27/ Complex Multiplication (CM)	10/2023
Warnup: Calculate $e^{\pi \sqrt{163}} - (640320)^3$. SAGE: 256	
Google: O Phone: -288 All of the second of	
Walkam: 7.43.999999999	
Today: 2 parts I. EC with CM & the main thm of CM I. Heegner constructions	· · · ·
I. Towards the Main Thim of CM	
<u>Def</u> . An <u>elliptic curve</u> E/k is a smooth projective algebraic curve of genus 1 together with a given point $O \in E(k)$.	· · · ·
Ly can define a group law on E with O= ?dentity.	
If char(k) = 2,3, then $\frac{\partial}{\partial A}$, BER s.t. (E, O) is isomorphic to a	
We resulting B equation $y^2 = x^3 + Ax + B \subseteq \mathbb{P}^2$, [0.1.0]	
or to an eq. of the form $y^2 = 4x^3 - g_2x - g_3$, $g_2, g_3 \in k$	· · · ·
$s.t.$ $\Delta = g_{2}^{3} - 27g_{3}^{2} \neq 0$.	
Its <u>j-invariant</u> is $j(E) := 1728 \frac{\theta_2^3}{\Delta}$	· · ·

Uniformization Theorem : If E is an EC/C , \exists lattice $\Lambda \subset C$ st.
$\mathbb{C}_{\mathcal{N}} \longrightarrow \mathbb{E}(\mathbb{C})$ (iso of couplex lie groups)
$z \longrightarrow [\theta_{1}(z): \theta_{1}'(z): 1]$
Idea of proof we learned last week that I function
$j: \mathfrak{L}(\mathbb{Z})^{\mathbb{H}} \longrightarrow \mathbb{C}$
Hore precisely: For $\tau \in \mathbb{H}$, let $\Lambda_{\tau} = \mathbb{Z} \tau \oplus \mathbb{Z} = \mathbb{C}$ and
$g_2(\tau) := g_2(\Lambda_{\tau}) := 60 \sum_{\lambda \in \Lambda_{\tau} \{0\}} \chi^4$
$g_3(\tau) := g_3(\Lambda_{\tau}) := 140 \sum_{\lambda \in \Lambda_{\tau} \le 0} \lambda^{-6}$
$\Delta(\tau) := g_2(\tau)^3 - 27 g_3(\tau)^2$
$j(\tau) = 1728 \frac{g_2(\tau)^3}{\Delta(\tau)}$
So pete t st. j(t) = t . A few steps of algebra than show that
for $\Lambda = \alpha \Lambda_{\tau}$ with $\alpha = \int \frac{\vartheta_2 \cdot \vartheta_3(\tau)}{\vartheta_2 \cdot \vartheta_2(\tau)}$
be have $g_2(\Lambda) = g_2$, $g_3(\Lambda) = g_3$.
Once we have such a N, the read is given by /,
where Br is the Weierskieß &-fanction of N.

Mote: Eq. of E (>> Diff. eq. for for
Remark: The 750m. 95 "voy transcendental":
" >" " "nolies on to couplex analysis.
"e" can be given by Pritegrating the Invariant differential dx & N is also called the period lattice of E
Example: Take $\tau = i$. Then $i \wedge_{\tau} = \wedge_{\tau}$, so $g_3(\wedge_{\tau}) = -g_3(\wedge_{\tau}) = 0$
\longrightarrow EC $y^2 = 4x^3 - g_2(\Lambda_z)x$ = sound transcendential number
which is reomorphic (our C) to the EC
$E = x^3 + x$
from before. Note: E is defined over Q . (& $j(\tau) = 1728 = j(E)$)
With a little bit more of couplex analysis, it's not difficult to show $Hom\left(\frac{C}{\Lambda},\frac{C}{\Lambda'}\right) \cong \{\alpha \in \mathbb{C} \mid \alpha \wedge \subset \Lambda'\}$
$\gamma \mapsto (z \mapsto \alpha z) \longleftrightarrow \gamma$
Progenies (either avaluttic or algebraic)
In particular, $C/\Lambda \cong C/\Lambda_{\tau}$ for some $\tau \in H$.
We get a category equivalence
We get a category equivalence $\begin{cases} EC/C \\ \text{$sogenies} \end{cases} \xrightarrow{\sim} \begin{cases} \text{lattices } C \\ \text{$c \land c \land'} \end{cases}$

