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We explain the notion of a spectral sequence and various ways of construct-
ing them, before illustrating the concept by some examples. We do not treat
spectral sequences in the greatest possible generality but tried to keep the text
accessible.

is note grew out of the seminar “Stable cohomology of the mapping class
group” by JProf. Dr. Gabriela Weitze-Schmithüsen and Dipl.-Inform. Tobias
Columbus at the Karlsruhe Institute of Technology in summer term . We
would like to thank both of them and especially Tobias for explaining us a lot
about spectral sequences.

Parts of this text follow [Wei] rather closely.
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1 Spectral Sequences and Convergence

Let C be an abelian category.

Definition . (Spectral sequences): A (homologically graded) spectral sequence is a family
of objects {Erpq} of C, for all p ,q ∈ Z and r ≥ a (with a fixed a ∈ Z), together with

differentials drpq : E
r
pq

.... Erp−r ,q+r −1 which satisfy dr ◦ dr = 0. Furthermore we require
that there are isomorphisms

Er+1
pq � H (Erpq) = ker(drpq)

/
im(drp+r ,q−r+1)

.

By n := p + q we denote the total degree of Erpq .

e collections (Erpq)p ,q∈Z for fixed r are called the sheets or pages of the spectral sequence.
By the isomorphisms required above, we imagine that we get from one sheet to the next
one (“turing a page around”) by taking homology.

To get an imagination of how the differentials look like, we first regard the sheet of the
spectral sequence where r = 0.

..

..
... ..

... ..
... ..

...

..E0
0,3 ..E0

1,3 ..E0
2,3 ..E0

3,3

..E0
0,2 ..E0

1,2 ..E0
2,2 ..E0

3,2

..E0
0,1 ..E0

1,1 ..E0
2,1 ..E0

3,1

..E0
0,0 ..E0

1,0 ..E0
2,0 ..E0

3,0

..
... ..

... ..
... ..

...

On the first sheet, the differentials go from the right to the le, as is shown here:

..

... . . ..E1
0,3 ..E1

1,3 ..E1
2,3 ..E1

3,3 ... . .

... . . ..E1
0,2 ..E1

1,2 ..E1
2,2 ..E1

3,2 ... . .

... . . ..E1
0,1 ..E1

1,1 ..E1
2,1 ..E1

3,1 ... . .

... . . ..E1
0,0 ..E1

1,0 ..E1
2,0 ..E1

3,0 ... . .





In the following picture we see as an example the 2-sheet with differentials d2pq : E
2
p ,q

....

E2
p−2,q+1.

..

..E2
0,3 ..E2

1,3 ..E2
2,3 ..E2

3,3

..E2
0,2 ..E2

1,2 ..E2
2,2 ..E2

3,2

..E2
0,1 ..E2

1,1 ..E2
2,1 ..E2

3,1

..E2
0,0 ..E2

1,0 ..E2
2,0 ..E2

3,0

Example . (First quadrant spectral sequence): A spectral sequence with Erpq = 0 for p <
0 or q < 0 is called a first quadrant spectral sequence. We observe that for r large enough
the differential with codomain Erpq has domain 0 and the differential with domain Erpq has
codomain 0. We get

Er+1
pq = H (Erpq) = ker(d)

/
im(d) = Erpq

/
0 = Erpq .

e stable value Erpq = Ekpq for k ≥ such r is named E∞
pq .

We restrict ourselves to first quadrant spectral sequences, whichmakes our life much easier.

Definition . (Convergence): Let {Hn} be a family of objects of C.
We say a spectral sequence . . .

(a) . . . weakly converges to H∗ if there exists a filtration

. . . ⊆ Fp−1Hn ⊆ FpHn ⊆ Fp+1Hn ⊆ . . . ⊆ Hn

for each n ∈ Z and furthermore isomorphisms

βpq : E∞
pq � FpHp+q

/
Fp−1Hp+q .

(b) . . . approaches H∗ if it weakly converges to H∗ and¹

Hn =
∪

FpHn and
∩

FpHn = 0.

(c) . . . converges to H∗ if it approaches H∗ and Hn = lim←−−
(
Hn/FpHn

)
.²

We denote convergence by Erpq ⇒ Hp+q .

Remark .: Let a spectral sequence converging to H∗ have E2
pq = 0 unless p = 0, 1. en

for each n there is a short exact sequence

0 .... E2
0n

.... Hn .... E2
1,n−1 .... 0.

¹ e first of the two conditions is called exhaustive and the second one Hausdorff.
² A filtration which satisfies ∀n ∃t : FtHn = Hn fulfills this additional condition.





Proof: First we draw a picture of the 2-sheet of the spectral sequence:

..

