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Abstract

In modern number theory and arithmetic geometry, L-functions and their
p-adic counterparts play a central role, and the ones attached to modular
forms provide an important example.

In general one expects p-adic L-functions to exist for a wide class of mo-
tives and even families of motives. We explain these general conjectures,
due to Fukaya and Kato, part of which is a precise interpolation property
for the conjectural p-adic L-functions that is derived from the Equivari-
ant Tamagawa Number Conjecture. To apply this to motives attached to
modular forms, we then carefully study modular curves, modular forms
and modular symbols from various different perspectives. Here we col-
lect some results that, although well-known to the experts, are spread
throughout the literature and sometimes not easy to find.

As an application of this theory, we prove that for certain Hida families
of modular forms a p-adic L-function satisfying exactly the interpolation
property predicted by Fukaya and Kato can indeed be constructed, relying
on previous work by Kitagawa.
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Preface

Introduction

A major theme in modern number theory and arithmetic geometry is the connection between
special values of L-functions and purely algebraic invariants, and this surprising yet undeni-
able liaison is one of the most fascinating phenomena in the subject. Prominent examples of
results or conjectures in this spirit include the analytic class number formula, the conjecture
of Birch and Swinnerton-Dyer (BSD) or Kummer’s criterion for irregular primes. A very
promising approach for studying (some aspects of) such links is Iwasawa Theory, where the
so-called Main Conjectures relate L-functions to groups of an arithmetic origin. One of the
central actors in this story is a p-adic L-function (where p can be any prime), which lives
somehow in-between the complex analytic and the algebraic world. These p-adic L-functions
are thus of utmost interest since they allow to build a bridge between these seemingly distant
worlds and to formulate precise statements connecting them.

The rough picture is as follows. The p-adic L-function is a function on a p-adic domain
taking p-adic values, such that at certain special evaluation points its values are closely related
to special values of complex L-functions, in a way to be described below — the slogan is that
“p-adic L-functions interpolate complex L-values p-adically”. As such, the p-adic L-function is
an element of a certain ring, the Iwasawa algebra. On the other hand, the groups of arithmetic
origin mentioned above (more precisely, their p-parts) are in a canonical way modules over
the Iwasawa algebra, and the theory of such modules attaches to each a characteristic ideal
in the Iwasawa algebra. The Main Conjecture then asserts that this characteristic ideal can
be generated by the p-adic L-function. In this way, the p-adic L-function is related to both
the complex analytic and the arithmetic-algebraic side of the picture.

These conjectures can be formulated for a very general class of objects of interest (more
precisely, motives), and some special cases have been proven. However, in general not only
the Main Conjecture is open, already the existence of the p-adic L-function is not clear.

Since the discovery of the first p-adic L-function by Kubota and Leopoldt in the 1960s
(interpolating special values of Dirichlet L-functions), many other p-adic L-functions have
been found, interpolating the complex L-functions of a variety of objects such as arithmetic
Hecke characters, modular forms (thus also elliptic curves over @), by modularity), and some
more general automorphic representations. However, there is no universal method to do this,
rather one needs new ideas for each object. As a result the p-adic L-functions often have some
ambiguity in that the interpolation formulas describing their relation to complex L-values
contain expressions of a non-canonical nature. These expressions are rather artefacts of the
construction and do not have much of a conceptual meaning.

From a modern point of view, Iwasawa Theory appears as a consequence of the Equivariant
Tamagawa Number Conjecture (ETNC). This collection of conjectures, due to Burns and
Flach building on work of Deligne, Beilison, Bloch, Kato, Perrin-Riou, Fontaine and others,
is by design a common vast generalisations of the analytic class number formula and the
BSD conjecture (which are statements not directly related to Iwasawa Theory). It describes
in a satisfactory way the meaning of values of L-functions attached to motives at integer
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evaluation points in terms of cohomological invariants of the motive. Later it became clear
that the ETNC is in fact strong enough to imply also Iwasawa Theory. More precisely, Fukaya
and Kato show in [FKo6] that the ETNC implies the existence of a p-adic L-function for a
certain class of motives and moreover that the Main Conjecture holds. So the ETNC is very
powerful indeed, but in return only very few cases are known.

Coming back to p-adic L-functions, these ideas provide us with a precise interpolation
formula that these functions should conjecturally satisfy. There were also earlier efforts to
conjecture how a general interpolation formula should look like, due to Coates and Perrin-
Riou [CP89; Coa89; Coa88], but the formula obtained by Fukaya and Kato has the attractive
feature of being a consequence of the ETNC, which gives it some deeper explanation. This
result raises the question whether the interpolation formulas produced by particular known
constructions of p-adic L-functions are in accordance with the conjectural one.

Let us give a flavour of Fukaya’s and Kato’s formula. Arguably, the most interesting
expressions in their interpolation formulas are complex and p-adic periods defined via
comparison isomorphisms between different cohomologies of the motive in consideration
(coming from complex de Rham theory and p-adic Hodge theory). Roughly speaking, the
conjecture predicts an interpolation behaviour of the form

value of p-adic L-function value of complex L-function

-adic period = (some “easy” correction factors)- complex period
at certain evaluation points (see conjecture 1.3.41 for the precise formula). The above should
be an equality of elements of @, which means that the periods describe the transcendental
parts of the L-values (as the correction factors are always algebraic). This underlines the
significance of the periods. Unfortunately their rather abstract definition makes them difficult
to compute. It is therefore a delicate task to check whether a particular p-adic L-function has
exactly the conceptual interpolation behaviour predicted by Fukaya and Kato.

Our results for families of modular forms

Our purpose is to provide some evidence for Fukaya’s and Kato’s interpolation formula. We
focus on elliptic modular forms and families of such, which are in some sense the easiest
non-trivial example (in that they are “non-abelian”, i. e. of rank greater than one, but still
rather accessible). For a newform f, by constructions of Deligne and Scholl [Del69; Schgo]
we have a motive M(f) whose complex L-function is the L-function of f and for which
Fukaya’s and Kato’s theory predicts a p-adic L-function. The methods of Fukaya and Kato
can also be applied to (suitably defined) families of motives and yield then a conjectural
p-adic L-function for the whole family interpolating the p-adic L-functions of the individual
motives, as Barth showed in his thesis [Bari1]. Families of modular forms provide a natural
example to which this framework applies.

For Hida families of modular forms there is a construction of a p-adic L-function due to
Kitagawa [Kitg4] whose interpolation formula at a first glance looks similar to the conjectural
one. However, instead of actual periods, his formula contains expressions we want to call
“error terms”, as they depend on non-canonical choices and a priori have no conceptual
meaning. It is therefore natural to ask whether Kitagawa’s function matches with Fukaya’s
and Kato’s conjecture.

To illustrate the conjectures in this particular case, we aim to compute the expressions
in its interpolation formula, most notably the periods, and to express these in terms of
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Kitagawa’s error terms. We find the following results.

Theorem: (a) The complex period is essentially equal to Kitagawa’s complex error term.

(b) Impose a technical condition on the Hida family. Then the p-adic period differs from
Kitagawa’s p-adic error term essentially just by a unit which is global for the whole
family (i. e. comes from a unit U in the whole Iwasawa algebra).

Here, “essentially” means: up to a Gaufl sum and a power of 271 in the complex case, and up
to a Gaufl sum and an e-factor in the p-adic case. These differences are expected and desirable.
The technical condition is satisfied if the image of the Galois representation attached to the
Hida family contains SL;. See theorems 1v.4.1, 1v.4.9 and 1v.4.10 for the precise statements
and condition 1v.4.4 for the precise condition. From a technical point of view, these are the
main results of this work.

We continue and compute the other expressions in the interpolation formula, which turn
out to be in good analogy to the expressions in Kitagawa’s formula. The idea is then to
alter Kitagawa’s p-adic L-function by the unit U from the above theorem to obtain a p-adic
L-function which matches nicely with the formula by Fukaya and Kato. At this point it
turns out that unfortunately their conjectures seem to be slightly wrong. In fact, the final
interpolation formula we obtain differs from the conjectural one by a non-constant sign
that cannot be interpolated.’ Thus it seems that Fukaya’s and Kato’s conjectures should be
modified slightly in order to remedy this. While there are some suggestions, it lies beyond
the scope of this work to study systematically how this could be resolved in the general
setting of Fukaya and Kato.

To conclude, the main result we obtain in the end is the following:

Theorem: Continue to impose the aforementioned technical condition. Then there exists a
p-adic L-function for the Hida family whose interpolation behaviour is as predicted by Fukaya
and Kato, up to the problematic sign mentioned above.

See theorem 1v.5.10 for the precise statement.

We now give a short overview of the content of this work and briefly explain our method
of proof; see below for a more detailed account.

To compute the complex period, we give a precise description of the de Rham and Betti
realisations of the motive M(f) and the complex comparison isomorphism. We find that the
de Rham realisation is related to the space of cusp forms and that the Betti realisation is an
Eichler-Shimura type cohomology group. The comparison isomorphism between them is
essentially given by the (classical) Eichler-Shimura isomorphism, which has a rather explicit
description. This allows us to compute the complex period.

In the p-adic case, Faltings [Fal87; Fal88] constructed an analogue of the Eichler-Shimura
isomorphism between the de Rham and the p-adic realisation which is again essentially
the comparison isomorphism. To study how this behaves in families, we use as the most
important ingredient to our work the rather recent result that Faltings’ p-adic Eichler-Shimura
isomorphisms can be interpolated in families. This was conjectured by Ohta [Ohtgs] and
proved by Kings, Loeffler and Zerbes [KLZ17] (building on work of Kato [Kato4]) for Hida
families and Andreatta, Iovita and Stevens [AIS15] for overconvergent families. With this
result at hand, we can define the constant U and express the p-adic period in terms of U and
Kitagawa’s p-adic error term.

! This problem was discovered independently by Y. Zaehringer. We describe it in section 1v.3.
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Chapter I contains some loosely connected preliminaries, most importantly an overview
of the theory of motives and the work of Fukaya and Kato. In chapter Il we provide a detailed
description of modular curves and the motive M(f) attached to a modular form. Chapter III
is the technical heart of this work: we introduce modular symbols and error terms and
explain our most important ingredient, the p-adic Eichler-Shimura isomorphism in families.
In the final chapter IV we put our previous work together, compute the periods and find the
p-adic L-function we want.

Some remarks about our result should be given. The idea of using p-adic Eichler-Shimura
isomorphisms to prove such a result was already mentioned by Ohta in [Ohtgs]. Ohta
himself could not follow this strategy — while he constructed a p-adic Eichler-Shimura map
in families, he was unable to prove that it indeed interpolates Faltings’ maps. The author
wants to remark that he was not aware of Ohta’s article when the idea occurred to him.

A result similar to ours appears in Ochiai’s unpublished work [Ochos]. However, there
are several differences. First, Ochiai uses a different definition of the p-adic period (although
it is related to the one we use). Second, he does not work with the formula by Fukaya and
Kato, but with yet another conjectural interpolation formula formulated by himself (which
is not deduced from the ETNC and has a different shape in general). Third, his constant U
lies a priori in a much larger ring than ours. Finally, the proof is only sketched there and
an important point is omitted. It seems that Ochiai does not use p-adic Eichler-Shimura
isomorphisms, so in any case our proof is different.

An advantage of our technique is that it is likely to work in more general situations. Here
we indicate some possible generalisations, which we explain in more detail in the very last
section 1v.6.

The same methods should also apply to overconvergent families. For these, Bellaiche
[Bel11] has constructed a p-adic L-function which has properties very similar to Kitagawa’s,
Zaehringer [Zae17] extended the work of Fukaya and Kato to cover the non-ordinary case and
Andreatta, Iovita and Stevens [AIS15] provided the interpolation of the p-adic Eichler-Shimura
isomorphism in families. Due to technical limitations, we only sketch the proof in this case,
but nonetheless it should become clear how it will work. The author hopes to write down a
complete proof in a future work. This in some sense completes the study of (commutative)
p-adic L-functions for elliptic modular forms over Q). As further generalisations it should
be possible to extend these ideas to more general automorphic representations over larger
fields, such as Hilbert modular forms. In some cases the necessary preliminary results are
already known.

Outline of our methods and proofs

We give an overview of our construction, which will hopefully serve as a guideline to this
work. For the sake of readability we will occasionally omit some details such as twists or
unimportant factors here, at the cost of being slightly imprecise; also we assume that p # 2.

The main task is to “compute” the complex and p-adic motivic periods, as defined by
Deligne, Fukaya and Kato, of the motive attached to a modular form. In the known con-
structions of p-adic L-functions for modular forms, there are expressions which we call
“error terms” in the interpolation formulas, playing the role of the periods, and our aim is to
compare the motivic periods to these error terms. Hence “compute” in this context should
be understood as expressing them as explicitly as possible in terms of the error terms.

The motivic periods are defined essentially as determinants of comparison isomorphisms.

xii
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If M is a motive, we consider its Betti, de Rham and p-adic realisations, which we denote
by Mg, Mgr and M, respectively. Between these realisations we have the comparison
isomorphisms

CPe: M ® C —— Mar ® C,
cpe: M ® Qp —— M,,
CPgr: Mp ® Bar —— Mgr ® Bgr,

where Bgg is Fontaine’s field of p-adic periods. On the Betti side, we look at the subspace M
fixed by complex conjugation and on the de Rham side we look at the quotient Mag /fil® Myr
and fix bases of these vector spaces. The complex period is then defined as the determinant
of cp,,, while the p-adic period is defined as the determinant of cpy © cp;, (up to some
factor which we ignore here), both maps viewed as going from M to Mgr/ fil® Mgg with
appropriately extended coeflicients, and both determinants calculated with respect to the
same fixed bases. We explain this in sections 1.3.1, 1.3.3 and 1.3.5.

