
Galois characteristics of local fields
These are the notes of the talk I gave at the University of Copenhagen on 9th December
2016.

The main question of this talk is what information about a field can be deduced from
its absolute Galois group.

Let us have a look at two examples: For number fields, the theorem of Neukirch-
Uchida tells us that two number fields are isomorphic if and only if their absolute Galois
groups are. There are similar results for other types of fields as well, for example for
finitely generated fields.

On the other hand, every finite field has absolute Galois group isomorphic to Ẑ, so in
this case when can deduce no information whatsoever from it, not even the characteristic
of the field.

The study of these phenomena is called Anabelian Geometry. We will not explain the
geometry bit (the words scheme or fundamental group will not be used in this article).
The general philosophy, however, is that if a group (here the absolute Galois group) is
attached to a certain object (here a field), then one should be able to recover information
about the object from the group as long as the group is ‘sufficiently non-abelian’.

Let us look at finite extensions K of Qp: Here one knows (Jarden-Ritter) that there
are non-isomorphic fields with isomorphic Galois groups. This follows, at least morally1,
from a theorem by Jannsen-Wingberg determining explicitly the absolute Galois group
of K in terms of (profinite) generators and relations. It is then not hard to come up with
two non-isomorphic fields having the same generators and relations, and the examples
they give are completely explicit.

Nonetheless, Mochizuki showed that if the absolute Galois group is given together
with all its ramification subgroups (in the upper numbering), then the field is uniquely
determined by this data. The purpose of this article is to talk about the methods involved
in Mochizuki’s proof, focussing on the use of a certain Hodge-Tate representation coming
from Lubin-Tate theory.

1 Precise question

Fix a prime number p, a finite extension K|Qp, an algebraic closure K, and let us denote
the absolute Galois group of K by GK := Gal(K|K).

Let us first have a look at what happens if a field isomorphism α : K
∼−−→ K ′ is given.

We can extend α to an isomorphism α between the algebraic closures such that the
following diagram commutes

1This is chronologically incorrect. Jannsen-Wingberg came after Jarden-Ritter.
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K
α // K ′

K

i

OO

α
∼ // K ′.

i′

OO

Here i and i′ denote (for now fixed) embeddings of K and K ′ into their algebraic closures.
This now induces a continuous isomorphism between the absolute Galois groups

Φ(α) : GK
∼−−→ GK′ , σ 7→ α ◦ σ ◦ α−1

which defines a homomorphism

Φ: Isom
((
K|K

)
,
(
K ′|K ′

))
→ Isom(GK , GK′), (α, α) 7→ Φ(α),

where the left hand side is the set of all pairs (α, α) of isomorphisms α : K
∼−−→ K ′ and

α : K
∼−−→ K ′ for which the above diagram commutes, and the right hand side is the set

of all continuous group isomorphisms from GK to GK′ .
The precise statement of the Neukirch-Uchida theorem is that for number fields K,K ′,

this map Φ is an isomorphism. For other types of fields, Φ is injective, but in general
not surjective. For example, for p-adic local fields K|Qp it is not surjective.

Mochizuki’s idea is to replace Isom(GK , GK′) by Isomfilt(GK , GK′), the subset of all
isomorphisms preserving the filtration given by the ramification subgroups. In order to
show surjectivity, he needs to construct a field isomorphism α(ϕ) : K

∼−−→ K ′ from a
given isomorphism of filtered groups ϕ ∈ Isomfilt(GK , GK′), such that Φ(α) = ϕ (where
α is a (suitably constructed) extension of α to K).

The strategy of this construction is a step-by-step, group-theoretical recovery of cer-
tain objects attached to K, e.g. the numbers qK and [K : Qp] or the GK-module µ(K),
first from the Galois group GK alone, later from GK and its ramification subgroups Gu

K .
These recoveries allow one to determine the Hodge-Tate numbers of a given representa-
tion of GK entirely group-theoretically. Applying this to (a variant of) the Lubin-Tate
representation of GK , one is able to construct the required field isomorphism.

