

Integral points on affine curves

Marius Leonhardt ¹, joint work in progress with Martin Lüdtke ²

¹Universität Heidelberg

²Max Planck Institute for Mathematics, Bonn

Motivation

What are the integer solutions to the equation

$$\mathcal{Y}: \quad v^3 = u(u^2 + u + 1)?$$
 (1)

How many are there? How do we find them? What about rational solutions whose denominators are only divisible by primes in S?

Background

Let Y/\mathbb{Q} be a smooth affine hyperbolic curve with regular model \mathcal{Y}/\mathbb{Z} .

Theorem 1 (Siegel, Faltings): The set $\mathcal{Y}(\mathbb{Z}_S)$ is finite.

However, this result does not give a method for finding the S-integral points nor does it give a bound on the size of the set $\mathcal{Y}(\mathbb{Z}_S)$. By using a variant of the Chabauty–Kim method, we proved

Theorem 2 (L.-Lüdtke-Müller, [2]): Let $p \notin S$ be a prime.

- 1. If r + #S < g + n 1, then $\mathcal{Y}(\mathbb{Z}_S)$ lies in a finite subset of $\mathcal{Y}(\mathbb{Z}_p)$.
- 2. If $\frac{1}{2}r(r+3) + \#S < \frac{1}{2}g(g+3) + n 1$, then

$$\#\mathcal{Y}(\mathbb{Z}_S) \le \kappa_p \cdot \prod_{\ell \in S} (n_\ell + n) \cdot \prod_{\ell \notin S} n_\ell \cdot \#\mathcal{Y}(\mathbb{F}_p) \cdot (4g + 2n - 2)^2 (g + 1).$$

Goals

- 1. Turn Theorem 2 into an algorithm that computes $\mathcal{Y}(\mathbb{Z}_S)$.
- 2. Improve the bound while only assuming r + #S < g + n 1.

Notation

- lacktriangledown X a smooth projective curve over $\mathbb Q$ of genus g,
- J its Jacobian, $r = \operatorname{rk}_{\mathbb{Z}} J(\mathbb{Q})$ its Mordell-Weil rank,
- $D \subset X$ a divisor consisting (for simplicity) of n geometric points that are all $\mathbb Q$ -rational, and $Y = X \setminus D$ the affine curve,
- \mathcal{X} a proper regular model of X over \mathbb{Z} and $\mathcal{Y} = \mathcal{X} \setminus \mathcal{D}$, where \mathcal{D} is the closure of D in \mathcal{X} , with $n_{\ell} = \#(\text{components of } \mathcal{X}_{\mathbb{F}_{\ell}})$,
- S a finite set of primes, $p \notin S$ a prime of good reduction for $(\mathcal{X}, \mathcal{D})$ and $\kappa_p = 1 + \frac{p-1}{(p-2)\log(p)}$,
- $P_0 \in \mathcal{Y}(\mathbb{Z}_S)$ a base point.

The generalised Jacobian...

...is the semi-abelian variety J_Y that sits in the short exact sequence

$$0 \longrightarrow (\mathbb{G}_m)^n/\mathbb{G}_m \longrightarrow J_Y \longrightarrow J \longrightarrow 0$$

whose Q-points can be described as

$$J_Y(\mathbb{Q}) = \frac{\{\text{divisors on } Y \text{ of degree } 0\}}{\{(f) \mid f \in k(X)^{\times} \text{ with } f(Q) = 1 \text{ for all } Q \in D\}}.$$

We use P_0 for an Abel-Jacobi map $AJ_{P_0}: Y \to J_Y, P \mapsto [P - P_0]$.

Intersection numbers on \mathcal{X}

On the arithmetic surface \mathcal{X} we can calculate intersection numbers i_{λ} of two divisors [1, Ch. III]. There are two types of prime divisors:

- 1. horizontal: closures \mathcal{P} in \mathcal{X} of closed points $P \in X$,
- 2. vertical: components of the special fibres $\mathcal{X}_{\mathbb{F}_{\ell}}$.