..0 ..0 ..E2
0,3 ..E2

1,3 ..0 ..0

..0 ..0 ..E2
0,2 ..E2

1,2 ..0 ..0

..0 ..0 ..E2
0,1 ..E2

1,1 ..0 ..0

..0 ..0 ..E2
0,0 ..E2

1,0 ..0 ..0

We see that E2
pq = E∞

pq and since we know that the spectral sequence converges, we know
that there exists a filtration FpHn which fulfills E∞

pq � FpHp+q /Fp−1Hp+q .

If p , 0, 1 we get 0 = E2
pq = FpHp+q /Fp−qHp+q which tells us FpHp+q = Fp−1Hp+q and

therefore the filtration looks like

. . . F−2Hn = F−1Hn ⊆ F0Hn ⊆ F1Hn = F2Hn = . . .

Moreover we know that
∩

FpHn = 0, so F−1Hn = F−2Hn = . . . = 0 and since
∪

FpHn =
Hn we get F1Hn = F2Hn = . . .Hn .

Now let p = 0. We notice that

E2
0,n = E∞

0,n � F0Hn
/
F−1Hn = F0Hn .

For p = 1 we get
E2
1,n−1 = E∞

1,n−1 � F1Hn
/
F0Hn = Hn

/
F0Hn

and obviously the short exact sequence

0 .... F0Hn .... Hn .... Hn
/
F0Hn

.... 0

turns into the short exact sequence

0 .... E2
0,n

.... Hn .... E2
1,n−1 .... 0. □

Remark .: Let a spectral sequence converging to H∗ have E2
pq = 0 unless q = 0, 1. en

there is a long exact sequence

. . .Hp+1
.... E2

p+1,0
... d. E2

p−1,1 .... Hp .... E2
p0

... d. E2
p−2,1 .... Hp−1 . . . .





Proof: Again we first draw a picture

..

..0 ..0 ..0 ..0

..E2
−1,1 ..E2

0,1 ..E2
1,1 ..E2

2,1

..E2
−1,0 ..E2

0,0 ..E2
1,0 ..E2

2,0

..0 ..0 ..0 ..0

and we see that the objects at the 3-sheet are the objects E∞
pq . For q , 1, 0 we get

FpHp+q
/
Fp−1Hp+q � E∞

pq = E3
pq = H (E2

pq) = ker(d2pq)
/
im(d2p+2,q−1) = 0

and therefore FpHp+q = Fp−1Hp+q .

Let’s have a look at the filtration of Hn :

. . . = Fn−3Hn = Fn−2Hn ⊆ Fn−1Hn ⊆ FnHn = Fn+1Hn = . . .∩
FpHn = 0 implies Fr Hn = 0 for r ≤ p+q − 2 and

∪
FpHn = Hn implies Fr Hn = Hn for

r ≥ n = p + q.
Let q = 0. We get

Hp
/
Fp−1Hp = FpHp

/
Fp−1Hp � E∞

p ,0 = E3
p ,0 = ker(d2p ,0)

/
im(d2p+2,−1) = ker(d2p ,0).

And q = 1 leads to

FpHp+1 = FpHp+1
/
Fp−1Hp+1 � E∞

p ,1 = E3
p ,1

= H (E2
p ,1) = ker(d2p ,1)

/
im(d2p+2,0)

= E2
p ,1

/
im(d2p+2,0)

.





We can now put all this together to a long exact sequence:

..

. . . ..0 . ..0 . . .

. . . . ..E2
p+1,0/ kerd

2
p+1,0 . . . ..Hp/Fp−1Hp

... . . ..Hp+1 . ..E2
p+1,0 . ..E2

p−1,1 . ..Hp ... . . .

. . ..kerd2p+1,0 . . . ..Fp−1Hp . .

. ..0 . ..0 . ..0 . ..0 .

□

2 Construction of Spectral Sequences

In this section, we introduce the important notions of exact couples and filtered complexes.
Every exact couple yields a spectral sequence, and every filtered complex yields an exact
couple. Finally, we prove a convergence theorem for spectral sequences obtained in this
way.

Construction . (Exact couples and their derivations): An exact couple is a pair of objects
D and E of C and morphisms i , j and k such that the diagram

..
..D . ..D

. ..E .

.

i

. j.k

is exact at each vertex. Since d := jk complies with d2 = (jk)2 = j(k j)k = j0k = 0 we
can apply homology by seing H (E) = ker(d)/im(d) and get the derived exact couple

..
..i(D) . ..i(D)

. ..H (E) .

.

i |i(D)

. j (2).k (2)

with j(2)(i(x)) = [j(x)] and k(2)([e]) = k(e), x ∈ D and [e] ∈ H (E). It is an easy computa-
tion that j(2) and k(2) are well-defined and that the derived couple is exact. It suggests itself
to iterate this process and set E1 := E and Er = H (Er −1), d1 := d = jk and dr := j(r )k(r ).





e (r + 1)-th exact couple looks like

..
..ir (D) . ..ir (D)

. ..Er+1. .