We want to compute these periods for the motive M(f) attached to a newform f of weight
k > 2 and level N > 4.> This motive is a submotive of a motive called JZ"W; more precisely,
on the realisations of IZ(W we have an action of the Hecke algebra, and the realisations of
M(f) are the subspaces cut out by the Hecke eigenvalues of f. It turns out that it is more
convenient to work with NkW and later specialise to these subspaces. We hence need to
study the realisations and comparison isomorphisms of JZ(VV For simplicity, we assume in
this introduction that f has Fourier coefficients in Z.

Let X(N), Y(N), X1(N), Y1(N) be the modular curves (over Q) classifying elliptic curves
with level N structure (see section 11.1.1). Over each of these we have a universal elliptic
curve, and we denote the maps from the latter to the modular curves by f. We then get for
the Betti realisation (see theorem 11.5.6)

TWs = HY(Y(N)™, Sym" *R'£.Q).
Using monodromy, we can write this more concretely as
YWs = HY(T(N), Sym* ™2 Q).
For the de Rham realisation, we find an exact sequence (see propositions 11.5.9 and I1.5.10)
0—— Sk(X(N), Q) — War — Sk (X(N), Q)Y — 0

coming from the Hodge filtration; here the subspace of cusp forms Si(X(N), Q) is precisely
fil° JZ(WdR- For the p-adic realisation we find

W, = H, ((Y(N) X Q. Sym" " R'£.Q,).

A central tool for our calculations is a canonical perfect pairing on the motive IZ’VV

¢y YW x Tw — q,

2 More precisely, we want to compute them for the critical twists of M(f), which gives us some extra factors
which we ignore here. Also, the same methods should work for level less than 4, see remark 11.1.6.
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which we study in section 11.8. The Hecke operators are self-adjoint with respect to this
pairing. It induces a pairing on each realisation, and the various comparison isomorphisms
respect this pairing. Moreover, it induces a perfect pairing

M) X M(f)— Q
and on the Betti side a perfect pairing
M(f)g X M(f)g — Q,
while the restriction
M(f)g X M(f)z — Q

vanishes identically. On the de Rham side it induces the canonical pairing
SKX(N), Q)" x S(X(N), Q) — Q.
Let us first take a closer look at the complex period. We have the comparison isomorphism
Pt tWE®C —— T Wg ® C.
On the other hand, a classical result is the Eichler-Shimura isomorphism (theorem 11.6.3)
ES: HL(T(N), Sym* ™ C?) —~ Sx(X(N), €) & S¢(X(N), C).

A crucial step in our calculation of the complex period is the observation that these are
compatible in the following sense (see theorem 11.6.7): we have a commutative diagram

Sk(X(N), €)

HOV &
cp

]Z(WdR ®C = k(WB ®C

where the left map comes from the Hodge filtration of A,f’WdR, the right map is the Eichler-
Shimura map and the bottom map is the comparison isomorphism. Since the Eichler-Shi-
mura map admits a concrete description in terms of cocycles, this makes the comparison
isomorphism a lot more explicit.

At this point we need to look at the definition of the complex error term. For this
we need modular symbols, which are certain cohomology classes on modular curves (see
section 111.2 for their definition; they are closely related to the above group cohomology
groups). We denote them by MSi(N, R), where R is some coefficient ring. They carry an
action of complex conjugation and a Hecke action, and the eigenspaces MSi(N, Q)*[f],
where the complex conjugation acts as +1 and the Hecke algebra acts via the eigenvalues
of f, are one-dimensional. Over C, we have a canonical element & € MSy(N, C) attached
to f, defined in terms of an explicit cocycle, which we can decompose as & = 5; + §j§
with 5]2—' € MSi (N, C)*[f]. If we now fix bases 77;—; € MSi(N, Q)*[f] then, since modular
symbols behave well with respect to base change, we find elements E.(f, ry}%) € C* such
that f}?’ = Ew(f, 77;*2)17?. These are the complex error terms.
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The important observations to compare these to the complex motivic periods are: first
there is a canonical map (see (111.2.1))

MSk(N, Q) — TWs (0.1)

which is Hecke equivariant and respects complex conjugation, and second, over C this map
sends & € MSy(N, C) to ES(f) € ]Z(WB ® C, where ES is the Eichler-Shimura map (see
lemma 111.2.6).

In section 1v.4.1 we choose bases of the Betti and de Rham side. By the above descrip-
tions, the quotient M(f)qr/fil° M(f)qr is the one-dimensional subspace of Si(X(N), Q)"
generated by a linear form dual to f (i.e. sending f to 1 and all other vectors of a basis
of Sk (X(N), K) containing f to 0). We fix such a linear form and call it §. It thus satisfies
(3, fYar = 1. On the Betti side, we can use the images of 77;? in Nk”WBi under the above map

(0.1) as a basis of IZ(WBi Without loss of generality we assume that (17}, ry})B =1

In section 1v.4.2 we then compute the complex periods with respect to these bases. From
the definition of Ec(f, 77;—;) and the fact that the pairing vanishes on M(f)* x M(f)*, we
first see that

Eeo(fo17) = <,7;, §f>B-

Transferring this to the de Rham side, writing p* for the image of 57 under the comparison
isomorphism and using that £ becomes f on the de Rham side, we obtain

(P™. f)ar = Eeo(f175).

This implies p* = Ex(f, 17]%)5 and we see that the complex period equals the error term.
We now turn to the p-adic side. If we consider the comparison isomorphism for NkW over
Byt and look at its degree 0 part, we obtain (see theorem 11.6.9)
NW, ® €, —— Sk(X(N),Cp) ® H'(X(N), a)f{_(’;\,)) ® C,. (0.2)
This was proved by Faltings and can be seen as a p-adic analogue of the Eichler-Shimura
isomorphism. Note that from (0.1) and the comparison isomorphism cp,, we have a canonical
map
MSk(N, Zp) — YW, (0.3)

In his construction of the two-variable p-adic L-function for a Hida family F, Kitagawa
interpolates the modular symbols MS,(Np”, Z,) for varying k > 2 and r > 1. He obtains
a large module MS$*"4(Np>, A) of A-adic ordinary modular symbols (here A = Z,[T] with
I' = 1+ pZ, is the Iwasawa algebra) such that the reduction of MS$4(Np>, A) modulo
special prime ideals in A is the module of modular symbols of fixed level and weight (see
sections I11.4.1 and 111.4.3). More precisely, if Py . is the kernel of the morphism A — Z,
induced by ex*, where ¢ is a character of T of order p” and x: I —— Z; is the canonical
inclusion, then

ord 00 r
MS(Np ’A)/Pk’g = MS(Np",Z,)|¢]

(see theorem 111.4.10 (a)).
Due to his technique, Kitagawa’s two-variable p-adic L-function contains a p-adic error
term in its interpolation formula which is defined as follows. On IM$*™4(Np™, A) we have
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again a Hecke action and a complex conjugation, and IM$*™4(Np®, A)*[F] is free of rank 1
over A. If we fix a basis Z*, then the image of Z* in MS,(Np", Z,) may be written as

E*mod Py = Ey(E", i M.,
with some &, (E* ,nk ) € Zy if ny , € MSK(NP", Zyp)*[ fk.e] is a basis as before. We want to
compare this error term to the p-adic period of M(f ).

Now our most important ingredient, namely the fact that the p-adic Eichler-Shimura
isomorphism can be interpolated in families, comes into play. This means that there is a

canonical Hecke equivariant map
MSord(Npoo,A) Sord(Npoo’A)

(the right side being the module of A-adic cusp forms) such that its reduction modulo Py .
coincides with the map

MSk(N, Zp) — YW, ® C, — Si(X(N),C,)

obtained from (0.3) and the projection to the first factor in (0.2). This was proved by Ohta,
Kings, Loeffler and Zerbes (theorem 111.5.11). Using this and the fact that $74(Np™, A)[F] is
free of rank 1 and generated by F, we define a constant U € A as the unique U such that E
is mapped to UF. Write Uy, . € Z,, for the reduction of U modulo Py ,.

In section 1v.4.3 we compute the p-adic period. Reducing the equation defining U, we see
that

Er e = SP(E_’ ’72,5)’7;,8 Uk,afk,s

under the p-adic comparison isomorphism. Hence if we again write p; _for the image of
n; . under the comparison isomorphism, we can perform a similar computation as in the
complex case:

+ 81’(“ ’ Uk e) - 81’(“ > ”k e)
T Uk,s T.e - Uk,s
p

and therefore
(ot fice) _DE )
koe? I8 [ R Uk, e

It turns out that this works also with reversed signs, i. e. we also have

b 2
Pr.er Jhoe dR Uk, ¢ '

_ SP(:i Tic.e)
Uk, e
term only by the constant Uy .

The constant U is global for the Hida family and we can moreover show that U is even a
unit. This means that if we multiply Kitagawa’s two-variable p-adic L-function by U™, the
error term in his interpolation formula is transformed into the p-adic period, proving our
main theorem.

This shows pk 6 and we conclude that the p-adic period differs from the error
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Notations and conventions

General conventions

We denote by IN the natural numbers beginning with 1 and set INo := IN U {0}. The symbol p
without further explanation denotes a prime number. Unless we explicitly state the contrary,
a prime called p will assumed to be odd, for technical reasons.

All rings are supposed to have a unit and homomorphisms of rings are always unitary.

Numbers and Galois groups

We fix algebraic closures Q of @, @p of Qp and C of R and write C,, for the p-adic completion

of @p. We further use the period rings Byr, Bgr, Bst and Beyis from p-adic Hodge theory.
The Frobenius map on Bjs will be denoted by ¢cis, and we use the same symbol for the
Frobenius map on similar objects (such as Bgy, Dyis, Dst)-

We fix throughout the work a square root i € C of —1. By a pair of embeddings of Q, we
mean a pair (i, 1) of embeddings ic: Q—— Cand Ip: Q— @p C C,. We provisionally
fix such a pair of embeddings. This fixes a choice of a compatible system of p-power roots of
unity & = (&n)n>0 with &, € Q,(pp~) by saying that the pair of embeddings should identify
£ with the system (e??"),, 5, of p-power roots of unity in C. Our choice of (tco, 1p) is only
provisional, we may change it at some point in this work. When we do so we thus also have
to change £.

Our fixed choice of a compatible system of p-power roots of unity ¢ = (&,),>0 determines
a uniformiser of B:{R, see [FOo08, §4.2.2, §5.2.3]. We denote it by tgg. .

A number field is a finite extension of (). We do not view number fields as subfields of Q)
a priori, so if we want to do so we have to choose an embedding K —— Q. If K is a number
field and w is a place of K, then we denote by K, the completion of K at w. If v is a place of
Q, we put Ky, == [],,|,, Kw, where the product runs over all places w of K lying above v. In
particular, we then have K, = K ®q Q. If L is a finite extension of QQ,, we denote by L™ the
maximal unramified extension of L and by L™ its p-adic completion.

We put Geye = Gal(Q(pp~)/Q) and write Keye: Geye —— Z; for the cyclotomic character.

For any field k we denote its absolute Galois group by Gi. We denote the nontrivial
element of Gy by Frobs. For a module M with an action of G, we denote by M* the
submodule where Frob., acts by multiplication with +1, respectively.

Note that our choice of a pair of embeddings of Q induces various other choices. First,
via restriction, it induces embeddings of local into global Galois groups, namely embeddings
Gr — Gq and Gg, —— Gq. This then fixes a well-defined inertia subgroup at p of
Gq, which we denote by I,. We denote by Frob, a geometric Frobenius element in Gq
at p. It is only well-defined up to conjugation and multiplication by elements of I, but

! One says that the choice of i is like choosing an orientation of C, while the choice of ¢ is like choosing an
orientation of C,. We thus require that C and C,, are oriented compatibly, in the above sense; this notion of
compatibility depends on the pair of embeddings (i, Lp)-
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this will not be important in the situations we use it. Further the inertia group fixes an
embedding Q" — Q,, by identifying Q; with the subfield of Q,, fixed by I, and thus also
Q) — Cp. —

If we have a number field K a&d fix further an embedding E —— @, then t}is fixes
embeddings K —— C and K —— Q,,, since we already fixed 1o: Q — Cand 1,: Q —

Qp, and a place p | p of K as the kernel of
Ok — Oc, — 06, [ (p).

Moreover, it fixes embeddings Gal(Q/K) — Gq and Gal(@p /Kp) — Gq,. The latter
Gk,
> - X ar
Burt. Further, as above we get embeddings K" —— Q, and K" —— C,.

We normalise the reciprocity map from class field theory such that it maps prime elements
to arithmetic Frobenii. This is particularly important when we view Dirichlet characters as

Galois characters.

also fixes an embedding K, —— Bgr by identifying K, with B and analogously with

Categories

We use the following categories:

Sets category of sets

Top category of nice” topological spaces

R-Mod, Mod -R category of left resp. right modules over a ring R

Schys category of schemes over a fixed base scheme S; if S = SpecR
is affine we write Schp

Sch = Schyz, category of schemes

Repr(G) linear representations of a group G on finitely generated

projective R-modules; continuous representations if R and
G come with a topology

We denote limits (projective limits) by “{iLn” and colimits (direct limits, inductive limits)

by “colim”.
Schemes and group schemes
If X and T are S-schemes, we sometimes write X7 := X Xg T for the base change of X to T.

If S is a scheme and G is a group, we sometimes write G ¢ for the constant group scheme.
We write p, for the group scheme over Z of roots of unity of order dividing n.