$\begin{bmatrix} \mathbb{C}/N_{\tau} \end{bmatrix} \begin{bmatrix} N_{\tau} \end{bmatrix} \begin{bmatrix} \tau \end{bmatrix}$
This connects EC to the pretive drawn last week.
PAUSE FOR QUESTIONS
$\frac{(emma}{2}: let E = C/\Lambda_T. Then subring of O_K containing a Q-basis of K. S. End(E) = Z. End(E) = Z$
or t is inor quality, End(E) = UCK-Ed(E) is an order and N-CK is a proper lightand (D-ideal (1-1))
f.g. O-submodule of K
i.e. {βεK\ βΛįc λj = O ~ not just "≥".
Proof: let a End (E)=R, i.e. a e C with a NT c NT, i.e. Fab, c, d e Z :
$(1) \qquad \alpha \tau = \alpha + b\tau \qquad $
(2) $\alpha = c + dT$ (\Rightarrow $R \in K$) Plue one of the other was a subsaced other \mathbb{Z} because to be $R \Rightarrow R \in \mathcal{O}_K$
• If R ≠ Z, take ∝ R ~ Z (i.e. d ≠ D). Pluy (2) in (1) => K/Q iney quadr.
By def., O acts on Nz CK & Nz is a proper fractional O-rdeal.
Def. ($f \text{ End}(E) = 0 \neq \mathbb{Z}$, say E has CM by $\overline{0}$. \checkmark "multiplication" as endor act by multiplication" as endor act by multiplication" as endor act by multiplication.
$\frac{\ln \text{ out example}}{(x,y)} \mapsto (x_i - y) = \mathbb{Z}[?].$ $\bullet (x,y) \mapsto (x_i - y) = -1 \in \text{End}(\mathbb{E})$ $\bullet \phi: (x,y) \mapsto (-x, ry) \longrightarrow \phi^2 = -1, \text{ so } \phi = 3$

Digression: Orders in IONFS - can ignore this of you prefu O= OK
 If 0= Zae ⊕ Zps is an order of K, define its discriminant by
$D := \det \left(\frac{\alpha}{\alpha} \frac{\beta}{\beta}\right)^2 = \left[0_k; 0\right]^2 d_k \leq \frac{\beta}{\beta}$
= f <u>conductor</u> discitutionant"
Then $D < 0$ and $D = 0,1$ (4).
Conversely, for any such $D \in \mathbb{Z}^{-1}$ order O in some $IQNF \not\leftarrow$ with dire = D .
• For a fractional ideal or of an order O in an IQNF, have:
or proper <> or monthale.
why? """ holds in general.
"=>" Check that or or = NO for some (explicit) NEZ.
• The class group of 0 35 = class go of pos def.
$Cl(U) = \frac{1}{2} \text{ invertible fr. O-ideals} $ primitive binary quedi.
{ principal (1. U-ralades) Tor U= OK: usual
Cl(U) is traite. ideal class graup
PAUSE FOR QUESTIONS
Back to EC: $\{(E, L: O \rightarrow End(E)) E \in C\}/100$
Observation: { EC E/C with End(E)=0}/ (s_0) ~ Cl(O)
$[\mathcal{O}_{01}] \leftarrow [01]$
Why? Lemma => well-defined & surjective
gective also eary.
· · · · · · · · · · · · · · · · · · ·

• • • • • • • • •	· · · · · · [4/	hτ, hτ→ τ20, 15	[t]	Also have CM
Pictuse:	$\begin{cases} EC/C + 1 = 0 \\ W_{1}/W_{1} = 0 \end{cases}$	Х(N) «~	- FINIH	points here : they
	1 900-1 911/120.			& can describe
				Galors-action.
	a a ga a gina a sa			
	{EC/C}/350	$= \sqrt[n]{(A)} = \frac{1}{(A)}$	SI2(Z)	\rightarrow \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}
	U U		U\	
	CEC/B with	ELECIEL	E HCM	
	1 CM by 6 1/150	= [with CM]/ISC	$c_{1}(\mathbb{Z})$	
	40/10) 250			$\rightarrow 2/0_{\rm F} \in H^{1}$
		<u>Г</u> ,	L en	ow Gal-action
	· · · · · · · · · ·			
Corollery If	E has CM by O, the	∧ j(E) € Ø	l of degree =	= # el(b)
NIPACIE				
MINACLL	.)			
Poor tor	TCAH(A) OF	$1^{2} = 4^{3} = 9$		has CM hu 10
incer i ier i		. y	gr g3 arso	inds of og o
(just act by	J on the coeff.	of the rate.	fet describing av	i isogeny of
$e = e = E \cdot u^2 = 1$	$4x^3 - a_1x - a_2$			
· · · · · · · · · · · · · · · · · · ·				
so there a	use only #eelig manu	possibilities	for the (30.C	l. of E
d here al	Sio		[;(E) = ;	(°E) · . · · · · · ·
			al j a	a rational for
In fact, more a	rs true:		i i i i i i i i i i i i i i i i i i i	· 82.193. · · · · · · · · · · · · · · · · · · ·
Theorem !!	? E has CM, the	n j(E) is a	n algebraic Rn	<u>K80</u> .
Sketch: (3	proofs ; this is the	"l'edic one"		
Idea : 2/E	V Quand S	مكفية المراجع	- AAu in Nadaa	
I alley . JIC	-) megral es c	- nas por entru	cey yood reall	
	E good red. means	$\Delta \in \mathcal{O}_{L_{\varphi}}^{\times}$, hence	$-j = \frac{\vartheta_i}{\Delta} \in C$	lo
Ry Néron-D	a- Shalaro with crit	eñou, pot-good	l red at v	
	OU VIII VIII VIII VIII VIII VIII VIII VI	A T ant	t he a Brile a	uptat on T.F.
			(any otl)	with the the

