a cyclic Galois extension L/K of degree m, we see that it
suffices to show that

U1,L := {t ∈ U1 : K (t1/m) ∼= L}

is finite.



Choose a prime v of K such that

(i) the Frobenius at v generates Gal(L/K );

(ii) the prime p of Q below v is unramified in K ;

(iii) no prime of S lies above p.

Side note: Property (i) implies that v is inert in L and that the
degree of the unramified extension Lv/Kv is also m.
Property (ii) implies that Kv/Qp is unramified.



In summary, it suffices to prove the following lemma.

Lemma 4.2 in [LV18]

In the situation as above, the set

U1,L,v := {t ∈ U1,L : t ≡ t0 mod v}

is finite for any fixed t0 ∈ O.



(II) Generic simplicity

For the proof of Lemma 4.2, we will need:

Lemma 4.4 in [LV18] (Generic simplicity)

Let L′ be a number field and p′ an odd prime number that is
unramified in L′. There are only finitely many z ∈ L′ such that

I z and 1− z are both p′-units, and

I the Galois representation of Gal(L′/L′) on the Tate module
Tp′(Ez) = H1

ét(Ez,L′ ,Qp′) of the elliptic curve

Ez : y2 = x(x − 1)(x − z) is not simple.



(III) Modified Legendre family and proof of Lemma 4.2

Let Y = P1
O − {0, 1,∞} and let Y ′ = P1

O − {0, µm,∞}.

Let X −→ Y ′ be the Legendre family and let π be the composition

X −→ Y ′ u 7→um−−−−→ Y,

which we call the Modified Legendre family. The geometric fiber
Xt over t ∈ Y (K ) is ∐

zm=t

Ez

where Ez is the curve y2 = x(x − 1)(x − z).



Crucial observation: Xt is a priori a K -scheme, but the
factorization X −→ Y ′ −→ Y induces on Xt the structure of a
K (t1/m)-scheme via the morphism Xt −→ Y ′t

∼= SpecK (t1/m).

In particular, Vv is naturally a vector space over Kv (t1/m). Note
that Kv (t1/m)/Kv is unramified and [Kv (t1/m) : Kv ] = m, as we
have previously observed in a side note.

Proof of Lemma 4.2 : The proof won’t be an application of Prop.
3.4, but rather an argument similar to the proof of Prop. 3.4, with
added complication coming from the interaction of the fields K
and L.



Fix a t0 ∈ U1,L. Need to show:

U1,L,v := {t ∈ U1,L : t ≡ t0 mod v}

is finite.
By Lemma 4.4, U1,L,v − (U1,L,v )ss is finite.
By Lemma 2.3, (U1,L,v )ss produces finitely many isomorphy classes
of representations.

Fix an isomorphy class of pairs
(
K (t1/m), ρt |G

K(t1/m)

)
. Via

restriction we get an isomorphy class of pairs(
Kv (t1/m), ρt |G

Kv (t1/m)

)
. By p-adic Hodge theory, it corresponds to

an isomorphy class of the data

Dt :=
(
H1

dR(Xt/Kv ) as Kv (t1/m)-module,Frob,Fil
)
.

We see that it suffices to show that

U
1,L,v

:= {t ∈ U1,L,v : Dt is in the fixed class}

is finite.



One can show that the Gauss-Manin connection induces a
Kv -isomorphism Kv (t1/m) ∼= Kv (t

1/m
0 ) such that the identifications

GM: Vv = H1
dR(Xt0/Kv )

∼−→ H1
dR(Xt/Kv )

are compatible with the structure of Kv (t1/m) ∼= Kv (t
1/m
0 )

-modules.

Hence the period map

Ωv
Φ

**
{Kv -subspaces of dimension m in Vv} ∼ // Gr(2m,m)Kv

factors as



Ωv

Φ
))

// {Kv (t
1/m
0 )-lines in Vv}

��

∼ // P1

Kv (t
1/m
0 )

��
{Kv -subspaces of dimension m in Vv} ∼ // Gr(2m,m)Kv

Altogether, it follows that

Φ
(
U

1,L,v

)
⊆

m⋃
i=1

a Zαi -orbit (2)

where {α1, . . . , αm} = Gal(Kv (t
1/m
0 )/Kv ) and

Zαi := {αi -linear isomorphisms Vv −→ Vv that commute with ϕv}.

Let ψ := ϕ
[Kv :Qp ]
v . We can replace Zαi by Zαi (ψ) in (2).



The Lie algebra of the latter is

Zαi := {αi -linear endomorphisms Vv −→ Vv that commute with ψ}.

It is isomorphic to Zid =: Z, and dimKv Z ≤ 4 by Lemma 2.1.

Hence the right-hand side of (2) is contained in a Zariski-closed
subset of dimension ≤ 4.

To conclude the proof of Lemma 4.2 by applying Lemma 3.3, it
remains to show that dimC Γ · hι0 > 4. Indeed, knowing the
monodromy of the (unmodified) Legendre family, one deduces that
dimC Γ · hι0 = m. This is the subject of Lemma 4.4 (Big
monodromy). Since m ≥ 8 > 4, this completes the proof.
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