2 General topological spaces do not play an important role in this work. Therefore, we assume for simplicity
that any topological space we consider is locally contractible, locally path-connected and semi-locally simply
connected. Note that this implies that sheaf cohomology with constant coefficients agrees with singular
cohomology, see [Voioz2, Thm. 4.47].
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Filtrations, gradings and Hodge-Tate weights

Let i € Z. If M is some decreasingly filtered module over some ring, we write fil' M for the
i-th filtration step, and we denote the graded pieces by gri M := fil' M/fil""! M and write

gr(M) = @ gr' M
i€Z
for the associated graded module. If M is some graded module, we write gr’ M for the
submodule of degree i, or sometimes just M;.

If M is a filtered or graded module, we define its Hodge-Tate weights to be those i € Z
such that gr' M # 0. If M is a vector space over a field K, then we define the multiplicity of
the Hodge-Tate weight as dimg gr’ M for such an i.

The above convention implies in particular that the cyclotomic character has Hodge-Tate
weight —1 (see fact 1.3.6).

If K is a field and V is a finite-dimensional decreasingly filtered K-vector space, then we
define its Hodge invariant ti (V) € Z as the sum of the Hodge-Tate weights with multiplicities

tu(V) = ) idimg gr' V.
i€Z
In particular, if dimg V = 1, then ty(V) = max{i € Z : fil' V = V}. By [FOo8, §6.4.2], if

dimg V = n, then
n

tg(V) =ty ( /\V)

IfW = P,., W is a finite-dimensional graded K-vector space, we view it as a filtered
K-vector space in the tautological way and write

t(W) = Z i dimg W;.
i€eZ
In particular, if dimg W = 1, then ty(W) is the unique i € Z such that W; # 0.

Homological algebra

Whenever we write “complex” without further specification, we will mean a cochain complex
in some abelian category A. If C* is some complex in A, we denote by C[i]* the complex
with C[i]" = C"*!, for i € Z, with the same differentials as the original one.> We denote the
bounded below derived category of A by D*(A). The image of some object A € A in D*(A)
will be denoted by A[0]. More generally, the class of the complex having 0 everywhere except
in degree n and having A in degree n will be denoted by A[—n]. We denote the class of some
complex C* in D (A) just by the same symbol. If we want to emphasise the grading of a
complex, we write something like

E G

o—M

to indicate that F is in degree 0.
We denote hypercohomology resp. hyper-derived functors with H* resp. R* as opposed
to H* resp. R*.

3 Note that there are several different conventions about how to define the differentials on C[i]; for example
[GMos3] defines it at (—1)* times the original one.
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Cosets

To fix the notion of cosets, let G be a group and U a subgroup. If we let U act on G from
the left by left multiplication (u, g) —— ug, then the orbit of g € G is Ug and we call this a
left coset. If we let U act on G from the right by right multiplication (g, u) —— gu, then the
orbit of a g € G is gU and we call this a right coset. We denote the set of left cosets by U\G
and the set of right cosets by G/U. In parts of the literature, the notions of left and right
cosets are interchanged.

Matrices

Let R be a ring and n € IN. We denote the ring of n X n quadratic matrices with coefficients in
R by M, (R) and its unit group by GL,(R). If R is an ordered ring (e. g. a subring of R), then
M; (R) denotes the submonoid of the multiplicative monoid of M(R) consisting of matrices
A € M,(R) with det A > 0 and GL;,(R) := GL,(R) N M}, (R).

If in a matrix some entry is left empty, this stands for a 0, while a “+” stands for an
arbitrary element of R.

For n = 2, we define the main involution i of GL,(R) by

a' = (deta)a™?, a € GLy(R).

£ 8- )

Congruence subgroups and submonoids

Hence if ¢ = (‘C‘Z),then

We define some standard congruence subgroups of SLy(Z) and congruence submonoids of
M,(Z). Let N,M € IN,
We define

5= (_1 1) € GLy(Z)

and write G, for the subgroup of GL,(Z) consisting of o and the identity. Note that this
matrix is often denoted by ¢, but since ¢ may be used for various other things in this work,
we denote it by o and use this symbol exclusively for this matrix.

Define groups

T(N) = {yeSLZ(Z):yE (1) (1)) (modN)}

L(N) = {yeSL2(Z):yE (1) j) (modN)}

T,(N) = {yeSLz(Z):yE ; :) (modN)}
Iy o(N, M) = {yeSLg(Z):yE (1) j) (mod N), yz(z ) (modM)}
TON, M) = {yeSLz(Z):yE (1) j) (mod N), y_( 2) (modM)}
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and monoids
MM = {a € My(Z) : deta # 0, (detar, N) = 1}

Ai(N) = {a eEM;(Z):y = ((1) :) (modN)}

Ao(N) = {a = (‘j z) eM(Z):y = (: :) (mod N), (a,N) = 1}.

We note that in the notation of [Shi71, §3.3], if we choose ) = (Z/N)* and ¢t = 1 we obtain
I = TH(N), A" = Ag(N) and A}, = Ag(N) N MgN), whereas if we choose ) = {1} and t = 1
we obtain I'” = I}(N), A’ = Aj(N) and A}, = Ai(N) N M(ZN) there. Further the Ay there is
MM M ().

All the groups defined above are normalised by a. If A is any submonoid of My(Z), we
write A® for the submonoid of M;(Z) generated by A and 5. For example, we have

Ag(N) = {a = (Z Z) eEMy(Z):y = (Z :) (modN), (a,N) =1, deta # 0} .

This monoid is denoted Sy(N) in [PS11, §2.1], [PS13, §2.1], [Stegq, (0.6)].

Gauf sums

Let y: (Z/N)* — K*bea Dirichlet character with values in some number field K. If we
fix an embedding 1x: K —— @, we can define its Gaufy sum as

Glru) = ), wlx(@)e™ N e ¢,
ae(Z/N)*

using our fixed embedding_@ —— C. If L is the completion of K at the place induced by ix
and our fixed embedding Q — Q,, then 1x induces i1 : L —— Q,. If N = p™ is a prime

power, then G(y, ix) corresponds via our fixed embedding Q— @p to

Gruw) = ), ulx(@)is €Q,

ae(Z/N)*

where &, is from our fixed compatible system of p-power roots of unity. In this way, we
always view Gaufl sums as elements of C and Q,. We will often drop ik or i, from the
notation, but one should keep in mind that Gaul sums depend on these embeddings.

Miscellaneous

If D is an integer coprime to a prime p, we put Z, p = h;n N Z./Dp™.
n
We denote by ) = {r € C : Im7 > 0} the complex upper half plane and by h* =
hUPYQ) = bhU QU {co} the completed upper half plane with the usual topology, see e. g.

[DSos, §2.4].
If X is any topological space and A is an abelian group, then A denotes the constant

sheaf defined by A. If ¥ is some sheaf X, then we denote by H;(X , ) the i-th parabolic
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cohomology, which is defined as the image of cohomology with compact support H.(X, )
in H{(X, F), for any i > 0.

If V is a vector space over some field K, we denote by V" its K-linear dual. The field K
will usually be clear from the context.

If V or p is some representation of some group, we write V* resp. p* for the contragredient
(i. e. dual) representation.

We denote the symmetric group on n letters by S,,.

We denote the conductor of a Dirichlet character y by cond y.

For a prime p and N € IN we denote by ord, N the p-adic valuation of N, i. e. the maximal
r € INy such that p” | N.
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Chapter I.

Preliminaries

1. Abstract Hecke theory

“Hecke operators” act on a variety of objects. Unfortunately there are quite some slightly
different conventions to define them in the literature, and comparing these can be quite messy
in explicit situations. We therefore first standardise the notion of Hecke operators using the
abstract Hecke algebra for a Hecke pair of a monoid and a subgroup, which was introduced
by Shimura in [Shi59], see also [Shi71, §3.1]. We repeat this construction following closely
the original sources; most of what we do here is also covered in [Miy89, §2.7].

Having defined the abstract Hecke algebra, we can give many groups a canonical module
structure over it just by abstract nonsense. We develop this abstract theory to some extent
and show Hecke equivariance statements for maps between these groups, whose proofs
are mostly trivial in our abstract setting, so there is no need to do lengthy calculations. To
connect our theory to more classical situations, we prove that the Hecke actions we define
abstractly indeed become the actions defined in some texts in an ad-hoc way if one specialises
to concrete situations. This provides a clean way to compare different definitions of Hecke
operators.

In the applications we mentioned, the resulting statements are mostly clear or well-known
to the experts, but nonetheless it seemed reasonable to give proofs for them, and the abstract
setting we develop seemed to be the most elegant way to do this.

Traditionally, Hecke operators act from the right (i. e. we get right modules over the
abstract Hecke algebra). We follow this convention, although in our applications the Hecke
algebra will be commutative anyway. However, for group or monoid actions needed to
get our machinery off the ground, there is no common convention in the literature: some
authors use left actions and some use right actions. We chose to incorporate both conventions
into one category, assuming that we have a fixed involution on the surrounding group, so
that we get functors from things with left or right actions to right modules over the Hecke
algebra. This makes the machinery somewhat unwieldy occasionally, but we think that in
the applications we will benefit from that viewpoint.

1.1. Monoids with involution, actions and representations

Definition 1.1: A monoid with involution (2, %) consists of a monoid ¥ with cancellation
property (so that it lies in a group) and a map x: ¥ —— ¥ (denoted &« —— a*) which is an
involution, that is, it fulfils a** = « and (af)* = f*a* for all @, f € X (in particular, it is
bijective).

Example 1.2: Of course, any group with the inversion map as involution provides an
example. The most important example to have in mind will be ¥ = GLy(Q) N My(Z) or
¥ = GL; (Q) N M;(Z) with the main involution ¢ (see page xxii).
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Definition 1.3: Let (2, x) be a monoid with involution, C be a category and C € C an object.
(@) A left action of (2, %) on C is a homomorphism of monoids ¢: ¥ —— End(C).

(b) A right action of (X, ) on C is a map ¢: ¥ —— End(C) such that the composition

R A End(C) is a homomorphism of monoids.

(c) Let X be the set of left and right actions of (%, ) on C. We define an equivalence
relation ~ on X by

P~y : = @o=yYorp=yox
An action of (2, %) on C is an equivalence class from the set X above. Obviously each

equivalence class has two elements: one left action and one right action. We call
these the left resp. right representative.

(d) Denote by C, «) the following category: objects are pairs (C, A) where C € C is
an object and A is an action on C. A morphism f: (C, A)—— (D, B) is a morphism
f: C—— Din C such that the following equivalent conditions hold:

(i) For the actions A and B, choose representatives ¢ and ¢ such that they are
both a left action resp. both a right action. Then for any « € X, the diagram

commutes.

(ii) For the actions A and B, choose representatives ¢ and ¢ such that ¢ is a left
action and ¢ is a right action, or such that ¢ is a right action and ¢ is a left
action. Then for any « € %, the diagram

commutes.

In fact, the category C(s, x) is obviously equivalent to either just the category of objects C € C
with left actions or with right actions of X. We freely use this equivalence without further
comments, thus regarding objects of C with either just a left or a right action as elements in
Cs -

One could give a similar definition if we have a subsemigroup A of ¥ which may not be
stable under %; an action should then be a right action of A or a left action of A* with the
equivalence relation defined in the same way. For simplicity, we restrict to the case of a
*-stable semigroup, but in remark 1.25 (a) we will once consider this more general situation.
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For a commutative ring R, we will work a lot with the category R-Mod (5, +), whose objects
we call R-linear representations of (2, x). Such a representation is then an R-module M with
an R-linear action of ¥ either from the left or from the right. We will typically denote left
actions by

ISXM—M, (a,m)——aem

and right actions by
MXY—M, (ma)—— m[a]

(in the applications, a will often be a matrix, and then we write m[ s ] instead of m[(* %)]).
It is clear that R-Mod (5, 4 is an abelian category: it is equivalent to both the category of left
or right R[¥]-modules.

Sometimes the ring R will be a topological ring, and the modules should be topological
modules. Everything we do can be extended to this situation. How to do this will be clear, and
we will ignore the topological case, working just with abstract rings, so to not over-complicate
matters.

Remark 1.4: The category R-Mod (5, ) admits an internal hom. To explain this, take two
M, N € R-Mod (5, +). Choose the left representative for the action on M and the right repre-
sentative for the action on N and put for ¢ € Homg(M, N) and a € X

dlal(m) = ¢p(ax e m)[a], form e M.

Then ¢[a] € Homg(M, N) and this defines a right action of A on Homg(M, N). Via this
action, we view Homg(M, N) as an element of R-Mod (5, ).

Of course, we could have chosen other representatives for the actions, and it is clear how
the formula defining the action on Homg (M, N) should look like for the other representatives.
We chose these representatives because this often occurs in the literature discussing the main
application we have in mind (see section 111.1).

In particular, this defines a notion of duals in R-Mod (5, 4 if we take N = R (with the trivial
action of (X, x)).

1.2. Hecke spaces and Hecke sheaves

Throughout the whole section, fix a monoid with involution (3, x) and a commutative ring R.

Definition 1.5: Let X € T0p(s, 4 $0 X isa topological space’ with an action of (2, x). View
X as aringed space by defining the structure sheaf to be the constant sheaf R. Due to technical
reasons assume further that ¥ acts by automorphisms on X. Then we call X a Hecke space.

We define the notion of a Hecke sheaf which morally can be seen as a sheaf of R-modules
on X with an action of (2, x). This generalises the notion of “G-sheaves”, as they are called
in [Gros7, chap. 5], or “sheaves with group action”, as they are called in [Fu11, §9.1]: if we
specialise to the case of the trivial Hecke pair (G, 1), we get this notion back. We follow these
texts closely and refer to them for details.