So assume E & all endos of E are def. over a bocal field L
of residue chos. p = l.
Gol, G $E[e^n]$ & action commutes with action of $O = Eid(E)$
\Rightarrow Gol, \longrightarrow Aut $\vdash [l^n] \longrightarrow$ Aut $\exists [l^n]$
$\equiv (\mathcal{Y}_{\ell^n}), as \in [\ell^n] \text{is free } \mathcal{Y}_{\ell^n} - \text{manule}$
The contract of the provide the contract of the second secon
Thus Gell is It factors through Gall by CTI.
ΙΙ
$\Gamma_{\rm res}$
$ 1 \longrightarrow (0^{\times,0}) \longrightarrow (0^{\times} \longrightarrow 1^{\circ})^{\times} \longrightarrow 1^{\circ} $
$A > C(\sqrt{2}) > A = C(\sqrt{2})$
$1 \rightarrow Gr_2(k_2)_1 \rightarrow Aut \ 2 = Gr_2(k_2) \rightarrow 1$
$= -\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac$
$\Rightarrow \operatorname{Re}\left(\begin{array}{c} Q^{\times, \mathrm{res}} \\ \end{array} \right) \operatorname{Aut} \operatorname{T_{e}E} \left(\begin{array}{c} Q^{\times, \mathrm{res}} \\ \end{array} \right) \operatorname{GL}_{2}(\operatorname{e}/_{e}) \operatorname{finite} $
finite index
$M_{\rm M} = 0^{-1} \text{devl} M_{\rm M} = 0^{-1} \text{dev} M_{\rm M} = 0^{-1} dev$
PAUSE FOR QUESTION
Can do even better, namely determine the field in which j(E) Rives.

Digression: Ring class fields
Let O be an order in an IQNF K of conductor $f = [O_k O]$. One can show $f = [O_k O]$. One can show $f = \{f : O_k : ideals prime to f\}$
$\mathcal{O}(\mathbb{O}) = \langle \alpha \mathcal{O}_{K} \alpha \in \mathcal{O}_{K} st^{\exists} \alpha \in \mathbb{Z} \text{ coptime to } f: \alpha \equiv \alpha \mod \{\mathcal{O}_{K} \rangle$
$Cl_{(f)}(O_{k}) := \frac{\{\beta, O_{k}: deals prime to f\}}{\langle \alpha O_{k} \alpha \equiv 1 \mod fO_{k} \rangle} \xrightarrow{ray class group}$
By class field theory (in the ideal-theoretric formulation): $\begin{bmatrix} K(f) \end{bmatrix}$
$el_{(f)}(0,x)$ H H is called the fing class field assoc to (K
Note: $0 = 0_K \implies el(0) = el_{(i)}(0_K) = el_K$ & $H = Hilbert doss field of K.$
$\frac{\text{Remander}}{(H/K)}: \mathcal{Cl}(O) \longrightarrow \text{Gal}(H/K)$
Artin map for p an OK-prime ideal,
Prime to f & MIRCOUM. IN HVK.
· · · · · · · · · · · · · · · · · · ·

Marn Theorem of CM let E be an EC with CM by O,
(HIRACLE) say E= % for a proper fr. O-ideal b.
Then $K(j(E))$ is the ring class field H of 0 $- K(j(E); W)$
$\& \left(\frac{H/K}{\sigma}\right) j(b) = j(\sigma i^{1}b).$
Algebraic action analytic action (via Galois & CFT)
Later: Moreover, can also describe Galk-"action" on torsion points of E.
Idea of proof: (1) "analytic": stady the "modules equation" to know enough about the mips of j(E)
(2) "algebraic": Note: $Cl(O) \subset \{EC \text{ with } Ch by O\}/PSO.$ simply transitively or $\star (C/h) := C/ornh$
$\Rightarrow get hom. F: Galk \rightarrow Cl(0) given by$ could do this with Gale, but then would depend $E = F(\sigma) \star E \forall E \forall \sigma$ on choice of E
Of couse, F Pactors through a first quatient Gal(L/K).
For simplicity: $O = O K$,
Romains to show: For almost all p split in K, say $p=p\overline{p}$: $F(\frac{L/K}{b}) = [p]$ def. of F $(\Rightarrow \overline{F} = 2\pi Noise of the Artin map \Rightarrow K(j(E)) = \overline{K}^{Ew} \overline{F} = H)$
To show this, look at E (chr.) over some very large field of def. M & use reduction modulo a good prime RIB of M. The CM reduces, too!