.

i |ir (D)

. j (r+1).k (r+1)

Remark: Notice that the cycles can be described as Z r = k−1(ir (D)) and the boundaries
as Br = j(ker(ir )).

Proof: One just calculates

Z r = ker(dr ) = ker(j(r )k(r )) = ker(ji−r+1k)

= k−1(ker(ji−r+1)) = k−1(ir −1(ker j))

= k−1(ir −1(im i)) = k−1(ir (D)),

Br = im(dr ) = im(j(r )k(r )) = im(ji−r+1k)

= j(i−r+1k(Epq)) = j(i−r+1 im(k))

= j(i−r+1(ker(i)) = j(i−r (0)) = j(ker(ir )). □

Wenow regardD =
⊕

Dpq and E =
⊕

Epq with themorphisms i , j and k having bidegree
(1, −1), (0, 0)³ and (−1, 0) respectively (i.e. i(Dpq) ⊆ Dp+1,q−1 and so on). e bidegrees
of i and k do not change by passage to the derived couple while the bidegree of j(r ) in the
r -th couple is deg(j(r )) = deg(j)− (r −1) deg(i) = (0, 0)− (r −1)(1, −1) = (−(r −1), r −1)
since j(r )(ir −1(x)) = [j(x)] and therefore the bidegree of the differential dr = j(r )k(r ) is
deg(dr ) = (−r , r − 1) just as claimed in the definition of spectral sequences.

In this way the exact couple yields a spectral sequence with objects Erpq .

Example . (Exact couple of a filtered complex): Let C∗ be a complex with a filtration

. . . FpC∗ ⊆ Fp+1C∗ ⊆ . . . ⊆ C∗

such that there are integers s < t for eachn with FsCn = 0 and FtCn = Cn . (Such a filtration
is called bounded. Particularly this means FkCn = 0 for all k ≤ s and FkCn = Cn for all
k ≥ t . We will always consider canonically bounded filtrations, i.e. s = −1 and FnCn = Cn
for all n – what leads to a first quadrant spectral sequence.)

We get short exact sequences

0 .... Fp−1C∗
i

.... FpC∗

πp
.... FpC∗

/
Fp−1C∗

.... 0

and, by applying homology, long exact secquences

. . . .... Hp−1,q+1(Fp−1C∗) ...
i. Hp+q(FpC∗)

... j. Hp+q
(
FpC∗

/
Fp−1C∗

)
... δ. Hp−1+q(FpC∗) .... . . .

³ To avoid confusion because of all the indices and variables we assume a = 0 – but j could also have bidegree
(−a, a). a , 0 would not be more difficult, but we would have to take care of it.





where i and j are the maps induces by i and πp above and δ is the map delivered by the
snake lemma.

Now we can roll up those long exact sequences into an exact triangle

..
..

⊕
Hp+q(FpC∗) . ..

⊕
Hp+q(FpC∗)

. ..
⊕

Hp+q(FpC∗/Fp−1C∗) .

.

i

.
j

.
k

which gives us a spectral sequence Erpq .

From now on we concentrate on spectral sequences arising from an exact couple which
complies the following two conditions: we require Dpq = 0 if p < 0 and for q < 0 we want
i : Dp−1,q+1

.... Dpq to be an isomorphism.

Remark: ose two facts guarantee that the spectral sequence lives in the first quadrant.

Proof: First let p < 0. Since k : Epq .... Dp−1,q = 0 has im(k) = 0 we get d = jk = 0.

Furthermore 0 = Dpq ... j. Epq says that

Epq = ker(d)
/
im(d) = ker(d) = im(j) = 0.

Now we look at the case q < 0. We have d : Epq .... Dp−1,q

j
.... Dp−1,q and we know

that i : Dp−1,q .... ∼ Dp ,q−1 is an isomorphism. But since im(k) = ker(i) = 0 this leads to

d = jk = 0. Moreover we have Dp−1,q+1

i
.... ∼ Dpq ... j. Epq and since ker(j) = im(i) =

Dp−1,q+1 we get
Epq = ker(d) = ker(k) = im(j) = 0. □

Let Z r
pq = ker(drpq) and Brpq = im(drp+r ,q−r+1) be the cycles and boundaries given by the

fact that the r -sheet of the spectral sequence contains chain complexes.

Furthermore we set Hn := lim−−→ Dp ,n−p (the injective limit along the maps i : Dpq ....