Schematic picture

2 Recap Local Class Field Theory

2.1 Theorem. There exists exactly one family of continuous homomorphisms

recK : K× → Gab
K ,

the reciprocity maps, with the following properties:

1. The composite K× → Gab
K → Gal(Knr|K), x 7→ recK(x)|Knr is given by x 7→

FrvK(x).
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2. For a finite extension L|K, i.e. for an open subgroup GL ⊂ GK, we get two
commutative diagrams

L×
recL //

NL|K
��

Gab
L

��
K× recK

// Gab
K

(2.1)

and

L×
recL // Gab

L

K× recK
//

OO

Gab
K .

Ver

OO
(2.2)

Here Fr is the arithmetic Frobenius in Gal(Knr|K) and Ver is the ‘Verlagerung’ or
transfer map, a completely group-theoretical construction between the abelianisation of
a group and the abelianisation of a subgroup of finite index.

We will also need some additional properties of the reciprocity maps which will be
pointed out later.

3 Reconstructions from the absolute Galois group

We will start our sequence of group-theoretical recoveries from GK with the following
lemma. (Footnote that we won’t define what a recovery actually is)

3.1 Lemma (Recovery of the GK-module of roots of unity). The GK-module µ(K) of
roots of unity can be recovered group-theoretically from GK.

Proof. Local Class Field Theory gives the following short exact sequence of abelian
groups (Footnote: I did not mention the injectivity or the image of recK - give them
here as a footnote)

0 // K×
recK // Gab

K
// Ẑ�Z // 0.

Looking at the torsion subgroups, and using the fact that Ẑ/Z is uniquely divisible (use
the snake lemma) and hence torsion free, yields

µ(K) ∼=
(
Gab
K

)
tors

as abelian groups. Since the right hand side is determined entirely by group-theoretical
constructions applied to GK , we can recover the abelian group µ(K).

In the same way we get, for a finite Galois extension L|K, an isomorphism

recL : µ(L)
∼−−→
(
Gab
L

)
tors

3



not only as abelian groups, but as Gal(L|K)-modules, as recL is Gal(L|K)-equivariant.
Hence we can recover the Gal(L|K)-module µ(L).

In order to recover
µ(K) = lim←−

L

µ(L),

we still need to recover the transition maps µ(L) → µ(L′), but these can be recovered
using the Verlagerung (2.2).

3.2 Corollary (Recovery of the cyclotomic character). The (p-)cyclotomic character

χ : GK → Z×p

can be recovered group-theoretically from GK.

Proof. We look at the subgroup µp∞(K) of roots of unity of p-power order. As this is
constructed purely group-theoretically from µ(K), we can recover this GK-module using
the preceding lemma. Now by definition of the cyclotomic character

s(ζ) = ζχ(s), s ∈ GK , ζ ∈ µp∞(K),

i.e. χ precisely encodes the GK-action on p-power-order roots of unity, so its recovery is
the same as the recovery of the GK-module µp∞(K).

Using similar techniques, one can continue to recover the order qK of the residue field
and the degree [K : Qp], hence also ramification indices and residue degrees. Thus one
can recover the inertia subgroup IK and (by reciprocity) the abelian group UK of units
in K.

Now let us assume that not only GK , but also all ramification subgroups (Gu
K)u≥−1

are given – this corresponds to ϕ ∈ Isom(GK , GK′) preserving the ramification sub-
groups. Using exactly the same techniques (i.e. Local Class Field Theory) and the
p-adic logarithm one gets the following lemma.

3.3 Lemma (Recovery of Cp). The GK-module Cp can be recovered group-theoretically
from (GK , (G

u
K)u≥−1).

4 Hodge-Tate representations

4.1 Definition. Let W be a finite dimensional Cp-vector space equipped with a semi-
linear GK-action, i.e.

s(c · w) = s(c) · s(w), s ∈ GK , c ∈ Cp, w ∈ W.

For i ∈ Z define the K-vector spaces

W i := {w ∈ W | s(w) = χ(s)iw for all s ∈ GK}

4



and the Cp-vector spaces
W (i) := Cp ⊗K W i.

Define the Hodge-Tate numbers of W by

dW (i) := dimKW
i = dimCpW (i), i ∈ Z.

