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The following notation will be fixed throughout.
» K a number field with ring of integers Ok.
» S a finite set of places of K containing all the archimedean
places.
> p1,..., P, the prime ideals of Ok corresponding to the finite
places in S.
» (s the ring of S-integers.

Reminder on S-integers

An element x € K is called S-integer if ord,(x) > 0 for all prime
ideals p of Ok different from p1,...,p,. The S-integers form a
subring of K, which contains Ok as a subring. For r =0 it is
equal to Ok. We have Os C Oss for S C §'.

Example: If K=Q and S = {c0, 7}, then Os = Z[1/7].



Many diophantine problems can be reduced to S-unit equations of
the form

ax+By=1 inx,ye€OFf, (1)
where «, (5 are fixed non-zero elements of K. Such equations are

well-studied:

Theorem
The equation (1) has only finitely many solutions. J

This theorem was implicitly proved by Siegel (1921) for Os = Ok
and implicitly proved by Mahler (1933) for general Os. The first
explicit proof is due to Lang (1960).



Lawrence and Venkatesh gave yet another proof in the case
a=p=1

Theorem 4.1 in [LV18]
The set
U={teO5:1-tec 05}
is finite. )

Their proof serves as a proof-of-concept of their method.
Goal for today: Study their proof.

Notation: Henceforth we write O = Og.



Suppose that o: E — E is a field automorphism of finite order
m, with fixed field F. Then E/F is a finite Galois extension of
degree [E : F] = m.

We will need the following lemma later on.

Lemma 2.1 in [LV18]

Let V be a finite-dimensional E-vector space, and ¢: V — V a
o-semilinear automorphism. Define the centralizer of ¢ in the ring
of E-linear endomorphisms of V via

3(¢) :={f: V— V an E-linear map, fi) = f};
it is an F-vector space. Then

dimg 3(1p) = dimg 3(y™),

where ¢ is now E-linear.




A priori, from 3(%)) being an F-vector space we can only deduce
dimg 3(¢) < (dimg V)2

With Lemma 2.1, we get dimg 3(¢)) < (dimg V)2.
So our naive bound improves by a factor of [E : F]?.

In our application later:
F = Ky, a finite unramified extension of Qp;

E= Kv(té/m), an unramified extension of K, of degree m;
o = Frobg/k, € Gal(E/K,); so indeed F = E7;

V' a suitable HQR, ¢, the Frobenius on V/;

e A

1 is indeed o-semilinear, as ¢, is 7-semilinear and o = T[KV:QP],
where 7 = FrObE/Qp' Note that ’7'|Kv = FrobKv/@p.



Recall the notation:

» m: X — )Y a smooth proper morphism of smooth
O-schemes,
m: X — Y its base change to K.
» Fix
Q a place v of K such that

> the prime number p below v satisfies p > 2,
> K,/Qp is unramified,
> no prime above p liesin S,

@ an embedding ¢: K — C,
© a cohomology degree i > 0,
@ a point y € Y(0).
> For y € Y(O), we have B
py: Gal(K/K) — Aut Hét(Xy Xk K,Qp).



» The residue disks at yp:

U ={yeYO):y=y modv},
Q,={yeY,): y=yo mod v},
U ={yeY(O): y=y modvand p, is semisimple}.

Remark

In fact, Faltings shows that all the representations we consider are
semisimple, so U, = U;®. This requires the full weight of his
argument. To give an independent proof, Lawrence and Venkatesh
need to contemplate U, — U;’. In the case of the S-unit equation,
this is the subject of [LV18, Lemma 4.4 (Generic simplicity)].




> Let V := H5(X,,/K), with base changes along v resp. ¢
denoted by V, resp. V.

» H the K-variety of flags in V with the same dimensional data
as the Hodge filtration on V, and hy € H(K) the point
corresponding to the Hodge filtration on V.

> Let ¢, : V, — V|, be the 7-semilinear Frobenius coming
from crystalline cohomology.

» Let [ be the Zariski closure of the monodromy
w: m1(Ye(C), yo) — GL(Ve). Note that I acts on H¢(C).

Prop. 3.4 in [LV18]
Suppose that

dimg, Z(F ) < dime T - b

where Z(...) denotes the centralizer in GLg, (V) ). Then U is
contained in a proper K,-analytic subvariety of Q,.