For simplicity, assume β is principal, $\beta = (\alpha)$. Then:
$\mathbb{C}/\!\!\wedge \xrightarrow{\sharp \longmapsto \sharp} \mathbb{C}/\!\!\wedge \xrightarrow{\sharp \longmapsto \alpha \sharp} \mathbb{C}/\!\!\wedge$
vie differenter E E
Modulo 12, one checks that 200 is respectable, of deg = p.
As Λ is $\phi \notin \phi$ is insep, of deg p
⇒ \$ "=" p-power Probenius
$(& \phi is a left of it)$
This translates to what we wanted!
Corollory: let E be an EC with CM by OK. Then
K(((E)) is the Hilbort close field of K
Example: a) $E: y^2 = x^3 + x$, $O = \mathbb{Z}[i]$, $j = 1728 \in \mathbb{Z}$.
b) $O = \mathbb{Z}\left[\frac{1+\sqrt{-163}}{2}\right] \rightarrow \mathbb{C}_{k} = 1$ (the smallest/largest IQNF with $\mathbb{C}_{k} = 1$)
$J(z) = \frac{4}{9} + \frac{1}{9} \frac{1}{889} \frac{1}{9} \frac{1}{100} \frac$
$7 \ge 2\left(\frac{1+\sqrt{-163}}{2}\right) = -e^{\pi\sqrt{163}} + 744 + (-)e^{-\pi\sqrt{163}} + \cdots$
L'and the true
$-(640320)^3 \Rightarrow \text{almost an integer}$
n fact = 262537412640768743.
so within 10 ⁻¹² of the integer 640 320 ⁵ +744.

Digcession: Hilbort's 12th problem, Kronecker's Jugendtraum
1.e. explicit CFT:
We saw: • j(E) gives abelian ext. of K
Interesting history (see Schappacher): Hildert "wanted"
$K^{ab} = K(j(E) all E with CH by some OCK) Q^{ab},$ = $K(j(t) z \in K)$: very similar to $Q^{ab} = Q(e^{2\pi j \tau} \in Q)$ but : not true.
Instead, also need values of other "illiptic functions", namely &
Fix one EC E with CH by some order OCK. Then:
$K^{ab} = K(j(E), x(P)) P \in E_{tors})$ indesc $j=0,1728$
see beginning: adjoin values of $g_{\Lambda}(\tau)$ at $\tau \in K$.
To prove this, need extension of Main Thm of CM that also determines the Galk-action on territor points. (but Taleas vory similar)
To sum up; back to picture /
& can actually extend to CM points of X(N).
PAUSE FOR QUESTIONS
IT Heegner constructions
Have a supply of rational points (over explicitly given abelian exit. of K) on Yo(1) & Yo(N). Often called "Heegner points".

3 examples: x \$\$ streaular modulli A ¹ J elliptic units Ginn modular unit Heegner points EC E/Q modular param. TC: X_(N): deesn't maller of CM or not	also get rational lover those fields, points of n					
singular modulli A ¹ j elliptic unit Gim modular param TU: X5(N) Heegner points EC E/Q modular param TU: X5(N) doesn't maller If CM or not	3	example			la la X la la la	¢
elliptic units Gm modular unit Heegner points EC E/Q modular param, TC: X5(N) doesn't maker of CM or not			strealor	moduli		
Heepner posints: EC E/Q modulos posaum. TC:XS(N) doesn't maller 9f CN or vot	• •	· · · · ·	elliptic	unitz	Gm	modulas unit
daesn't mater R° CN or vot	· ·	· · · · ·	Heegner	pornts	EC E/Q	modulos posain. TC: X(N)- (by modulosity)
	• •	· · · · ·	· · · · ·	· · · · (loesn't maller of CM or not	
	• •	· · · · ·	· · · · ·	· · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · ·
	• •	· · · · ·	· · · ·	· · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · ·
	• •	· · · · ·	· · · ·	· · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · ·
	· ·	· · · · ·	· · · ·	· · · · · ·		· · · · · · · · · · · · · · · · · ·
	· ·	· · · · ·		· · · · · ·		
· · · · · · · · · · · · · · · · · · ·	• •	· · · · ·			· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· ·	· · · · ·	· · · ·	· · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·