If we choose a representative for the action of (X, ) on X, then for each & € X we get a
map X —— X given by the action of @. To make things clearer, we often denote this map by
La resp. aR for the left resp. right representative instead of just . Note that by definition
of the equivalence relation on actions, we have La* = aR for all « € X, and moreover
LaoLf =Lap, aR o R = faR.

! Recall that we work only with “nice” topological spaces, see page xx.
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Definition 1.6: Let # be a sheaf of R-modules on X. Choose a representative for the action
of (2, %) on X.

(a) For the left representative, define a left Hecke sheaf structure on ¥ to be a collection
(¢ ) of isomorphisms ¢, : F —— La.F for every a € %, such that ¢; = id¢# and
for all a, B € X the left diagram below commutes, or equivalently (by adjointness), a
collection of isomorphisms ¢* : La*# —— ¥ such that ¢' = id¢and forall @, f € =
the right diagram below commutes:

o

Pa ¢

F La.F La*F F
‘pd/”l le((ﬂﬁ) La*((pﬁ)T W{pﬁ“
(Laf).F — La.(LB.F) La*(LB*F) — (Lap)*F.

(b) For the right representative, define a right Hecke sheaf structure on ¥ to be a col-
lection of isomorphisms ¢, : ¥ —— aR.F for every a € X, such that ¢; = id# and
for all a, f € ¥ the left diagram below commutes, or equivalently, a collection of
isomorphisms ¢%: aR*F —~— F such that ¢' = id# and for all @, € ¥ the right
diagram below commutes:

F i aR.F aR*F Y F
Ppa J laR*(fﬂﬁ) aR*(q)ﬁ)w [q)"‘ﬁ
(BaR).F — aR.(BR.F) aR*(fR*F) — (BaR)"F .

Similarly as we did in definition 1.3 (c), we want to define an equivalence relation on
Hecke sheaf structures to unify them in a single category. Take a sheaf of R-modules ¥ on
X. Choose the left representative for the action on X and take left Hecke sheaf structure
(¢a)o on F. Putting a* for @ € 3 and f* for € 3 in the left diagram in definition 1.6 (a)
and using a* f* = (fa)*, we arrive at a commutative diagram

Poa*

F LafF
P(pay* l lLa:(‘Pﬁ*)

L(Ba)rF — LaX(LBrF),

for all @, p € 3. Because we have La* = R, this diagram says that the collection of the ¢,
for all « € ¥ is a right Hecke sheaf structure on ¥ for the right representative for the action
on X. Similarly, if we start with a right Hecke sheaf G, we obtain a left Hecke sheaf structure
on it.

Definition 1.7: Define an equivalence relation on the set of left and right Hecke sheaf
structures on a sheaf ¥ by saying that two Hecke sheaf structures are equivalent if and only
if they are either the same or one can be transformed into the other by the process we just
described. Define a Hecke sheaf on X to be a sheaf of R-modules together with an equivalence
class for this relation.
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It is then clear that for each Hecke sheaf there is a unique representative which is a left
Hecke sheaf and a unique one which is a right Hecke sheaf. We call them left and right
representative, respectively.

Definition 1.8: Let SHg’*)(X ) be the category whose objects are Hecke sheaves on X and
in which a morphism f: ¥ —— G between two Hecke sheaves is a morphism of sheaves
¥ —— G such that for all « € X the diagram

F—G a'f — a'G
l l or equivalently l l
O(*T — O(*Q T —_— g

commutes, if we choose the right (or left) representative for the action on X for both sheaves
and the « in the diagram refers to aR resp. La. If we choose mixed representatives, one has
to draw diagrams with “x” on one of the sides; we don’t write this down.

Proposition 1.9 (Grothendieck): The category Sﬁg’*) (X) is an abelian category with enough
injectives.

Proof: If we specialise to the right representative and forget the left one, the category of
Hecke sheaves is equivalent to the category of 3-sheaves. The analogous statement for
G-sheaves for a group G is proved in [Gros7, Prop. 5.1.1 and Thm. 1.10.1]. Investigating the
proof there, one sees that it does not use anything special about groups and still works with
monoids. (]

Now choose the left representative, say, for the action on X, let p € X be a point, « € ¥ and
¥ a Hecke sheaf on X. By applying the “stalk at p” functor to the morphism La*F —— F
and using the identification of stalks (La*F), = F1.4(p), We see that we get an induced map

Frap) — T (1.1)

for each a € X. Similarly, if we choose the right representative, we get a map For(p) —
for each a € 3.

Construction 1.10: We want to have a notion of constant Hecke sheaves. Therefore, let M
be an R-linear representation of (2, %).

Choose the left representative for the action of (2, %) on both X and M. Then for any
open U C X and any « € ¥, La induces a map between the set of connected components

mo(La ' (U)) — mo(U).

Define a map

M(U) = Maps(ro(U), M) — > Maps(ro(La™(U)), M)
—2 Maps(my(La™'(U)), M) = MLa™'(U)) = LauM(U)

where (1) is induced by the above map on connected components and (2) is given by pointwise
application of a* on M (in both cases, “left” and “right”!). Then one can check that the
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collection of morphisms of sheaves ¢, : M —— La, M defined that way satisfies the necessary
relations for a left Hecke sheaf structure on M. One also easily checks that if we choose the
right representative for the action, then the analogous construction defines a right Hecke
sheaf structure which is equivalent to the previous left Hecke sheaf structure in the sense of
definition 1.7. Therefore, we get a well-defined Hecke sheaf on X, which we denote by M
and call the constant Hecke sheaf-

Going into the explicit proof of the fact that La, and La™ are adjoint functors, one sees
that the morphism La*A —— A corresponding to ¢, is explicitly given by

La" A(U) = A(La(U)) = Maps(ro(La(U)), A)

9, Maps(mo(U), 4) —L Maps(ry(U), 4) = AU)

where again (1) is induced by the map on connected components and (2) is given by pointwise
application of a* on A, if we chose the left representative, and analogously for the right
representative.

Using this, we can see that for any point p € X and « € %, if we identify stalks with A in
the usual way, the map (1.1) is just given by multiplication with a*, for either representative.

Construction 1.11: Now we consider the situation where X and Y are Hecke spaces and
f: X—— Y is a morphism in Top 5, , ). We look at pushforwards and pullbacks of Hecke
sheaves.

(a) Choose again the left representative, say, for the action of (2, %) on both X and Y.
If ¥ is a Hecke sheaf on X, then we have La, f.¥ = fiLa.F for each a € ¥ (where
the first La is the action on Y, while the second is the action on X), so applying the
functor f; to the morphism ¢, gives a morphism f,¥ — La. f.F, and one easily
checks that this makes f.% a Hecke sheaf on X.

(b) Similarly, if G is a Hecke sheaf on Y, then applying the functor f* to the morphism
@“ (the p* now being part of the Hecke sheaf structure of G) and using a similar
argument as before gives a morphism La* f*G —— G, and one checks that this makes
f*G a Hecke sheaf on X. This does not depend on the choice of the representative
for the action.

(c) Since Hecke sheaves form an abelian category, we automatically get Hecke sheaf
structures on all the higher direct images R?f.#. More explicitly: The family of
functors (R?f£.(-))4>0 is a -functor from the category of sheaves of abelian groups
on X to the category of sheaves of abelian groups on Y, and as a derived functor
it is universal. Since a. (again « is an abbreviation for either La or aR) is exact
(recall that we required that X acts by automorphisms on X!), (a.R? f.(:))4>0 is also a
d-functor. The morphism f.¥ —— a.f.F from before is a morphism between the
degree 0 parts of these §-functors and hence, by universality, induces a morphism of
d-functors

RIfu(-)gz0 — (@R fi(-))g>o-

For each fixed degree q > 0, the degree g part of this morphism gives the Hecke
sheaf structure on RYf. .
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1.3. (Co)homology of Hecke spaces

We first look at singular homology of a Hecke space X € T0p(s, 4y A singular simplex is a
continuous map from a standard simplex to X, and composing such a map with La or aR
for @ € ¥ produces a new singular simplex. In this way we view the R-modules of singular
chains (i. e. the free R-modules over singular simplices) C,(X, R) as an element in R-Mod 5, 4.
It is clear that this is compatible with restriction to boundaries of simplices, so the action of
¥ on singular chains defined that way induces an action of (%, x) on the homology groups
H;(X, R). Thus, the homology of Hecke spaces has values in R-Mod (s, ). It is also clear that
if we have a Hecke subspace A C X, then its chains are stable under (2, %), so the long exact
singular homology sequence of a pair of Hecke spaces is a sequence in R-Mod 5, ). Finally,
under the usual identification of Hy(X, R) with the free R-module over the path-connected
components of X, the action of (2, x) on Hy(X, R) is the one induced by the canonical action
on path-connected components.

For M € R-Mod (5, ) we can define the singular cochains C"(X, M) = Homg(C,(X, R), M)
by taking the internal hom in R-Mod 5, ,). This makes the singular cohomology groups
H'(X, M) also elements of R-Mod (5, +), and the long exact singular cohomology sequence is
a sequence in R-Mod (5, 4).

Now we look at cohomology of Hecke sheaves. Let # be a Hecke sheaf on X, and choose
the left representative, say. For each a € X, we have a map

T(X, F) = F(X) —% Lau F(X) = F(La '(X)) = F(X) = I(X, F) (1.2)

and it is easily verified that this defines a left action of (£, %) on I'(X, ). Analogously, starting
with the right representative, we get a right action of (2, %) equivalent to the previous left
action. So we have seen:

Proposition 1.12: Taking global sections defines a functor
SEZ*(X) — R-Mod (5, 5.

In particular, all cohomology groups of Hecke sheaves are elements of R-Mod (5, 4).

There is also another way to see this (again using the left representative): functoriality of
cohomology for La: X —— X (for « € 3) gives us a morphism HY(X, ¥) — HY(X, La*¥F),
and ¢“ induces an isomorphism H?(X,La*F) —— H4(X, ¥). The composition of these
gives an endomorphism of HY(X, ), and in this way we get an action of ¥ on H(X, 7). To
see that this describes the same action as before, it suffices to check this in degree 0, because
sheaf cohomology, being a derived functor, is a universal §-functor. Explicitly, because =
acts by automorphisms, we have La(X) = La”(X) = X, so La. ¥ (X) = F(La (X)) = F(X)
and La*F(X) = F (La(X)) = F(X). We then have to check that the map (1.2) coincides with
the map

FX) = FLa(X)) = La*F(X) — o FX).

This can be seen by going into the explicit proof of the adjointness of La, and La*. We do
not go further into detail.

The identification of sheaf cohomology with singular cohomology H(X, M) = H (X, M)
is an isomorphism in R-Mod 5, +). Checking this in degree i = 0 is an easy calculation using
the definition of the action of (2, %) on both sides, and by universality it extends to any i > 0.
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Lemma 1.13: LetX,Y € Topy be Hecke spaces, f: X —— Y a morphism, and let  be a
Hecke sheaf on X. For the actions of ¥ on X and Y as well as for the Hecke sheaf structure on ¥,
choose either the left or right representative for all of them. For each pointp € Y, let X, = f~'(p)
be the fibre at p, and for each q > 0 identify the stalk (R f. ), with the cohomology group
HY(X,, F|x,) in the usual way.

Then for each o € 3, the map on stalks

RIfFap) — RILF)p  resp. RILF )arp) — RILF)p
as in (1.1) is the map
HYXLa(p)s F [Xpap) — HIXp, Flx,)  resp. HU(Xarp)s F X pny) — H1Xp, Flx,)
induced by functoriality of cohomology for the map X, —— Xpqa(p) (resp. Xp —— Xar(p)) iven

by the action of a on X and the map La*F |x,,,,, — Flx, (resp. aR*F|x
coming from the Hecke sheaf structure.

aR(p) ¢|Xp)

Sketch of proof: We work with the left representative.

Let  be the presheaf on Y mapping an open U to H(f~'(U), ¥ |f-1(v)). Its sheafification
is R1f.F [Har77, Prop. 111.8.1]. We define a morphism of presheaves ¥ —— La,.® such that
for an open U the map HY(f~'(U), ¥ |f-1y)) — HI(La ' (f'(U)), F |Lo-1(r1vy)) is induced
by functoriality of cohomology from the map f~(U) — La~'(f~!(U)) given by the action
of a and the map La™F | o-1(f-1(v)) — F |f-1(v) coming from the Hecke sheaf structure.

After sheafification, this induces a morphism R? f,¥ —— Lo, R £, F.
To finish the proof, by construction 1.11 (c) it suffices to check that this construction,
done for any i and any ¥, defines a morphism of §-functors

R fi())gz0 — (LRI fi(-))g20
and that in degree 0 it gives back the original morphism f.¥ —— La, f.F, because then

the claim follows from the universality of (R f.(-))¢>0. This is a straightforward calculation
which we omit here. O

Corollary 1.14: Let X, Y, f,p, X, as in lemma 1.13. Let further A be an R-module which we
consider as a trivial representation of (2, %). Identify the stalk (R' f.A), with the dual space of
the singular homology group Hy(X,, A). Then for each a € 3., the map on stalks

(le*é)La(p) — (Rlﬁé)p resp. (le:ké)aR(p) — (Rlﬁké)p

as in (1.1) is identified with the dual of the map on singular homology
Hi(Xp, A) — Hi(X1a(p). A)  resp. Hi(Xp, A) — Hi(Xqr(p), A)

induced by the map X;, —— Xpqa(p) (resp. Xp —— Xqr(p)) given by the action of a on X.
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1.4. Hecke pairs and the abstract Hecke algebra

Throughout the whole section, fix a monoid with involution (Z, %).