Dp+1,q−1, i.e. the disjoint union of the Dp ,n−p where two elements are said to be equal if
they are equal under compositions of i) and FpHn := im(Dpq .... Hp+q) by what we get
a filtration

. . . Fp−1Hn ⊆ FpHn ⊆ . . .
since i(Dp−1,n−p−1) ⊆ Dp ,n−p . is filtration is even canonically bounded: Dp ,n−p = 0
for p < 0 causes FpHn = 0. If p > n (which is equal to q = n − p < 0) we know that
Dp ,n − p � Dp+1,n−(p+1) � . . . and therefore Hp+q = im(Dp ,n−p .... Hp+q) = FpHn .

In particular the filtration satisfies
∪

p FpHn = Hn = lim←−− (Hn/FpHn) and
∩

p FpHn = 0.

So, if a spectral sequence weakly converges to H∗ it even converges to H∗.

Proposition .: ere is a natural inclusion of FpHn/Fp−1Hn in E∞
p ,n−p . e spectral se-

quence Erpq weakly converges to H∗ if and only if

Z∞ =
∩
r

k−1(ir D) equals k−1(0) = j(D).





Proof: First we define Kpq to be the kernel of Dpq .... Hp+q . Beeing an element of Kpq is
equivalent to lying in the kernel of ir for an integer r , so Kpq =

∪
r ker(ir ). It follows that

j(Kpq) =
∪

r j(ker(ir )) =
∪

r Brpq = B∞
pq , as one can easily see that the infinite boundaries

are the union of the Brpq (and similarly Z∞
pq =

∩
r Z r

pq ). We look at the following diagram:

..

. . . ..0 .

..0 ..Kp−1,q+1 ..Dp−q ,q+1 ..Fp−1Hn ..0

..0 ..Kpq ..Dpq ..FpHn ..0

. ..coker(i |Kp−1,q+1) ..coker(i) ..FpHn/Fp−1Hn .

.i |Kp−1,q+1

. i

with short exact sequences as rows.

Before applying the snake lemma we regard the cokernels.

Dpq
/
i(Dp−1,q+1) = Dpq

/
im(i) = Dpq

/
ker(j)

tells us that coker(i) = j(Dpq). Furthermore we have im(i |Kp−1,q+1) = ker(j |Kpq ) (!) and
therefore coker(i |Kp−1,q+1) � j(Kpq) = B∞

pq . e snake lemma now says that

0 .... B∞
pq

.... j(Dpq) .... FpHn
/
Fp−1Hn

.... 0

is a short exact sequence.

For all r ∈ Z we have

j(Dpq) = im(j) = ker(k) = k−1(0) ⊆ k−1(ir Dp−r −1,q+r ) = Z r
pq

what means j(Dpq) ⊆
∩

r Z r
pq = Z∞

pq . We get a natural inclusion

FpHn
/
Fp−qHn � j(Dpq)

/
B∞
pq ⊆ Z∞

pq

/
B∞
pq = E∞

pq

and in particular we know now that the spectral sequences weakly converges to H∗, i.e.
FpHn/Fp−1Hn = E∞

pq if and only if j(D) = Z∞. □

Corollary . (Convergence eorem): A spectral sequence with the requirementsmentioned
above converges to H∗ = lim−−→ D:

Erpq ⇒ Hp+q .

If a spectral sequence arises from an exact couple of a complex C∗ with canonically bounded
filtration it converges to lim−−→ D = H∗ which is the homology of the filtered complex C∗.

Proof: A remark above tells us, that the spectral sequence converges to H∗ if it weakly con-
verges to H∗. All we have to show is that Z∞ = k−1(0), if the spectral sequence complies
the two facts that Dpq = 0 for p < 0 and i : Dp−1,q+1

.... ∼ Dpq for q < 0.





Let p and q be arbitrary integers. ere exists an integer r such that p − r − 1 < 0 which
implies ir (Dp−r −1,q+r ) = ir (0) = 0. We now see that Z r

pq = k−1(ir (Dp−r −1,q+r ) =

k−1(0). en Z∞
pq =

∩
r ′ Z r ′

pq = k−1(0) and therefore Z∞ = k−1(0).

at means Erpq ⇒ Hp+q .

Let . . . Fp−1C∗ ⊆ FpC∗ ⊆ . . . ⊆ C∗ be a canonically bounded filtration of a complex C∗.

Since FpCn = 0 for all p < 0we get Dpq = Hp+q(FpC∗) = 0 for those p. For q < 0we have
p = n −q > n and FpCn = Cn . is leads to Dpq = Hn(FpC∗) = Hn(C∗) = Hn(Fp+1C∗) =
Dp+1,q−1 = Dp+1,q−2 . . .. Alltogether it follows that a spectral sequence arising from a
canonically bounded complex converges to H∗.

It remains to show hat H∗ is the homology of C∗.

Let p < n; we then know that i is an isomorphism and therefore we get

Hp+q � im(Dp ,n−p .... Hp+q) � Dp ,n−p = Hp+q(FpC∗) = Hp+q(C∗). □

3 Double Complexes

In Example ., we explained that a filtered complex yields an exact couple, which in turn
yields a spectral sequence. Wewill now go one step further and introduce double complexes,
which yield filtered complexes and finally spectral sequences.