We choose

Y =P, —{0,1,00}
= Ap —{0,1}
= SpecO|[T, T_l, (T - 1)_1].

Then Y(O)={tcO:1-tc O} =:U.

Let m: X — ) be the Legendre family of elliptic curves, so that
its fiber over t is (the smooth proper model of) the elliptic curve
E:: y? = x(x —1)(x — t).

We fix an arbitrary yp € Y(O), and an arbitrary v that fulfils the
desired conditions we recalled.

We choose i = 1, so that V|, = H}5(X,,/K,). Then

dimg, (V) = 2.



We need dimk, Z(o %) < dime T - A4 to hold.

Claim: The left-hand side could be as large as 4.

Proof.

Indeed, ¢, could be a scalar, in which case

Z( %) = GLk (V). The claim now follows since

dimg, (V,) = 2 and the algebraic group GL, has dimension 4. [

Claim: The right-hand side is 1.

Proof.

Indeed, T - hf C Hc(C) = {1-dimensional subspaces of V¢}.

Fix a basis of V. So im(u) lies in GL2(C), and Hc(C) = PL(C).
By [Lit], im(u) is a finite-index subgroup of a conjugate of SLy(Z).
Such groups are Zariski-dense in SL(C).

So I =SLy(C). Thus I - hy = PL(C). O

v

The inequality 4 < 1 does not hold, so we can’t apply Prop. 3.4.



Let m € N. Suppose that we can modify the Legendre family so
that each fiber is a disjoint union of m elliptic curves.

Then the splitting of X, ¢ into geometric components induces a
splitting Ve = @72, Vj, with dimc¢(V}) = 2 for all j.

One should then be able to deduce (from the monodromy of the
unmodified Legendre family) that dim¢ T - hy = m.

On the other hand, dimg, (V,) = 2m, so our naive bound for the
centralizer amounts to 4m?.

So both the monodromy and the centralizer grow, whence the false
inequality 4 < 1 becomes the false inequality 4m? < m, and we
seemingly gain nothing...



But...

‘; WHAT IF I;I'Illll YOU

\

\

THERE WAS A WﬂY'SlI THAT
ONLY THE MONODROMY GETS ENLARGED




Suppose that, because of the disconnectedness of the fibers, V,
obtains the structure of an E-vector space, where E/K, is a
certain finite unramified extension of degree m.

Lemma 2.1 then improves our naive bound by m?, i.e. we get
diva Z,(@[Kv:@p]) S 4m2/m2 =14

where Z'(...) is now the centralizer in GLg(V,). The reason we
may shift our interest from Z to Z’ is that the Gauss-Manin
identifications are in a certain way compatible with the E-linear
structure.

Altogether, the false inequality 4m? < m becomes the potentially
correct inequality 4 < m. We won't be able to choose m freely in
the rigorous proof, e.g. it will have to be a power of 2. So we will
need to ensure that m > 8. This won't be a problem. (Indeed, as
we shall see, we could force m to be arbitrarily large.)



Theorem 4.1 in [LV18]
The set

U={tc05:1-tec0O5}

is finite.

Structure of the proof:

(I) Setup and reduction to Lemma 4.2,

(1)
(I11) Modified Legendre family and main argument (Lemma 4.2),
)

(IV

“Generic simplicity” (Lemma 4.4),

“Big monodromy” (Lemma 4.3).

We will focus on (IIl), and sketch or assume the rest.



Let m be the largest power of 2 dividing the order of the group of
roots of unity in K.

We may freely enlarge K and S (this only makes U larger), so
w.l.o.g. assume that m > 8 and S contains all the places above 2.

Define Uy := {t € U: t ¢ (K*)?}. A short elementary argument
shows that U C Uy U U2 U U U ... U U]

Hence it suffices to show that U is finite.



The definitions of m and U; ensure that, for every t € Uy, the
degree of the cyclic Galois extension K(t/™)/K is m.

By Hermite-Minkowski, the set

{K(t™): t € U} / K isomorphy

is finite.
Fixing a cyclic Galois extension L/K of degree m, we see that it
suffices to show that

Uy = {te U K(tY™) =L}

is finite.