Definition 1.15: A Hecke pair* (A,T') for (2, %) consists of a submonoid A € X and a
subgroup I' C A subject to the following conditions:

(a) If G is the smallest group containing ¥, then A is contained in the commensurator T
of T in G, which is the subgroup

I'={g€G:glg " andT are commensurable},

where two subgroups of a group are said to be commensurable if their intersection
has finite index in both of them;

b) The restriction of % to I is the inversion ma —— v~ (so in particular T* =T).
pYy Y p

We call the Hecke pair (A, T) central if a*a = aa* for all @ € A and a* @ commutes with
ally eT.

Example 1.16: (a) Any group G carries an involution given by inversion. Then (G, 1) is
a Hecke pair for the monoid with involution (G, (-)™!) which we call the trivial Hecke
pair3 It is obviously central.

(b) In the most important type of example, we will consider one of the groups G =
GL;(Q) or G = GLy(Q) with the main involution  given by a' = det(«)a™" and the
submonoid X = G N My(Z). Then G is the smallest group containing X. If A is a
any submonoid of ¥ and I C A is a congruence subgroup of SLy(Z), then (A,T) is
a Hecke pair: If @ € G, then al'a™! N SL,(Z) is again a congruence subgroup (see
[DSos, Lem. 5.1.1], where a € GL; (Q), but the case of @ € GL2(Q) obviously follows
from this), and any two congruence subgroups are commensurable [DSos, Ex. 5.1.2],
soT' = G in this case, and obviously the restriction of i to SLy(Z) is the inversion
map. This Hecke pair is always central.

(c) One can find similar examples related to automorphic forms on other algebraic
groups.

We now introduce the abstract Hecke algebra.

Definition 1.17: For a Hecke pair (A,T') and a commutative ring R, we define the abstract
Hecke algebra to be the R-algebra generated over R by the double cosets I'al for all a € A,
and the product of two double cosets I'aT and I'fT" defined as follows: decompose the double
cosets as a disjoint union of left cosets

Tal =| |Ta;, TPr=| |Tp;
i

J

with a;, f; € A and define their product by

Tl -TT = > m TET, (1.3)

2 There are various definitions of this notion in the literature. For our purposes, this will be the adequate one.
3 Of course, (G, G) is also a Hecke pair which we could call the trivial one. But this one is even “too trivial”: its
abstract Hecke algebra we will define later will be trivial and the whole theory will loose its content then.
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where the sum runs over all double cosets I'¢éT' C T'al'fI" and
mg = #{(l,]) : FO{,',BJ' = F§}
We denote this R-algebra by Hg(A,T') and call it the abstract Hecke algebra.

Proposition 1.18 (Shimura): The above disjoint unions are finite, and Hg(A,T) is a well-
defined R-algebra.

Proof: [Shi7i, §3.1] [l

The abstract Hecke algebra is a generalisation of the concept of a group or monoid ring:
if (A,T) = (G, 1) is the trivial Hecke pair as in example 1.16 (a), then Hg(G, 1) is just R[G].
The following observation will sometimes be useful.

Remark 1.19: Fix a € A and decompose again

e
Tal = I_I la;, a; €A.
i=1
Foreachy e T'and eachi € {1, ..., e}, the element a;y lies in a unique left coset in the above
decomposition, i. e. there are unique j € {1,...,e} and y’ € T such that a;y = y’a;. Then for
fixed y, the map i —— j is a permutation of the set {1, ..., e} which we denote by o, and
for fixed i, we have amap p;: ' — I given by y +—— y’. So we have

aiy = pi(y)ao, i)-

We now study relations between Hecke pairs and Hecke algebras.

Definition 1.20: Let (A,I') and (A’,I”) be Hecke pairs. We write (A,I') < (A’,T”) if the
following conditions hold:

() TCTI',ACA,
(b) TVal” =T’al for all a € A,
(c) ’anA=Taforall a € A.
If in addition the condition
(d A" =T’A
holds, then we write (A,T) Z (A',T”).

A basic example for Hecke pairs (A,T) and (A’,T”) with (A,T) < (A’,T”) is the case that
I' =T"and A € A’. We will see more examples in section 1.8.

Proposition 1.21: Let (A, T) and (A’,T”) be Hecke pairs. If (A,T) < (A’,T’), then the map
Hr(A,T) — Hg(A",T’), Tal — 'al’

is a well-defined injective homomorphism of R-algebras. If (A,T) 3 (A’,T”), then the above
map is an isomorphism. In this case any double coset I''al'’ can be represented by an o € A and

Hr(A',T") — Hg(A,T), T'al'’——Tal (a€A)
is a well-defined inverse.

Proof: See [Miy89, Thm. 2.7.6 (1)]. The statement is formulated there slightly less general,
but this is what is really proved there. O

10
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1.5. Group cohomology of representations of Hecke pairs

Continue to fix a commutative ring R, a monoid with involution (3, x) and a Hecke pair
(A,T). We will now work with the category R-Mod (5, 4 of representations of (3, x). For a
representation M € R-Mod (5, «), we choose a representative for the action and can then form
the R-submodule of T'-invariants M. Since we required I'* =T in definition 1.15, this is a
well-defined subset not depending on the choice of the representative for the action. We
wish to make M! a right Hg(A, T')-module.

Definition 1.22: For @ € A, we define an endomorphism [['al'] of M' which we call a
double coset operator. Decompose again

Iall = I_Il"ai, a; €A
i

and choose a representative for the action of (A,T’) on M.

(a) If the chosen representative is a left action, then define for m € M*

m[Tal] = Z al em.
i

(b) If the chosen representative is a right action, then define for m € M"

m[Tal] = Z mla;].

i

It is obvious that this definition does not depend on the choice of the representative for the
action (if it is at all well-defined). Thus, it suffices to prove the well-definedness in one of the
two cases.

Lemma 1.23 (Shimura): The above is well-defined and makes M' a right Hr(A,T)-module.
If M’ is another representation of (X, %) and f: M —— M’ is a morphism, then the restricted
morphism MY —— (M")' is Hg(A, T)-linear.

Proof: [Miy89, Lem. 2.7.2, Lem. 2.7.4] O
Of course, in the case of a trivial Hecke pair (G, 1), this defines just the canonical R[G]-module

structure.

Example 1.24: Let (2, %) and (A, T) be as in example 1.16 (b) (with G = GL} (Q)), let k € IN,
and denote by M the C-vector space of meromorphic functions on the upper half plane. Let
3 act on M from the right by saying that for f € Mand « = (¢ 4) € =, the function f[a]k
on the upper half plane is given by*

flalk(r) = (deta) (et + d) ™ f(ar).

Then M! is just the space A () of classical meromorphic modular forms for the group T
The action of a double coset [Tal'] for &« € A as defined in definition 1.22 in this case is

4 Note that many texts, such as [Shi71], use a slightly different normalisation for this action in that the factor
(det (x)k/ 2 instead of det a*~! is used. Our normalisation is used e. g. in [DSos; HidLFE]. Both normalisations
give the same spaces of modular forms.

11
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precisely the usual one.> So the resulting right Hg(A, I')-module structure on A (T) is the
classical one defined e. g. in [Shi71, §3.4].

Remark 1.25: (a) As is visible from the definition, to make the I'-invariants a right

(b)

Hr(A,T)-module we do not need an action of the full semigroup X. It would suffice to
have either a right action of A or a left action of A*. The Hg(A, T)-linearity statement
from lemma 1.23 then just needs equivariance for this action.

Much of what we do could also be developed in this more general setting. However,
some statements do need that the action comes from an action of the whole X (or at
least of the subsemigroup of ¥ generated by A and A*). For reasons of clarity we
therefore decided to fully develop the theory only in this case. Nevertheless, at one
minor point, we will need the more general situation; see part (b) below.

Let e: A* —— R* be a character. Then we can twist the Hg(A, I')-module structure
by ¢ as follows. Decompose again

Tall = I_Il"ai, a; €A
i

and choose a representative for the action of (A,T') on M.

(i) If the chosen representative is a left action, then define for m € M"

m[Tal] = Z e(af) - a em.

i
(ii) If the chosen representative is a right action, then define for m € M"

m[TaTl] = Z e(al) - mla;].

i

Then one easily checks that this defines a right Hg(A, T')-module structure on M'.
We denote this new Hg(A, T')-module by M (¢).

Of course, if we view M as a left A- resp. A*-module (according to if we use the right
or left representative), then we can twist the action of A resp. A* on M itself by ¢ o x
resp. €. If we then apply the previous construction to the twisted module M(¢e), we
end up with the same Hg(A, I')-module M* ().

Thus if N is another R-linear representation of (%, %) and f is an R-linear map
M —— N or N—— M, then f will induce an Hg(A,T')-linear map M (¢) —— NT
or N' —— M (¢) if and only if it is equivariant for the action of A resp. A*, using
the e-twisted action on M.

This construction will occur only at one minor point in this work (namely in sec-
tion 111.4.2), and there we do not use any results from our abstract Hecke theory other
then just the definition. Therefore we do not study these twisted modules further.

5 In [DSos], the action of a double coset is defined by the same formula as in definition 1.22, whereas in [Shi71]
there is an extra factor (det a)k/ 2=1in front of the sum. This cancels out the different normalisations in the
definition of the A-action.

12
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We have shown that we can consider taking I-invariants as a functor
R'M(Jl{(z’*) — Matf-?‘(R(A, F). (1.4)

It is obviously left exact and its derived functors are the usual group cohomology groups, so
we automatically get a right Hg(A, I')-module structure on the cohomology groups HY(T', M)
for all ¢ > 0 and all M. In particular, all maps in a long exact cohomology sequence attached
to a short exact sequence of R-linear representations of (2, x) are Hg(A, I')-linear.

The Hgr (A, T')-module structure on cohomology can be made very explicit. To state this,
we use the representation of cohomology groups by homogeneous standard cochains.

Lemma 1.26 (Rhie/Whaples): Let¢: T9"' —— M be a homogeneous cocycle representing a
cohomology class c € H4(T', M), and for « € A decompose

e
Tal = u Ta;.
i=1

Then the cohomology class c[T'aT] is represented by the cocycle ¢[Tal'| given by

Z ai @ &(pi(yo) - - .. pi(yq)) for the left representative,
i=1

c[TaT(yo, ... yq) =

e

Z c(pi(yo)s - - -» pilyg)lai]l  for the right representative.

i=1

Proof: Of course, it suffices to prove this in one of the two cases. We prove it in the case of a
left action.

The Hg(A,T')-module structure we have has the property that in degree 0 it is the one
defined in definition 1.22 and all maps in a long exact cohomology sequence attached to a
short exact sequence of representations of (X, x) are Hg(A, T')-linear. The latter means that
multiplication by any T € Hg(A,T') is an endomorphism of the §-functor H*(T', —). Hence the
Hgr(A,T)-module structure is unique with the above property since H*(T', —) is a universal
d-functor.

Thus to prove that the Hg(A, T)-action has the form claimed in the lemma, it suffices
to show that if we define a right Hg(A,T')-action on each HY(T, M) for all i and all M by
these formulas, then we get back the original action in degree 0 and all maps in a long exact
cohomology sequence attached to a short exact sequence of representations of (2, %) are
Hg(A,T)-linear.

First, for ¢ = 0, the class ¢ corresponds to an m € M via the relation m = (1), and
one sees immediately that p;(1) = 1 for all i, so ¢[TaT'] (as defined by the above formula)
corresponds to

drel)() = 3 af épiV) = ) af om,

which shows that we get back the original action in degree 0.

The second property is proved in [RW70] in the case of a left action. More precisely,
in §11.1 they define a right action of double cosets on a different kind of cochain complex
resolving M by some formula and prove that for this definition, all maps in a long exact

13
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cohomology sequence are Hg(A,T')-linear [RW70, Prop. 2.2, 2.3]. Then in [RW7o, §11.2,
Prop. 2.4] they prove that in the representation using homogeneous standard cochains, their
formula becomes what we stated above. They work in the special case where X is a group G
and the involution * is the inversion map § —— §~! on G, but investigating their calculations
shows that they really use this only for elements of T', so their calculations remain valid in
our setting because of the requirement in definition 1.15 (b). (Il

Since in many situations inhomogeneous cochains are preferred to homogeneous ones, it
is useful to have an explicit description of the action of Hg(A,T) also on inhomogeneous
cochains. For simplicity, we state this only in degree 1, which will suffice for our purposes.

Corollary 1.27: Let ¢: I' —— M be an inhomogeneous 1-cocyle representing a cohomology
class c € H\(T', M), and for a € A decompose

Tal = I:I Ta;.
i=1

Then the cohomology class c[Tal’] is represented by the cocycle ¢c[T'al'] given by

Z a) @ &(pi(y)) for the left representative,
i=1
¢[Tal](y) =

e

Z c(pi(y)lai]l  for the right representative.

i=1

Proof: The explicit isomorphism between the homogeneous and inhomogeneous standard
resolutions is given in degree 1 by

Homr(Z[T'?], M) Maps(T, M)
cl [y (1, y)]
(v — fO ') ———— f.

Using this and lemma 1.26, one obtains the claim by an easy calculation. ]

Example 1.28: In the situation when (Z, x) and (A, T') are again as in example 1.16 (b) and
M is an R-linear representation of (2, x), some texts define an action of Hg(A,T') on HY(T, M)
(or just HY(T', M)) in an ad-hoc manner using the formulas from lemma 1.26 or corollary 1.27:
see [Shi71, §8.3, (8.3.2)], [Hid86a, §4, p. 563], [HidLFE, §6.3]. So the actions defined there are
the same as the one we defined abstractly.