From now on, assume for simplicity that $\mathcal{Q} \cap \mathcal{Q}' = \emptyset$ for any $Q, Q' \in D$, so that $\mathcal{D} \cong \coprod_Q \operatorname{Spec} \mathbb{Z}$. For a rational prime ℓ define the \mathbb{Q} -vector space $V_\ell = (\bigoplus_Q \mathbb{Q})/\mathbb{Q}$. Define

$$\sigma = (\sigma_{\ell})_{\ell} \colon J_Y(\mathbb{Q}_{\ell}) \longrightarrow \bigoplus_{\ell} V_{\ell}$$

as follows. For a degree-0 divisor F on Y, let $\Psi_{\ell}(F) = \mathcal{F} + \Phi_{\ell}(F)$ be an extension to a \mathbb{Q} -divisor on $\mathcal{X}_{\mathbb{Z}_{\ell}}$ having ℓ -intersection number 0 with every component of the special fibre $\mathcal{X}_{\mathbb{F}_{\ell}}$. Then

$$\sigma_{\ell}(F) := (i_{Q \bmod \ell}(\Psi_{\ell}(F), \mathcal{Q}))_{Q}.$$

Lemma 3: σ_{ℓ} : $J_Y(\mathbb{Q}_{\ell}) \to V_{\ell}$ and σ are well-defined homomorphisms. Moreover, σ is surjective.

Selmer subspace of $J_Y(\mathbb{Q})$

For every prime ℓ , choose a component Σ_{ℓ} of $\mathcal{X}_{\mathbb{F}_{\ell}}$, and let $\Sigma = (\Sigma_{\ell})_{\ell}$. Let $\mathcal{Y}(\mathbb{Z})_{\Sigma}$ denote those points whose mod- ℓ reduction lies on Σ_{ℓ} for every ℓ .

Lemma 4: The image of $\mathcal{Y}(\mathbb{Z})_{\Sigma}$ under $\sigma \circ \mathrm{AJ}_{P_0}$ is contained in an a-priori explicitly computable affine subspace \mathfrak{S}_{Σ} of $\bigoplus_{\ell} V_{\ell}$ of dimension $\leq \#S$.

Definition 5 : The Σ -Selmer space is the affine subspace

$$\mathrm{Sel}_{\Sigma} := \sigma^{-1}(\mathfrak{S}_{\Sigma})$$

of $J_Y(\mathbb{Q})_{\mathbb{Q}} := \mathbb{Q} \otimes J_Y(\mathbb{Q})$. It has dimension r + #S.

By Lemma 4, we know that $\mathrm{AJ}_{P_0}(\mathcal{Y}(\mathbb{Z})_\Sigma)$ is contained in Sel_Σ .

Chabauty-Kim diagram

The following diagram sums up the situation:

Here the map \log_{J_Y} is given by p-adic integration of logarithmic differential forms that only have simple poles at D.

Results

As $\dim_{\mathbb{Q}_n} H^0(X_{\mathbb{Q}_n}, \Omega^1(D)) = g + n - 1$, we proved

Theorem 6 (L.-Lüdtke): If r + #S < g + n - 1, then there exists a non-zero $\eta \in H^0(X_{\mathbb{Q}_n}, \Omega^1(D))$ and a constant $a \in \mathbb{Q}_p$ such that

$$\rho \colon \mathcal{Y}(\mathbb{Z}_p) \to \mathbb{Q}_p, \quad \rho(z) = \int_{P_0}^z \eta - a$$

vanishes on $\mathcal{Y}(\mathbb{Z}_S)_{\Sigma}$. Moreover, η and a can be explicitly computed. By estimating the number of zeros of such integrals, we proved

Theorem 7 (L.-Lüdtke): If r+#S < g+n-1 and p>2g+n then $\#\mathcal{Y}(\mathbb{Z}_S) \leq \prod_{\ell \in S} (n_\ell+n) \cdot \prod_{\ell \notin S} n_\ell \cdot (\#\mathcal{Y}(\mathbb{F}_p)+2g-2+n).$

Back to the start

For equation (1) we have g=1, X=J is the elliptic curve 243.a1 [3] with $r=1, n_\ell=1$ for all ℓ , and n=3. Take p=7. Theorem 2 gives $\#\mathcal{Y}(\mathbb{Z}) \leq 1862$, but Theorem 7 improves this to $\#\mathcal{Y}(\mathbb{Z}) \leq 12$.

References

- [1] Serge Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988. MR 969124
- [2] Marius Leonhardt, Martin Lüdtke, and Jan Steffen Müller, Linear and quadratic Chabauty for affine hyperbolic curves, Int. Math. Res. Not. IMRN **21** (2023), 18752–18780.
- [3] The LMFDB Collaboration, The L-functions and modular forms database, https://www.lmfdb.org, 2025, [Online; accessed 26 March 2025].