It is a fact (due to Tate) that
⊕

i∈ZW (i) injects into W , hence the W (i) are finite
dimensional and the numbers dW (i) are defined.

4.2 Definition. Call W a Hodge-Tate module if this injection is an isomorphism, i.e.
if ∑

i∈Z

dW (i) = dimCpW.

As we have already recovered both the GK-action on Cp and the cyclotomic character
χ from the filtered absolute Galois group, and this is all that is involved in the definition
of the Hodge-Tate numbers, we can conclude:

4.3 Lemma. Given W as above. Then one can group-theoretically recover the Hodge-
Tate numbers of W from (GK , (G

u
K)u≥−1) (and W ).

4.4 Example. Define Cp(χi) to be a 1-dimensional Cp-vector space (with basis vector
b, say), where the usual Galois action of GK on Cp is twisted by the i-th power of the
cyclotomic character χ:

s(c · b) := χi(s)s(c) · b, s ∈ GK , c ∈ Cp.

From the definition of the Hodge-Tate numbers follows

dCp(χi)(i) = 1, dCp(χi)(j) = 0, j 6= i.

Hence for any W , being a Hodge-Tate module means there is an isomorphism of
Cp-vector spaces

W ∼=
⊕
i∈Z

Cp(χi)dW (i)

respecting the GK-action. Thus one should think of Hodge-Tate modules as those repre-
sentations ofGK on Cp-vector spaces which allow such a decomposition into “eigenspaces”
with “eigenvalues” equal to powers of the cyclotomic character – quite similar to repre-
sentations of finite groups, for example.

It will be convenient to talk about a representation of GK on vector spaces over fields
smaller than Cp and also define their Hodge-Tate numbers.

4.5 Definition. A representation (in this article) will always be a continuous group
homomorphism

ρ : GK →M×,
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where M is some finite extension of Qp equipped with its p-adic topology.
Now take a 1-dimensional vector space V over M and let GK act on V via ρ. Define

the Cp-vector space
W := Cp ⊗Qp V

and equip it with the obvious semi-linear Galois action

s(c⊗ v) := s(c)⊗ ρ(s)v, s ∈ GK , c ∈ Cp, v ∈ V.

Now the Hodge-Tate numbers of W are also called the Hodge-Tate numbers of V and we
use the notation dV (i) := dW (i). Moreover we call V and ρ a Hodge-Tate representation,
if W is a Hodge-Tate module.

The crucial example of a Hodge-Tate representation is the following representation
obtained by Lubin-Tate theory – hence we will call it the Lubin-Tate representation.

4.6 Definition. Let π ∈ K be a uniformizer. The Lubin-Tate representation of GK is

ρLT : GK
// Gal(Kab|K) // Gal(Kπ|K) ∼ // UK // UK ⊂ K×

s � // s|Kab
� // s|Kπ = (u,Kπ|K) � // u � //� // u−1.

(4.1)

Here, Kπ is an infinite, totally ramified extension of K which is explicitly constructed
by Lubin-Tate theory, attaching torsion points of a certain formal group to K. The
isomorphism Gal(Kπ|K)

∼−−→ UK comes from the reciprocity map of local class field
theory. One composes with the inversion u 7→ u−1 as the explicit action of UK on the
torsion points of the formal group is given that way.

It is very important to note that on the inertia subgroup IK , under the reciprocity
map recK : UK

∼−−→ IK , the Lubin-Tate representation ρLT looks like u 7→ u−1. This
specific shape on the inertia subgroup is crucial for Hodge-Tate representations – that
is what Serre’s result on Hodge-Tate representations being locally algebraic is about.

Let’s start the discussion of (a variant of) Serre’s result by calculating the Hodge-Tate
numbers of the Lubin-Tate representation. So let Vπ be a 1-dimensional K-vector space
on which GK acts via ρLT.

4.7 Proposition. The Lubin-Tate representation ρLT, acting on the 1-dimensional K-
vector space Vπ, has the Hodge-Tate numbers

dVπ(0) = [K : Qp]− 1,

dVπ(1) = 1.

In particular, it is a Hodge-Tate representation.