Remark 1.29: In some situations one wants to consider parabolic group cohomology. We
will need this only in degree 1. It can then be defined very explicitly: fix a subset P C T" and
define

ZL([T,M) = {c € Z\(T,M) : Vz € P: ¢(n) € (x — )M},

14
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where Z!(T', M) denotes inhomogeneous 1-cocycles on T with values in M. If we denote by
BY(T', M) the corresponding coboundaries, then B'(I', M) C Z,(T, M), and one defines then
the first parabolic cohomology group with respect to P as

HL(T, M) = Zp(T, M)/Bl(r, M) -

Of course one will need some conditions on P to guarantee that the subgroup HL(T', M) C
HY(T', M) is stable under the action of Hg(A,T).

Instead of writing down such conditions in full generality, we just state that in our main
application these will be satisfied. This main application is the case where T is a congruence
subgroup of SLy(Z) and P is the subset of all parabolic elements. In this case the parabolic
cohomology subgroup is indeed Hg(A, T')-stable. This is shown in [Shi71, §8.3].

There is yet another way to describe the action of double cosets on group cohomology.
We need a preliminary lemma.

Lemma 1.30: Leta € A and put ®, = T N a~'Ta, which is a subgroup of finite index of T; let
e be this index. Let

e
I= \_|<1>ac,-, ¢; el
i=0

be a decomposition of I' into left cosets and put a; == ac; fori =1,...,e. Then

Tal = IJ Ta;
i=1

is a disjoint decomposition of T'aT into left cosets.

Proof: First, assume I'ac; = T'ac;j fori,j € {1,...,e}. Then we can write ¢; = a‘lyacj with
some y € I, and since ¢;,¢; € T, we must have a”'ya € T, so a'ya € @, and thus i = j.
This proves that the union in the statement is indeed disjoint.

Since a; = ac; € al' foralli =1,...,e, we obviously have | J; T'a; C T'aT.

Without loss of generality, assume that ¢; is the representative for the trivial left coset
(i.e. ¢; € ®y). We then have ac;'a™ € T, so a = ac;'a 'ac; € Tac; = T, so we have
Fa € U;Ta;.

Finally, for eachy e T and eachi € {1,...,e} thereisac € &, andaj € {1,...,e} such
that c;y = oc;. We have aca™ € T. Using this, we calculate for any y,y’ € T

y'aciy = y'aocj = y'acalac;j € Tac;,
so lac;I' C Tac; and hence I'al’ € |J; Tac;I' € U;Tac; = U; Ta;. O

Lemma 1.31: Let @ € A and put &, = a TanT, d* = ad o

of T and we have the restriction and corestriction maps

. Then &,, ®* are subgroups

resjpe : H(T, =) — HY(®%,-),  corrj,, : HY(®q, ) — HI(T, ) (g 2 0)

for cohomology of (left or right) T-modules.®

¢ The corestriction map is also called “transfer”. For the definition of these maps, see e. g. [NSW13, §1.5 (3), (4)]
or [Lang6, §11.1 (b), (e)]. There, only the case of left I'-modules is treated. For the restriction map, this definition
still works in the case of right I'-modules. However, for the corestriction map, there is one subtlety, namely,
one must sum over representatives of left cosets instead of right ones, otherwise the map is not well-defined.
Note also that unfortunately the text [Lang6] calls left cosets what we call right cosets and vice versa.

15
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(a) Choose the right representative for the action of (£, %) on M. Define a map

b HI(@%, M) —— HI(Dy, M)

1

to be induced by the map &, — &%, 0 —— aca™ and the map M —— M given by

the action of a.

(b) Choose the left representative for the action of (2, %) on M, and assume in addition that
(A,T) is central. Define a map

b HI(@%, M) —— HIY(Dy, M)

1

to be induced by the map &, — &%, 0 —— aca™ and the map M —— M given by

the action of a*.

Then in both cases everything is well-defined and we have an equality
[Tal'] = corre, oab o resr|g«
of endomorphisms of H4(T', M) for any q > 0.

Proof: In the case of the right representative, it is a straightforward calculation to check that
the maps &, —— ®* and M —— M are compatible in the sense of [NSW13, §1.5] and induce
Con cohomology. Seeing this in the case of the left representative
1 *
=oa

a well-defined map «
essentially amounts to the same; note that since (A, T) is central, we have a*aca™
for all o € ®,, which one needs to make the calculation work in this case.

A statement similar to what we want to show is proved in [Lang6, Prop. 11.1.14]. There, a
dimension shifting argument is applied to reduce the proof to degree ¢ = 0. An analogous
dimension shifting argument also works in our case. To see this, one needs that all three
maps corr|e,, @ and resrjp« are functorial in the respective modules and commute with
boundary homomorphisms. For this, see [NSW13, Prop. 1.5.2], whose proof works for all
three maps; note that our ab is essentially the same as the map called conjugation there
(which is the reason why we use the notation “(-)E”). We omit the details of this dimension
shifting.

So we are left to check the statement in degree 0. We first work with the right representa-
tive. The corestriction map is in this case induced by

e
M — MY, mr—s Z m[ci],
i=1
where cy, . . ., c. are a complete set of representatives for the left cosets I'\®,,. The composite
map

MF Ie bea Mcpa MF

then sends an m € M' to }; m[ac;]. Thus by definition of the endomorphism [['al] in
definition 1.22 (b), the claim follows from lemma 1.30.

To check the statement in degree 0 for the left representative, note that if ¢y, . . ., ¢, are
representatives for the left cosets I'\®,, then ¢ 1o, c;l are representatives for the right
cosets @, /T. Hence the corestriction map is in this case induced by

e
MP — M, mi—s Zci_lom
i=1

16
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and the composite map

M" — M™ s MO —— MT

sends an m € M' to };(c;'a*)  m. Since c;'a* = (ac;)*, again by definition of the
endomorphism [T'al] in definition 1.22 (a) the claim follows from lemma 1.30.

Finally, since [T'aT] does not depend on the choice of the representative «, we have
shown in particular that also corr|g, oal o resr|pa is independent of the choice of @ and the
representative for the action. (]

We end this section by coming back to the relations between Hecke pairs we discussed
at the end of the previous section. If (A,T') and (A’,T”) are Hecke pairs such that (A,T') <
(N, T7), then forgetting the module structure along the map Hg(A,T') — Hg(A’,T’) from
proposition 1.21 induces a functor

MOL[-?‘{R(A,, F’) — Mocf-WR(A, F)

Proposition 1.32: If(A,T') < (A’,T”) then the diagram of functors

R'MOL{(Z, *)

Mod “Hg(N,T") Mod -Hg(A,T)

commutes.

Proof: See [Miy89, Thm. 2.7.6 (2)]. The statement is proved there in slightly different situation,
but the proof still works in our setting. O

1.6. Atkin-Lehner elements and adjoint Hecke algebras

In this short section, we define an abstract prototype of what is known classically as the
Atkin-Lehner involution. Special elements of £ which we call Atkin-Lehner elements give
rise to extra endomorphisms of the I'-invariants we studied that interact nicely with double
coset operators. In our applications, a particular choice of such an element will define the
Atkin-Lehner involution (note that in general the endomorphisms defined that way need not
be involutions).

Fix a commutative ring R, a monoid with involution (2, x) and a Hecke pair (A, T). Further
let M be an R-linear representation of (2, ).

We first start with the following obvious observation.

Remark 1.33: If 0 € ¥ is an element normalising I' (note that we use here that ¥ lies in
some group), then m —— m[o] gives a well-defined R-linear endomorphism of M.

Definition 1.34: (a) We call an element w € ¥ an Atkin-Lehner element for (A, T) if
wiTw =T and w'Aw = A*.

(b) We call Hgr(A*,T) the adjoint abstract Hecke algebra for the pair (A, T) or the Hecke
algebra adjoint to Hgr(A,T).

17



Chapter I Preliminaries

Lemma 1.35: Fix an Atkin-Lehner element w € X.

(a)

(b)

Proof:

Let a € A. If we have a decomposition

e
Tal = |_| Ta; (a; €A),

i=1
then

e
Tw lawl = I_I Twla;w.
i=1

The map
HR(A,T) — Hp(A*,T), Tal — T'wlawl

is a well-defined isomorphism of R-algebras. We denote it T —— T™.

(a) First, if i, j are such that Tw'a;w N Tw™'a;w # &, then there existsay € T
with wa;w = ywlayw = wlwyw™lajw, so a; = wyw™la;. Since wyw™! € T, it
follows i = j, so the union is indeed disjoint.

Of course | |{_, Twa;w € Tw'awI. Take an element yw 'aw$ in the right hand
side with y,5 € T. Then wyw 'awdw™ € TaT, so write wyw lawdw™ = eq; for
some i with ¢ € I'. Then yw lawd = wlewwla;w € Tw™la;w.

To see that the map is well-defined and bijective is easy and we omit this. We have
to check that it is compatible with the multiplication of double cosets as defined in
(1.3). To see this, it suffices to check

[T CTalfT & Tw 'éwl C Twlawl'w™ ! fwl

and
Ta;fi =T¢ & Twlaww ' fiw = TwEw.

The second statement is easy to see: just conjugate the left side of the equivalence
with w and use wI'w™ = T. So let us prove the first statement.

Assume the left side of the equivalence and take yw™'éwé € Tw™1éwr. Takey’,8’ € T
with wy = y’w and Sw™! = w™15. Write y’£8” = y” awew 15" with y”,5”,¢ € T,
using the left side of the equivalence, and choose y””’, 8" € T with w™ly” = y"’w™,
8"w = ws". Then yw 1éws = y""wlawew  fws”” € TwlawT'w™ fwr.

For the other implication, assume the right side of the equivalence and take y¢5 €
[¢T. Write wly = y’w! and Sw = wd’ with y’, 8’ € T. Using the right side of
the equivalence, write y'wéws’ = y”’wlawew ™ fws” with y”,5”,¢ € T. Then
yES = wy”"wlawew Bws”’w! € TaT BT. O

Let w € X an Atkin-Lehner element. Then we have the endomorphism m —— m[w] of
M". By universality of group cohomology, this extends to endomorphisms of H(T', M) for
all i > 0, which we denote by the same symbol. On the other hand, M has a right Hg(A, T)-
as well as a right Hg(A*, T)-module structure.

18
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Lemma 1.36: We have
[w]TY = T[w]

as endomorphisms of H'(T, M) for T € Hg(A,T) and all i > 0.7

Proof: It suffices to check this for i = 0, and this follows easily from the definition of the
Hgr(A,T)-module structure, using lemma 1.35 (a). O

1.7. Coverings and monodromy

Throughout the section, fix a commutative ring R, a monoid with involution (3, x), a Hecke
pair (A,T) and a Hecke space X € TP (5. 4)-

Because * is the inversion map on T, the left and right quotients I'\ X and X /T are the same
space, so there is a well-defined quotient independently of the choice of the representative for
the action on X. We denote this quotient by % (when we want to explicitly use the left or right
quotient, we still use the earlier notation). We write 7: X — % for the canonical projection.
Note that since I' may not be normal in %, the quotient space % does not necessarily have an
induced action of (X, %), so it is not an element of ‘Tap(z, e

Definition 1.37: If ¥ is a Hecke sheaf on X, then 7,.¥ is a sheaf on % Moreover, for each
openU C % and each y € T, using the left representative for all actions gives us a map

nF(U) = Fr\U) —5 Ly, F(x(U))
=FLy (=" U) = F(x7'(U)) = mF(U), (1.5)

and it is easily verified that this defines an action of I' on 7.7 (U) independently of the choice
of the representative. For U C % open, we write L 7 (U) for the I'-invariant sections. This
defines a sheaf of R-modules 7z} 7 on %, and this construction is clearly functorial in F.

In the special case that ¥ is the constant Hecke sheaf M for some representation M of
(2, %), as in construction 1.10, the sheaf 7' M has an explicit description.

Lemma 1.38: The sheaf ' M is canonically isomorphic to the sheaf of continuous sections of
the projection

XXM X
r r’
where I acts diagonally on X X M and M is endowed with the discrete topology.
Sketch of proof: For (x, a) € X X M, we write [x, a] for the class in the quotient (X?M), and

analogously [x] for the class of some x € X. We work with the left representative of all
actions.
Let U C T\ X be open. By definition, the action of an @ € ¥ on an s € 7. M(U) is given by

(e - $)(C) = a* o s(La(C))

« _»

for C being a connected component of 77}(U) (the “o” denotes the action of £ on M). So s is
I'-invariant if and only if y @ s(C) = s(Ly(C)), and such s are in one-to-one correspondence

7 The notation here is for elements acting from the right, since we used this notation for the endomorphism
[w] and our modules are right Hg(A, T')-modules. If we view the endomorphisms as self-maps that can be
composed, then the relation reads T% o [w] = [w] o T.
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with continuous maps s: 77}(U) —— M satisfying s(Ly(x)) = y e s(x) for any y € T and
x € n7}(U). For such a continuous map s, we define a section I'\X — I'\(X x M) by
[x] —— [x, s(x)].

On the other hand, take a section t: T'\X —— I'\(X X M). We have to define a continuous
maps: 771 (U) —— M satisfying s(Ly(x)) = yes(x). Sotake x € 7~ (U) and let [y, b] := t([x]),
i.e. (y,b) is a representative for the image of [x] under ¢. That ¢ is a section means that there
exists a y € T such that y = Ly(x). We then define s(x) = y~'b.

One can now check that all this is well defined and gives mutually inverse bijections. We
omit these calculations. O

Using the lemma (or just the definition), it is easy to see that the stalk of 71 M at any point
in %{ is M (and not M™!).
From now on, we impose the following condition on the action of " on X:

Condition 1.39: Fach x € X has a neighbourhood U such that yU N U # & implies y = 1.

This condition implies in particular that I" acts freely on X, i. e. without fixed points. It is the
same as condition () in [Hatoz, §1.3, p. 72], or condition (D) in [Gros7, §5.3] together with
the additional requirement that I" acts freely. It is obviously independent of the choice of the
representative for the action. The condition is satisfied if X is a Hausdorff space and I' acts
freely and properly discontinuously [Hato2, §1.3, Ex. 23].