Definition . (Double complex): A double complex C∗∗ is a family (Cpq)p ,q∈Z of objects
of an abelian category together with maps

dh
pq : Cpq .... Cp−1,q , dv

pq : Cpq .... Cp ,q−1

such that for each q resp. p, the families (C∗q , dh
∗q) resp. (Cp∗ , dv

p∗) are chain complexes
and additionally, in every square the relation

dv
p−1,q ◦ dh

pq = ± dh
p ,q−1 ◦ dv

pq

is satisfied. In case of a “+” in this relation, we call the double complex commutative and
in case of a “−” we call it anticommutative. We say that a double complex lives in the first
quadrant if Cpq = 0 whenever p < 0 or q < 0.

We can picture a double complex like this (here we have a first quadrant double complex):

..

..
... ..

... ..
... .

..C02 ..C12 ..C22 ... . .

..C01 ..C11 ..C21 ... . .

..C00 ..C10 ..C20 ... . . .





Definition .: Let C∗∗ be an anticommutative double complex. en we define the total
complex aached to C∗∗ as the chain complex Tot∗(C∗∗) with entries⁴

Totn(C∗∗) =
⊕

p+q=n

Cpq

and differentials d = dv + dh.

A straightforward calculation using anticommutativity shows d2 = 0, so that the total
complex is indeed a chain complex.

We can turn the total complex of a given double complex into a filtered chain complex by
considering the following two obvious filtrations:

“Filtration by rows”
0 0 0 . . .

∗ ∗ ∗ . . .
∗ ∗ ∗ . . .

“Filtration by columns”

∗ ∗ 0
∗ ∗ 0
∗ ∗ 0
...
...
...

More precisely, we set

F (R)
p Totn(C∗∗) =

⊕
i≤p

Ci ,n−i , F (C)
q Totn(C∗∗) =

⊕
j≤q

Cn− j , j .

In both cases, we get (
Fp Tot∗(C∗∗)

/
Fp−1 Tot∗(C∗∗)

)
n
= Cpq

for the n-th entry of the filtration quotients (where p + q = n). Note that when the double
complex lives in the first quadrant, then both filtrations are canonically bounded. erefore
we will assume from now on that every double complex lives in the first quadrant.

e machinery developped in the previous sections now yields two spectral sequences
which we call (R)Er∗∗ and (C)Er∗∗, respectively. By Corollary . both spectral sequences
converge to the homology of the total complex Tot∗(C∗∗). Oen one is not really inter-
ested in this homology, but one can play these sequences off against one another to obtain
information about the entries of the spectral sequence.

Can we write down more explicitly how these spectral sequences look like? We have to
apply the technique of exact couples to our situation. Doing so, we obtain:

Proposition .: e E1 page of (C)Er∗∗ is obtained from the initial double complex C∗∗ by
taking homology in vertical direction, and the differentials d1 on that page are the maps in-
duced by the horizontal differentials dh ofC∗∗ on this homology. Dually, the E1 page of (R)Er∗∗
is obtained by “transposing” this procedure.

⁴ It is also common to consider a slightly differently defined total complex in which the direct sum is replaced
by a direct product. As we will mostly consider double complexes living in the first quadrant, this does not
make a difference for us.





Idea of proof: To prove this, we would have to go into the details of how the long homology
sequence coming from the short exact sequence of chain complexes

0 .... F ?
p−1 Tot∗(C∗∗) .... F ?

p Tot∗(C∗∗) .... F ?
p Tot∗(C∗∗)

/
F ?
p−1 Tot∗(C∗∗)

.... 0

is constructed, which in the end boils down to investigating the definition of the connecting
homomorphism coming from the snake lemma. As this is a rather tedious calculation, we
will omit this here. □

is proposition suggests to view the initial double complex C∗∗ as the E0 page of either
spectral sequence (possibly “transposed”).

Before giving some examples of applications of this construction, we record the following
useful result.

Lemma .: If we have a converging spectral sequence

Erpq ⇒ Hp+q

and the E2 page consists of 0 everywhere except in the boom row, then we have

E2
p0 = Hp .

Proof: is follows directly from Remark .. □

Finally, we note that we can also apply this whole technique to a commutative double com-
plex. We can turn any such double complex into an anticommutative one by inserting some
−1’s, for example at every second horizontal or vertical arrow: in this way in every square
exactly one map is multiplied by −1. is does not affect the remaining properties of being
a double complex and does also not change homology.

4 Examples

We conclude this note with a few examples that demonstrate the power of our techniques.
e first examples are very simple, whereas the later ones are a bit more interesting.