Choose a prime v of K such that
(i) the Frobenius at v generates Gal(L/K);
(ii) the prime p of Q below v is unramified in K;

(i) no prime of S lies above p.

Side note: Property (i) implies that v is inert in L and that the
degree of the unramified extension L, /K, is also m.
Property (ii) implies that K, /Qp is unramified.



In summary, it suffices to prove the following lemma.

Lemma 4.2 in [LV18]

In the situation as above, the set

Ul,L,v = {t € Ul,L: t=1ty; mod V}

is finite for any fixed to € O.




For the proof of Lemma 4.2, we will need:

Lemma 4.4 in [LV18] (Generic simplicity)

Let L’ be a number field and p’ an odd prime number that is
unramified in L’. There are only finitely many z € L’ such that
» z and 1 — z are both p/-units, and

> the Galois representation of Gal(L’/L’) on the Tate module
Ty (E;) = HL(E, 77, Q) of the elliptic curve
E,: y? = x(x — 1)(x — z) is not simple.




Lety:P%Q_{O,l,OO} and let y/:P}Q_{O"U”"’OO}'

Let X — ) be the Legendre family and let m be the composition
X — Y ol y,

which we call the Modified Legendre family. The geometric fiber
Xe over t € Y(K) is

1=

zM=t

where E, is the curve y? = x(x — 1)(x — 2).



Crucial observation: X; is a priori a K-scheme, but the
factorization X — Y/ — Y induces on X; the structure of a
K(t'/™)-scheme via the morphism X; — Y/ = Spec K(t*/™).

In particular, V, is naturally a vector space over K, (t'/™). Note
that K, (t/™)/K, is unramified and [K, (/™) : K,] = m, as we
have previously observed in a side note.

Proof of Lemma 4.2: The proof won't be an application of Prop.
3.4, but rather an argument similar to the proof of Prop. 3.4, with
added complication coming from the interaction of the fields K
and L.



Fix a tg € Uy,.. Need to show:
Uiy ={te U :t=tg mod v}

is finite.

By Lemma 4.4, Ul,L,v — (Ul’L’v)ss is finite.

By Lemma 2.3, (Uy,1,,)* produces finitely many isomorphy classes
of representations.

Fix an isomorphy class of pairs (K(tl/m),pt|GK(t1/m)>. Via
restriction we get an isomorphy class of pairs

(Kv(tl/m):Pt|G > By p-adic Hodge theory, it corresponds to

Kv(tl/m)
an isomorphy class of the data

D, = (HjR(Xt/KV) as K, (t*/™)-module, Frob, Fil) .
We see that it suffices to show that
gl,L,v :={t € Uy,,: D; is in the fixed class}

is finite.



One can show that the Gauss-Manin connection induces a
K, -isomorphism K, (t%/™) = Kv(té/m) such that the identifications

GM: V, = Hix(Xw/K,) — Hir(X:/K.)

are compatible with the structure of K, (t'/™) = K\,(té/m)

-modules.
Hence the period map
Q,
\
{K,-subspaces of dimension m in V,,} ——= Gr(2m, m)g,

factors as



1/m T . -~ o pl
{K.(ty' ")-lines in V, } PKV(té/’")

T |

{K,-subspaces of dimension m in V, } —— Gr(2m, m)y,

Altogether, it follows that

® (gL LN) c Lmj a Z,,-orbit (2)
i=1

where {a1,.. ., am} = Gal(K, (t5/™)/K,) and

Z,, := {aj-linear isomorphisms V,, — V|, that commute with ¢, }.

Let ¢ := go{,KV:Q"]. We can replace Z,,; by Z,,(v) in (2).



The Lie algebra of the latter is
3a; = {aj-linear endomorphisms V,, — V,, that commute with 9 }.

It is isomorphic to 3iq =: 3, and dimk, 3 < 4 by Lemma 2.1.

Hence the right-hand side of (2) is contained in a Zariski-closed
subset of dimension < 4.

To conclude the proof of Lemma 4.2 by applying Lemma 3.3, it
remains to show that dimc I - hy > 4. Indeed, knowing the
monodromy of the (unmodified) Legendre family, one deduces that
dimc [ - hy = m. This is the subject of Lemma 4.4 (Big
monodromy). Since m > 8 > 4, this completes the proof.
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