Proposition 1.40: In the special case ¥ = A = T, the functors t* and 1l are quasi-inverse
equivalences between the categories of Hecke sheaves on X (which are then just I'-sheaves) and

sheaves of R-modules on %

Proof: This is proved in [Gros7, p. 198/199] using condition 1.39. O

Construction 1.41: Let ¥ be a Hecke sheaf on X. Although 7! # is not a Hecke sheaf (not
even %{ € Top(z, *)), we have a canonical Hg(A, T')-module structure on its cohomology, as
we now explain. The global sections of 7. F on )T( are by definition the global sections of
¥ on X, which comprise an R-linear representation of (Z, x), as we saw in proposition 1.12.
Hence all HY(X, ¥) are in R-Mod (5, «), and therefore H?(I', HY(X, 7)) carries a natural right
Hg(A, T)-module structure for p, g > 0. In particular, the global sections of 7. F on %, which
are H(T, H'(X, %)), are a right Hg(A, I')-module. By universality of the 5-functor HI(, —)
this extends to a right Hg(A, I')-module structure on Hq(%, 7l F) for all ¢ > 0.

It is easy to see from the definitions that the above construction also works for coho-
mology with compact support since HX(F, 7l ) can be identified with the subgroup of
H°(T,H°(X, ¥)) consisting of T'-invariant global sections in H°(X, ¥) which give compactly
supported sections on %( It is clear that this subgroup is stable under the action of Hg(A,T).

Proposition 1.42: For each Hecke sheaf ¥ on X there is a convergent spectral sequence in the
category of right Hr(A,T')-modules

EPY = HP(I,HI(X, F)) = HP*9($, 2l ).
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Proof: Let A = SHg’*)(X), B = R-Mod (5, ) and C = Mod -Hgr(A,T), all of which are abelian
categories. Let F: A —— B be the global sections functor and G: 8 —— C be the functor
of T'-invariants. We have seen that they are well-defined in this way, and of course they are
left exact.

Let further D be the category of sheaves of R-modules on % Then x! is a functor
A —— D, and it is exact since it is the composition of the forgetful functor from A to the
category of I'-sheaves on X (which is exact) and the functor 7! from I'-sheaves on X to
D, which is exact because it is an equivalence of categories by proposition 1.40. Therefore
if U: © —— C is the global sections functor, then (R*U) o z! is a §-functor on A which
coincides in degree 0 with R*(GoF). Since the latter §-functor is universal, the two §-functors
agree, which proves

R (G o F) =H'(f, 7/ (-)).

Using this, the claimed spectral sequence is just the Grothendieck spectral sequence for
the composition of functors G o F. O

Corollary 1.43: IfF is a Hecke sheaf on X such that H (X, F) vanishes for i > 0, then there
are canonical Hg(A,T')-linear isomorphisms

HY(T,H (X, F)) = HY(X, 2l F)

forallg > 0.

Proof: The spectral sequence from proposition 1.42 is then a spectral sequence with only
two rows (in fact, only one), so by [NSW13, Lem. 2.1.3 (i)] there is an exact sequence of right
Hr(A,T)-modules

. — HIYE, 2ZI'F) — HI (T, HY(X, F)) —
— HY(I,H'(X, 7)) — HY(X, 2l F) — ...

and the second term vanishes by assumption. O

From now on we further assume that X is connected, path connected and simply connected.
Then the condition on H!(X, ) in corollary 1.43 holds for any F. Moreover, T is then the
fundamental group of % and X is the universal cover of )T(

Consider again the special case that ¥ is the constant Hecke sheaf M on X for some
representation M of (X, x). Similarly as in the group cohomology situation, the action of
Hg(A,T) on the cohomology H?(X, 7L M) has a rather explicit description if we assume in
addition the following:

Condition 1.44: Assume that aa™ acts trivially on X for all « € 3 and that (A, T) is central.®

Assume from now on that condition 1.44 is satisfied.

The description uses the trace map for coverings, which can be explained in a general
setting, so let 7: E—— F be a finite covering of degree e of topological spaces. We describe
a natural transformation z.7* —— id of endofunctors of the category of sheaves on F, so
let ¥ be a sheaf on F and U C F an open set small enough that 77'(U) is a disjoint unit
of e open sets of E homeomorphic to U via z. Then m.7x*F(U) = €P F(U), where the

8 Strictly speaking, the centrality is only required in the description given below using the left representative.
Since it will be satisfied anyway for all our examples, we assume it for simplicity.

21



Chapter I Preliminaries

sum runs over these e sets. We define the morphism 7, 7*F (U) —— F to be the sum map.
This defines our natural transformation. Further, in this situation there are canonical §-
functorial isomorphisms H*(E, —) = H*(F, 7.(—)), which can be proved similarly as [Conog,
Lem. 2.3.1.1]. Therefore we get induced §-functorial maps

trgjp: H'(E, n°(-)) —— H'(F, 2" (=) — H(F, -)

called trace maps.

We now consider the following special covering: let X, I" and so on be as before and let
® C T be a subgroup of finite index. Then we have a finite covering of topological spaces
% — % and we denote the maps between the various spaces as indicated in the diagram

[o]

~—

N

[>

X

s

We will need the following technical statement.

Lemma 1.45: There is a canonical isomorphism s*nl M —— o®M of sheaves on %.
Proof: We prove only the case of the left representative, it is clear that the same proof also
works for the right representative.

The sheaf s,@®M on T'\X resp. X /T has as sections the ®-invariant sections of .M, so
there is a natural morphism from 7' M into it. This defines a morphism s*7. M —— o*M
by adjointness. We want to prove that it is an isomorphism. To do so, we look at the stalks.
Since the stalks of a presheaf and the stalks of its associated sheaf coincide, we can work
with the presheaf s;,. whose associated sheaf is s*. We know that all stalks are canonically
isomorphic to M.

We use the proof of the adjointness of s, and s
of presheaves comes from the composition

*

pre>

see [Stacks, Tag 008N]. The morphism

* T * 0] (0]
Spre e M —— SpreS: @, M —— @, M.

If we choose an open set U C ®\X small enough that s: U —— s(U) is a homeomorphism,
then for this U, the sections of the left sheaf over U are M(~'(s(U)))", while the sections of
both the middle and the right sheaf over U are M((@)~}(U))®, and both can be canonically
identified with M. Since any neighbourhood of any point in ®\X contains such a U, we see
that the canonical map between these sections induces the identity on M. ]

Remark 1.46: In this situation, composing the trace map we explained before with the
inverse of the isomorphism from lemma 1.45 gives a morphism

trrjg: HY(, @f M) —— HI(g, "2 M) — HU(F, 1/ M)
which we also call trace map. If we use the isomorphisms from corollary 1.43, we get a map
HY(®, M) — HY(T, M),

and it is easy to see that this map is just the corestriction map (it suffices to check this for
q =0).

22



1. Abstract Hecke theory

Now we look at the following special situation. Let « € A and put ®, = a 'Ta N T,
®% := a®, a2 We then have the following configurations of spaces and maps (for the left
and right representative)

4 \X AN qﬂ\% G/d) SN X/d)“ 4
\X I'\X X/T X/

r r

where all vertical arrows are canonical projections which we denote as indicated in the
diagrams, and where the middle horizontal arrows are induced by La resp. a*R and both
denoted by ¢, (we use the same symbols in the left and right situation to keep the notation
“simple”). These diagrams commute, but keep in mind that they live in the category Zop, not
‘Top@’ *)!

By lemma 1.45 we have a canonical isomorphism (s%)* 7L M —— (@%)®“ M of sheaves on
d*\X resp. X/®*, and analogously with @, instead of ®“.

We need to introduce some further maps. First, the map s, is a finite covering map, so
we have the trace map as described above.

Next, the map X X M —— X X M given by (x, m) —— (La*(x), a* e m) for the left resp.
(x, m) —— (aR(x), m[a]) for the right representative induces a well-defined map ®*\(X x
M) — O, \(X X M) resp. (X X M)/®* — (X X M)/®, which fits into a commutative
diagram

Dy \(X X M) — D\(X x M) (X X M)/ ®q — (X x M)/D*
P, \X cgj,’ P\ X X/®, 04;» X /P,

To check this, one has to do some calculations using the additional assumptions from above.
Therefore, using the description in lemma 1.38, it induces a map of sheaves on ®,\X resp.
X/ ®q
@ (@) M —— (@0)7“ M.
Finally, composing the isomorphism from lemma 1.45 with the map induced by s* gives a
morphism

resripe HY( T\ X 2T M) 0 B @\ X 59 nT M) = HY( @\ X, (2%)2" M)

and analogously also for the right quotient spaces, which we call restriction map.
Proposition 1.47: We have an equality
[TaTl] = trrig, © atocl o resr|pa

of endomorphisms of H(X, 2L M) for all ¢ > 0, for either choice of representative for the action.
The same also works in cohomology with compact support.

9 Note that due to the requirement in the definition of a Hecke pair that A be contained in the commensurator
of T (see definition 1.15 (a), we have indeed that both ®, and ®* have finite index in T.
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*

Proof: Since all of the maps trrp,,, al, [
degree q = 0, by definition of the Hg(A, I')-module structure. By construction, it is then clear
that this will work for cohomology with compact support if it works for usual cohomology.

By the corresponding description for group cohomology in lemma 1.31, it suffices to check
the commutativity of the three diagrams

resr|pa are S-functorial, it suffices to check this in

resrjpa

H(T, M) ————— H(®%, M)

J’ reSr|q>a J’

HO(T\X, 7L M) HO(@*\X, (0%)2“ M)

o

HO(®%, M)

J, T *
a OCa

HO(@%\X, (@) M) ——5 HY(®\X, (04)7“ M)

HO(CDCZ7 M)

COI’r@a

H(®,, M) H(T', M)

|

HO(®,\X, (04)7* M) ——— HOT\X, 7' M)

and the corresponding diagrams for the right representative, where the vertical maps are the
canonical identifications described before.

We omit the detailed calculations necessary to prove the commutativity of these diagrams
(for the third one, we mentioned it already in remark 1.46). One has to write out carefully
the definitions of all sheaves and maps above and check the commutativity. O

Remark 1.48: If X =1 is the upper half plane and T' is a congruence subgroup of SL3(Z),
we considered parabolic group cohomology in remark 1.29. On the other hand, in sheaf
cohomology we have parabolic cohomology defined as the image of cohomology with
compact support in usual cohomology. In this case, if we assume that condition 1.39 holds, the
two notions of parabolic cohomology are identified by the isomorphism from corollary 1.43.
This is proved in [Hid81, Prop. 1.1].*°

1.8. Standard Hecke algebras for GL;

In this section, we connect the theory we developed so far to more classical situations, giving
important examples for our theory.

We first define abstract standard Hecke algebras. For this we use the (semi-)groups of
matrices whose definitions were given on page xxii.

Definition 1.49: For N € IN and a commutative ring R, define the abstract standard Hecke
algebras of level N to be

H.(N)r = Hr(Ao(N), To(N)),  H(N)r = Hr(Ao(N)’, To(N)).

19 In [Hid81, Prop. 1.1] there are two conditions on I' which are denoted there (1.2,},). These conditions are
implied by condition 1.39.
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Let M € IN. We define the abstract standard Hecke algebras of level N away from M to be
HM(N)r = Hr(Bo(N) N My To(N)), - HD(N)g 1= Hr(Ao(N) 0 MG, Ty (V).

We define the abstract standard Hecke algebras of level N away from the level, also called
restricted abstract standard Hecke algebras of level N to be

H.(N)g = HYN)g,  H'(N)g = HN(N)g.

We will often consider the case R = Z. In this case, or if the ring R is clear from the context,
we omit the subscript “R” from the notation.

Obviously (A¢(N), To(N)) < (Ao(N)?, TH(N)), so the map H,(N) —— H(N) sending a double
coset to itself is an injective ring homomorphism via which we view H,(N) as a subring
of H(N). Similarly, ?(JEM)(N ) is a subring of HM)(N), ?(J(rM)(N ) is a subring of H,(N) and
HM)(N) is a subring of H(N).

We define some important elements of (N). First, put for each prime p

T, = (N) (1 p) L(N) € H,(N).

More generally, we may define T,, for each n € IN to be the sum over all double cosets
I[H(N)aIp(N) where a runs over the elements of Ay(N) of determinant n, but we will not use
these very often.

Then for each prime € 1 N define

S0 = To(N) (‘) f) L(N) € HIN).

Finally we define the “Hecke operator at co”
& =TH(N)aLL(N) € H'(N). (1.6)

From the definition of the multiplication, it is obvious that £2 = 1in H’(N).

Lemma 1.50: For each a € Ay(N), we have
F()(N)ar()(N) -E=¢E- F()(N)ar()(N) = FO(N)aaFO(N) = FO(N)aaFO(N)
In particular, each T € H,(N) commutes with €.

Proof: In this proof, write I' = Ij(N) for abbreviation. We can assume that « is a diagonal
matrix by [Miy89, Lem. 4.5.2], and for such a we have o = aa. This proves the last equality.
We prove & - Tal' = I'aaT, the equality TaT - & = T'aal is proved similarly. Since 3 = 27! and
2 normalises I', we have I'eT'al’ = I'aT'aaal’ = I'aal, so for a double coset I'éT', we have that
I'éT C Tolal' ifand only if T'ET = Taal, and further I'aI" = I'a. So the sum (1.3) used to define
the multiplication in H has only one summand. To finish the proof, note that for a disjoint
decomposition I'al’ = L;Ta;, we have I'oar C T'oal’ = ol'al’ = o(U;Ta;) = U;aTe; = LiTaa;,
so there has to be a unique i such that I'sa = I'aq;, hence the coefficient m¢ in the sum (1.3)
is 1. U
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Proposition 1.51 (Shimura): (a) H,(N) is commutative and generated as a ring by the
T, for all primes p and S¢ for all primes € { N, and all these elements are algebraically
independent.