4.1 The five lemma

As a first example we want to prove the five lemma. Given have a commutative diagram

..
..A ..B ..C ..D ..E

..A′ ..B′ ..C ′ ..D′ ..E′

.

f

.

д

.

f ′

.

д′

.α .β .γ . δ. ε

with exact rows, we want to prove:

(a) When β , δ are monomorphisms and α is an epimorphism, then γ is a monomorphism.





(b) When β , δ are epimorphisms and ε is a monomorphism, then γ is an epimorphism.

To get a double complex, we flip this diagram, insert kernels and cokernels on the le and
right and fill everything else with 0 to obtain

..

..
... ..

... ..
... ..

... ..
... ..

... ..
... ..

... .

..0 ..0 ..0 ..0 ..0 ..0 ..0 ..0 ... . .

..coker д ..E ..D ..C ..B ..A ..ker f ..0 ... . .

..coker д′ ..E′ ..D′ ..C ′ ..B′ ..A′ ..ker f ′ ..0 ... . . .

In the following, we will omit the 0’s again and draw only the non-zero part.

From this, we see immediately that the E1 page of (R)Er∗∗ consists only of 0: because to get
this E1 page, we have to take homology in horizontal direction, but as the rows are exact,
this vanishes. So we conclude that (R)Er∗∗ converges to 0, and our theory then tells us that
also (C)Er∗∗ must converge to 0. What does this imply?

Taking homology in vertical direction, we obtain the E1 page of (C)Er∗∗:

..
..∗ ..ker ε ..ker δ ..kerγ ..ker β ..kerα ..∗

..∗ ..coker ε ..coker δ ..cokerγ ..coker β ..cokerα ..∗.

Here we have wrien “∗” to indicate any entry we are not interested in.

We now use the assumption from (a) to get ker δ = ker β = cokerα = 0. By taking
homology again, we finally look at the E2 page:

..
..∗ ..∗ ..∗ ..kerγ ..∗ ..∗ ..∗

..∗ ..∗ ..∗ ..∗ ..∗ ..0 ..∗

As the spectral sequence converges to 0, we know that on the E∞ page no entry can be
le. But this means that kerγ has to vanish since otherwise it could never disappear on
the following pages. is is just what we wanted to show in (a). e claim in (b) is shown
similarly.





4.2 The snake lemma

e next application of our theory will be a proof of the snake lemma, which proceeds quite
similar to the one of the five lemma. We start again with a commutative diagram

..
. ..A ..B ..C ..0

..0 ..A′ ..B′ ..C ′ .

.

f

.

д

.

f ′

.

д′

.α .β . γ

with exact rows, and as before we insert kernels, cokernels and zeros to obtain the E0 page
of our two spectral sequences:

..

..
... ..

... ..
... ..

... ..
... ..

... .

..0 ..0 ..0 ..0 ..0 ..0 ..0 ... . .

..0 ..0 ..C ..B ..A ..ker f ..0 ... . .

..0 ..coker д′ ..C ′ ..B′ ..A′ ..0 ..0 ... . . .

As the rows are exact, horizontal homology vanishes and again, both spectral sequences
converge to 0. Now taking homology in vertical direction yields the E1 page of (C)Er∗∗:

..
. ..0 ..kerγ ..ker β ..kerα ..ker f ..0

..0 ..coker д′ ..cokerγ ..coker β ..cokerα ..0. .

.
ϕ

.

ψ

Here we see part of the snake lemma sequence in the two rows, and standard arguments
show that these are exact. Finally we take homology again to look at the E2 page:

..
..0 ..cokerϕ ..0 ..0 ..0

..0 ..0 ..0 ..kerψ ..0

As on the E∞ page everything must have vanished, this one remaining map must be an
isomorphism. By inverting this isomorphism we can get a connecting homomorphism and
obtain the snake lemma sequence:

..
..0 ..ker f ..kerα ..ker β ..kerγ ..cokerα ..coker β ..cokerγ ..coker д′ ..0.

. . . . ..cokerϕ ..kerψ

.

ϕ

.

ψ

.
∼

By simple arguments one can prove that this is indeed exact.





4.3 Balancing Tor

e next application we want to consider is balancing Tor. So let R be a ring, A a right
R-module and B a le R-module. Denoting by Tor∗(A, −) the derived functors of A ⊗R −
and by Tor∗(−, B) the derived functors of − ⊗R B, we want to show

Tor∗(A, −)(B) = Tor∗(−, B)(A)

using spectral sequences.

To get our machinery started, we need a double complex. We choose projective resolutions

..
... . . ..P2 ..P1 ..P0 ..A ..0

... . . ..Q2 ..Q1 ..Q0 ..B ..0

of A and B, respectively, and define the double complex C∗∗ by

Cpq = Pp ⊗ Qq ,

where the maps are the induced ones coming from the maps in the projective resolutions.
Since projective modules are flat, the rows and columns of this double complex are indeed
complexes, and the squares in the double complex are commutative.