Proof. Tate “p-divisible groups”, §4, Cor. 2 to Thm. 3. Tate uses the language of
p-divisible groups which might look frightening, but the translation into the language of
formal groups is not too hard. A detailed dictionary can be found in my thesis.
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We now state the variant of Serre’s result which we will need, and give some idea how
one can deduce it from Serre’s original result.

4.8 Theorem. Let F |Qp be a finite Galois extension with K ⊂ F , and let ρ : GK → F×

be a representation with associated 1-dimensional F -vector space V .
Then V has the Hodge-Tate numbers

dV (0) = [F : K]
(
[K : Qp]− 1

)
,

dV (1) = [F : K]

if and only if there exists a field embedding ι : K ↪→ F and an open subgroup I ⊂ UK
such that

ρ ◦ recK |I = ι ◦ (·)−1 : I → UF .

4.9 Remark. 1. Where do the above Hodge-Tate numbers come from? They are
[F : K] times the Hodge-Tate numbers of the Lubin-Tate representation! An
easy calculation shows that these are the Hodge-Tate numbers of the Lubin-Tate
representation composed with the inclusion K ↪→ F .

2. The main input in proving theorem 4.8 is Serre’s result about Hodge-Tate rep-
resentations being ‘locally algebraic’ (Serre “Abelian l-adic representations and
elliptic curves”, Ch. III, appendix, §5, Cor. to Thm. 2). This roughly states that
the shape of a Hodge-Tate representation on an open subgroup of the inertia sub-
group is very similar to the shape of the Lubin-Tate representation, so (reciprocity
composed with) inversion.

However, Serre’s situation is somewhat different – for example, he looks at repre-
sentations ρ : GK → E× with E ⊂ K, whereas here ρ : GK → F× with K ⊂ F .

3. In order to deduce theorem 4.8 from Serre’s result, one needs to do some calcula-
tions about the effect of changing the fields (from K to F , for example). It is a
little subtle, but doable, and again the details can be found in my thesis.

5 Construction of the field isomorphism

We are finally ready to construct the desired field isomorphism. Given two finite exten-
sions K, K ′ of Qp and ϕ ∈ Isomfilt(GK , GK′). Now choose a finite Galois extension F |Qp

with K,K ′ ⊂ F , and choose a representation ρ : GK → F× with Hodge-Tate numbers
as in theorem 4.8 – for example, take the Lubin-Tate representation of K and compose
it with K ↪→ F .

Since we have recovered the Hodge-Tate numbers of a representation, we know that
the representation

ρ′ := ρ ◦ ϕ−1 : GK′ → F×

has the same Hodge-Tate numbers as ρ, but is (of course) a representation of the absolute
Galois group of K ′.

7



Now by theorem 4.8, there exists open subgroups I ⊂ UK and I ′ ⊂ UK′ and field
embeddings ι : K ↪→ F and ι′ : K ′ ↪→ F such that we get the following commutative
diagram

F×

I(Kab|K)

ρ
99

ϕab

∼ // I(K ′,ab|K ′)

ρ′
ee

UK

recK ∼
OO

∼ // UK′

∼ recK′

OO

I

⊂

OO

ι◦(·)−1

..

∼
ϕI

// I ′.

⊂

OO

ι′◦(·)−1

qq (5.1)

(All horizontal arrows are induced by ϕ. If necessary, shrink I or I ′ to make the last
horizontal arrow into an isomorphism.)

Thus viewing I and I ′ via ι and ι′ as subsets of F , they are exactly identified via ϕI .
By Qp-linear continuation of ϕI and using K = spanQp I, we get a field isomorphism

α(ϕ) : K
∼−−→ K ′.

By doing the same procedure on an open subgroup GL of GK , we also get field iso-
morphisms L

∼−−→ L′, and one can show that these construction are compatible, hence
we get a field isomorphism

α(ϕ) : K
∼−−→ K ′.

5.1 Remark. It remains to show that this isomorphism α(ϕ) actually induces the group
isomorphism ϕ we started with, i.e. that Φ(α(ϕ)) = ϕ. This is actually a little tricky
and more details can be found in my thesis.
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