Writing down the E0 page of the column-filtered spectral sequence, we have

..

..
... ..

... ..
... .

..P0 ⊗ Q2 ..P1 ⊗ Q2 ..P2 ⊗ Q2 ... . .

..P0 ⊗ Q1 ..P1 ⊗ Q1 ..P2 ⊗ Q1 ... . .

..P0 ⊗ Q0 ..P1 ⊗ Q0 ..P2 ⊗ Q0 ... . . .

Now since every Pp is projective (hence flat), the sequence

. . . .... Pp ⊗ Q1
.... Pp ⊗ Q0

.... Pp ⊗ B .... 0

is exact, so we have
coker(Pp ⊗ Q1

.... Pp ⊗ Q0) = Pp ⊗ B .

erefore the E1 page looks like this:

..

..
... ..

... ..
... .

..0 ..0 ..0 ... . .

..P0 ⊗ B ..P1 ⊗ B ..P2 ⊗ B ... . . .





What we have here in the boom row is exactly the complex used to calculate the derived
functors of − ⊗ B. So taking homology of this yields as E2 page of (C)Er∗∗

..
..0 ..0 ..0 ..0 ..0

..Tor0(−, B)(A) ..Tor1(−, B)(A) ..Tor2(−, B)(A) ..Tor3(−, B)(A) ..Tor4(−, B)(A).

In a totally analogous way one can see that the E2 page of (R)Er∗∗ is

..
..0 ..0 ..0 ..0 ..0

..Tor0(A, −)(B) ..Tor1(A, −)(B) ..Tor2(A, −)(B) ..Tor3(A, −)(B) ..Tor4(A, −)(B).

Now in both spectral sequences, we have an E2 page whose only nonzero entries are in the
boom row. In this situation we can apply Lemma ., which tells us that

(C)Erpq ⇒ Torp+q(−, B)(A) and (R)Erpq ⇒ Torp+q(A, −)(B).
But as both spectral sequences converge to the same thing, we are done now.

4.4 Base change for Tor

We now consider the following situation: let R, S be rings, f : R .... S a ring homomor-
phism, A an R-module and B an S-module. By f we can also consider B as an R-module.
As in the previous example, we consider again projective resolutions

..
... . . ..P2 ..P1 ..P0 ..A ..0

... . . ..Q2 ..Q1 ..Q0 ..B ..0

of A as an R-module and B as an S-module, respectively, and form the double complex C∗∗
given by

Cpq = Pp ⊗R Qq .

Here Qq might not be projective as an R-module! But Pp is, so Pp ⊗R − is exact, and when
we consider the spectral sequence (C)Er∗∗ filtered by columns, we see by the same argument
as an the previous example that it converges to TorRp+q(A, B). So we know that also (C)Er∗∗
converges to the same thing, but how does this spectral sequence look like explicitly?

e E0 page looks like this:

..

..
... ..

... ..
... .

..P2 ⊗R Q0 ..P2 ⊗R Q1 ..P2 ⊗R Q2 ... . .

..P1 ⊗R Q0 ..P1 ⊗R Q1 ..P1 ⊗R Q2 ... . .

..P0 ⊗R Q0 ..P0 ⊗R Q1 ..P0 ⊗R Q2 ... . . .





We now use
Pp ⊗R Qq = (Pp ⊗R S) ⊗S Qq .

As (Pp ⊗R S)p is just the complex used to calculate the derived functors of −⊗R S and every
Qq is projective, hence − ⊗S Qq is exact, we obtain the following E1 page:

..

..
... ..

... ..
... .

..TorR2 (A, S) ⊗S Q0 ..TorR2 (A, S) ⊗S Q1 ..TorR2 (A, S) ⊗S Q2 ... . .

..TorR1 (A, S) ⊗S Q0 ..TorR1 (A, S) ⊗S Q1 ..TorR1 (A, S) ⊗S Q2 ... . .

..TorR0 (A, S) ⊗S Q0 ..TorR0 (A, S) ⊗S Q1 ..TorR0 (A, S) ⊗S Q2 ... . . .

Now the complexes in these rows are the ones used to calculate the derived functors of
− ⊗S B, and this means that the pq-th entry on the E2 page is TorSp (Tor

R
q (A, S), B). So we

have proved:

Proposition .: ere exists a spectral sequence

E2
pq = TorSp (Tor

R
q (A, S), B)⇒ TorRp+q(A, B).

Why is this useful? Let us consider the special case that S is flat as an R-module. en
TorRi (A, S) vanishes for i > 0, hence on the E2 page of the spectral sequencewe constructed,
only the boom row contains nonzero entries. erefore we can again use Lemma .,
which gives us

TorSi (A ⊗R S, B) = TorRi (A, B).

e requirement that S is a flat R-module is specifically fulfilled when G is a group, H is a
subgroup, and we take R = Z[H ] and S = Z[G]. In this case, S is even R-free: one can use
any system of coset representatives as a basis. In terms of group homology (seing B = Z),
the statement then reads

Hi (G , ind
G
H A) = Hi (H , A).

is is just Shapiro’s lemma.

4.5 The universal coefficients theorem

As a last application we want to prove a universal coefficients theorem. Let (C∗ , d∗) =
(Cq , dq)q be a chain complex consisting of free abelian groups and A be any abelian group.
In this situation, what can we say about the relation between H∗(C∗) and H∗(C∗ ⊗ A)?
We choose a projective resolution

. . . .... P2 .... P1 .... P0 .... A .... 0

of A and consider the double complex (Pp ⊗ Cq)pq .





We first look at the spectral sequence coming from the filtration by columns. Its E0 page is

..

..
... ..

... ..
... .

..P0 ⊗ C2 ..P1 ⊗ C2 ..P2 ⊗ C2 ... . .

..P0 ⊗ C1 ..P1 ⊗ C1 ..P2 ⊗ C1 ... . .

..P0 ⊗ C0 ..P1 ⊗ C0 ..P2 ⊗ C0 ... . . .

Since Pp ⊗ − is exact, we get as E1 page

..

..
... ..

... ..
... .

..P0 ⊗ H2(C) ..P1 ⊗ H2(C) ..P2 ⊗ H2(C) ... . .

..P0 ⊗ H1(C) ..P1 ⊗ H1(C) ..P2 ⊗ H1(C) ... . .

..P0 ⊗ H0(C) ..P1 ⊗ H0(C) ..P2 ⊗ H0(C) ... . . .

Now the rows here are the complexes used to calculate the derived functors of A ⊗ −, so
the pq-th entry on the E2 page is TorZq (A,Hp(C)). We want to examine this more closely.
Applying A ⊗ − to the short exact sequence of chain complexes

0 .... imd∗ .... kerd∗ .... H∗(C∗) .... 0

and deriving yields a long exact sequence

. . . .... Tor2(A, imdn−1) .... Tor2(A, kerdn) .... Tor2(A,Hn(C))

... ∂. Tor1(A, imdn−1) .... Tor1(A, kerdn) .... Tor1(A,Hn(C))

... ∂. Tor0(A, imdn−1) .... . . .

for every n ∈ N0. But as imdn−1 and kerdn are subgroups of the free abelian group Cn ,
they are both free themselves, and therefore the higher Tor groups vanish. By the long
exact sequence, this means that also Tori (A,Hn(C)) vanishes for i ≥ 2. Hence our E2 page
looks like this:

..

..
... ..

... ..
... ..

...

..Tor0(A,H2(C)) ..Tor1(A,H2(C)) ..0 ..0 ... . .

..Tor0(A,H1(C)) ..Tor1(A,H1(C)) ..0 ..0 ... . .

..Tor0(A,H0(C)) ..Tor1(A,H0(C)) ..0 ..0 ... . . .





We now have a look at the other spectral sequence coming from the filtration by rows.
From the E0 page

..

..
... ..

... ..
... .

..P2 ⊗ C0 ..P2 ⊗ C1 ..P2 ⊗ C2 ... . .

..P1 ⊗ C0 ..P1 ⊗ C1 ..P1 ⊗ C2 ... . .

..P0 ⊗ C0 ..P0 ⊗ C1 ..P0 ⊗ C2 ... . .

we as pq-th entry of the E1 page Torq(A,Cp). For q > 0 this vanishes because every Cp is
free, so the E1 page looks like this:

..

..
... ..

... ..
... .

..0 ..0 ..0 ... . .

..A ⊗ C0 ..A ⊗ C1 ..A ⊗ C2 ... . . .

Hence on the E2 page, we have again that everything except the boom row is 0, and in the
boom row we have

H0(A ⊗ C∗) H1(A ⊗ C∗) H2(A ⊗ C∗) . . . .

So by Lemma ., this (and hence both) spectral sequences converge to H∗(A ⊗ C∗). We
now apply Remark . to the first spectral sequence. For every n ∈ N0 we have (C)E2

0n =

Tor0(A,Hn(C∗)) = Hn(C∗) ⊗ A and (C)E2
1,n−1 = Tor1(Hn−1(C∗), A). So what we get is

the following universal coefficients theorem that describes the relation betweenH∗(C∗) and
H∗(C∗ ⊗ A) in terms of the laer Tor group:

Proposition .: ere is a short exact sequence

0 .... Hn(C∗) ⊗ A .... Hn(C∗ ⊗ A) .... Tor1(Hn−1(C), A) .... 0.
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