(b) The Hecke algebra WJ(FM)(N) away from M € IN is the subring of H.(N) generated by
the T, for all primes p { M and the S¢ for all primes € { MN.

(c) We have isomorphisms
HIOWNIX [ (x2) = HOON),  HNIXT [ (x2) = H(N)

viaX —— E.

(d) We have T,,T,, = Tyup, for coprime integers m,n € IN and a recursive relation
Ter = T[Tgr—l —pS[T[r—Z
forr > 1and all primes € t N.

Proof: Statement (a) is proved in [Shi71, Thm. 3.34 (1)]. The elements denoted T’(p) or
T'(1,p) there are just our T, and the T’(¢, £) there are our S, as can be easily seen from their
definition.

To prove statement (b), we introduce an auxiliary map

det: H(N) — Div*(Z),

where by Div*(Z) we mean the monoid of ideals in Z, by mapping

n
Z TFapl —— (detay, ..., detay)
k=1

(and 0 —— Z = (1)). It is then easy to check that this map is well-defined and has the
properties

det(A+ B) = A+ B, det(AB) = det(A)det(B) forall A,B € H(N).

Clearly all Ty and S for all primes ¢ 1 M lie in 7-{JEM)(N ). If 7—(J(rM)(N ) contained a monomial
F in which a T, with p | M occurred, then since det(T,) = p, the above properties imply
det(F)+(M) < (p). Butsince (deta, M) = 1foralla € AO(N)OMEM), we have det(T)+(M) = Z
forall T € ﬂJ(rM)(N ) again by the above properties, so 7—(J(FM)(N) cannot contain such a
monomial.

For an a € A¢(N)® with deta < 0, we can write To(N)al(N) = € - [H(N)saly(N) by
lemma 1.50, so € together with the T, and S, generate H(N), and again by lemma 1.50 there
are no relations other than &2 = 1 (and commutativity). This proves statement (c).

Statement (d) is proved in [Shi71, Thm. 3.34 (3), Thm. 3.24 (4), Thm. 3.35]. O

Lemma 1.52: Let N € IN and T be a congruence subgroup with IJ(N) € T C I(N). Put
A = A(N)T € Ap(N). Then (A,T) T (Ao(N),Io(N)). In particular, (A1(N),Ti(N)) <
(Ag(N), To(N)).
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Proof: See the proof of [Miy89, Thm. 4.5.18] and the comment after it. (|

From now on we will identify the Hecke algebras which are isomorphic by the above
lemma.

Remark 1.53: By the above lemma we know that the abstract standard Hecke algebra
is isomorphic to Hz(A;(N)*,T1(N)). This is very important since we will often look at
[1(N)-invariants of modules. We denote the images of the standard elements T, S¢ and €
in Hz(A{(N)’,I1(N)) by the same symbols. It is worth thinking about how they may be
represented as double coset operators in Hz(A(N)*,T1(N)). For T, and € this is clear: the
matrices (1 p) and 5 used to represent them still lie in A;(N)*. But the matrix ( ¢ f) used
for Sy does not. Instead, for a prime ¢ { N choose a o, € SLy(Z) with o, = ("_1 f) mod N
(where we view £ € (Z/N)*). Then we have S; = I)(N)fo/Ty(N) in Hz(Ao(N)?, Tp(N)) since
o¢ € Ty(N), but the matrix {o, now lies in A{(N), so in Hz(A(N)?,T1(N)) we have also

S[ = Fl(N)KO'gI](N)

The double coset I1(N){oI1(N) is independent of the choice of o, because another choice
will differ by an element in T'(N) C I3(N).

In some later proofs it will be useful to know an explicit decomposition of the double
coset of ( 1 » ) , so we list this result.

Lemma 1.54: ForT =T,(N) orT = I3(N) and any prime p, there is a decomposition

p-1 1 .

rf ifp | N,
1 j=0 p
-
p -1
1 m. n\p ifpt N, formn € Z such

T ur

=0 p N p 1 thatmp — Nn = 1.

Of course the factor (N p) can be omitted if T = Io(N) since it lies in To(N).

Proof: [DSos, (5.2)], [Miy89, Lem. 4.5.6] O
Lemma 1.55: Let M € IN and p be a prime with p { M.
(a) Forallr > s > 1 we have
(A(Mp"), Ti(Mp")) Z (M(Mp*), Ty(Mp?*)).
(b) We have

(M(Mp) N MP Ti(Mp)) B (As(M) 0 MP), Ty (M).

Proof: In both cases the condition in definition 1.20 (a) is obvious, and condition (c) is also
easy to see.
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(a)

(b)

The proof of this part is a modification of the proof of [Shi71, Prop. 3.32], which we
follow very closely. We start with some preliminary matrix calculations.

Let @ € A{(Mp®) and write det @ = mq with (g, Mp) = 1 and m having only prime
factors that occur in Mp. For a prime ¢, write E; = GLy(Z¢). Define

X(a) = {B € A(Mp®) : det B = deta, V€ | q: E(BE¢ = EcaEq}.

Let f = (%) € X(a). Then since f € A(Mp*) we have (a,mMp") = 1, so there
is an e € Z with ae = 1modmMp”™ and e = 1modMp®. Choose y € SL,(Z)
withy = (§ %) modmMp’, then y € T(Mp*) and yff = (fA,}ps ’) mod mMp" with
b,f € Z.Puté = (_f]%,fps 1), then§ € Ty(Mp*) and §yf = (§ ,,l,’q) mod mMp", where
the lower right entry here comes from the fact det = mq. Putnow n = ({ %),
e=(4?%) and & = SyPe'n . Thendeté = gand & = (4 ¢) mod Mp'.

Now put £ = an~!. Then deté’ = q and E¢é'Ep = E¢aEg for all € | g, so £’ can be
chosen as the element ¢ in the proof of [Shi71, Prop. 3.32]. The argument there then
shows that there exist o € T'(Mp®) and § € T(Mp") such that @ = ¢£’67L. Our o is
¢w for the ¢ and w defined there, and in the construction of 0 there, it is easy to see
that we can in fact choose 6 € T'(Mp") and not just 6 € T'(Mp®).

Let « € A{(Mp") C Ay(Mp*). We first prove the condition in definition 1.20 (b),
i.e. T(Mp®)ali(Mp®) = Ti(Mp®)ali(Mp"). The inclusion “2” is clear. Moreover, we

obviously have I;(Mp®*)al;(Mp®) € X(a). To prove the other inclusion we show
X(a) € i(Mp®)ali(Mp"), so take f € X (o). We use our previous calculations to see

B =y '8 Ene € T(Mp®)EnLi(Mp”) = Ti(Mp®)oénd ™' Tu(Mp") = Tu(Mp®)aly(Mp").

We now prove the condition in definition 1.20 (d), i. e. Aj(Mp®) = LI(Mp®)A(Mp").
The inclusion “2” is again clear. For the other inclusion, we use again the previous

calculations to see that we can write any a € A;(Mp®) as
a =océnd™" € L(Mp*)A(Mp").

We first verify the condition in definition 1.20 (b). Let y1,y, € Ii(M) and @ €
A (M) N Mgp) be given, and write y; = (‘C’ Z) Then we must have ¢ # 0 ord # 0
(mod p), and also ¢ # 0 or a # 0 (mod p). Distinguishing these cases, we can find
integers x, y, z, w € Z such that

x=0
ifcz0: y=c!
=a

. a?

ifa#0: 0

ifd#0: x=0

lfC$0 :_1

y=c

w=d'(1+be)
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and in any case z = —c, where every “="is to be understood modulo p. Put§ := (} ¥ ).
Then a direct calculation shows that 8y, = (} ;) and det§ = 1 (mod p). Using the
Chinese Remainder Theorem we can moreover demand that § = ({9) modulo
C := M det a, because by assumption p { C. Using the surjectivity of the reduction
map SLy(Z) — SLy(Z/C), we may take § € SLy(Z) without loss of generality.

Then we have in GL,(Q)
nay, = pna(d e ad)y;, = (nad~'a Ha(dyz)

and by construction 8y, € T1(Mp). It remains to check that yjad~'a™! € I}(M), for
which it suffices to see that the matrix a§~'a™! has integral entries, because the
congruence property is clear by construction. Let £ be a prime. If ¢ | det @, then
§=($9) (mod?) by construction, so ad'a™' = (} 9) (mod ). If ¢ { det , then a is
invertible modulo ¢, so a8 'a™! € GL,y(IF¢). So the denominators of the entries of
a5~ 'a~! are not divisible by any prime ¢, hence are integral.

Now we check the condition in definition 1.20 (d). Let @ € A{(M) N Mgp) . Then since
p 1 deta we have a™(! 4., ) € SL2(E,), and we can find a preimage y € SL,(Z)
whose reduction modulo p is this matrix. By the Chinese Remainder Theorem we
may take y € [(M). Put 8 := y'a. Then by construction € A;(Mp) N MP, and

a = yp € L(M)(A(Mp) N MP). O

Lemma 1.56: Let (I', A) and (I", A’) such thatT and T’ are normalised by 3.
(a) If(T,A) < (I",A), then (T, A°) < (I', A”).

(b) If(T,A) S (I, A), then (T, A°) S (I, A”).

Proof: We can assume that A, A’ C M (Z), otherwise we have A = A® and A’ = A” and the
claim is trivial.

Assume (T, A) < (I”, A’). We have to look at the conditions in definition 1.20. Clearly, if
A € A’ then A° € A", so condition (a) holds. We can write any o € A’ \\ A as (a9)s with
a9 € A. We have for any such «

INal’ =T qoal’ =T"aal’a =T"aal's = IVaaal =TaT,

so condition (b) also holds. Now takeay’ e I and @ € A’ N A. If y’a € I'a N A®, then
dety’as > 0,s0 y’as € I'aaNA = Tas and thus y’a = y’ass € T'aas = T'e, hence condition
(c) holds. Now assume (T,A) S (I",A’), so A’ = I'A. Then A” = I'"A° and (d) is also
satisfied. (]

Corollary 1.57: For any M € N, any prime p with p { M, any r > 1 and any congruence
subgroup T with I;(Mp"™) C T C I,(Mp") and A = Ay(Mp")T', we have canonically

Hy(AT) = Ho(Mp), Hyz(A°,T) = H(Mp).

IfA’ 2 Ais a larger submonoid, then H..(Mp) is canonically contained in Hz(A’,T) and H(Mp)
is canonically contained in Hz(A”,T). All this is compatible with the module structures over
the various Hecke algebras defined in the preceding sections.
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Remark 1.58: Let N € IN, let N’ | N be a proper divisor and put g := N/N’. Further let
M be an R-linear representation of (A;(N),I3(N)) for some ring R. Then I}(N) € TI1(N’)
is a subgroup, so we have an inclusion of R-modules MHN) ¢ MI(N) By lemma 1.55
and proposition 1.21 we have an isomorphism of R-algebras Wiq)(N )R —— (HJ(rq)(N ")r and
by proposition 1.32 the inclusion MEN) ¢ MIIN) s compatible with this isomorphism.
More concretely, this inclusion respects the actions of the Hecke operators T, and S, for all
primes ¢ { q. By lemma 1.55 (a), if N’ and N have the same prime divisors, then the inclusion
is compatible with all Hecke operators. If not, then we can see from lemma 1.54 that the T,
for p | g will in general act differently.

By lemma 1.56 the same holds if we replace A;(N) by A{(N)°, i.e. ‘HJ(rq)(N)R by H'D(N)g.

Definition 1.59: Fix the Hecke pair (A{(N)?,I1(N)) and an R-linear representation M of
(Z,1). Since I3(N) is normal in Ij(N), any element ¢ € I(N) induces an endomorphism
m —— m|o] of MHN) ag in remark 1.33 called a diamond operator. Since there is an isomor-
phism

FO(N)/H(N) — (Z/N)X’ (‘CI Z) e

this gives an action of (Z/N)* on ME™) and we denote it by m —— m(d) for d € (Z/N)*
(sometimes also by m —— (d)m if there is no need to distinguish between left and right
actions, which we can do since (Z/N)* is abelian).

Obviously the matrix o, from remark 1.53 normalises I3(N), and the automorphism of
M) it defines is just the diamond operator (£).

On the other hand, the diagonal matrix ( g 9) for some ¢ € Z ~ {0} lies in the centre of 3,
so it induces endomorphism m —— m[ ¢9
that we have

] of ME™N) ag in remark 1.33. It is then obvious

m[S¢] = m{€) [g g] for m € MBIV (1.7)

for any prime ¢ { N. In particular, if the endomorphism defined by (§ 9) is invertible, then
the diamond operators commute with all elements of the Hecke algebra H(N).
We end this section by defining the Atkin-Lehner endomorphism.

Definition 1.60: Let N € IN and put

WN:(N _1)'

It is easy to verify that wy is an Atkin-Lehner element in the sense of definition 1.34 for
I' =TH(N) and A = Ag(N) or for T = [3(N) and A = Ay(N). Further we note that for any
A € My(Q) we have

w;,lAwN = WNAWX]I. (1.8)

Definition 1.61: We call the endomorphism [wy] attached to wy the Atkin-Lehner endo-
morphism of level N (see section 1.6).

The Atkin-Lehner endomorphism is often called Atkin-Lehner involution since in some
applications the submonoid Z(} 9) C = acts trivially on the module under consideration, in
which case [wy] is in fact an involution since wi, lies in this submonoid. Since for a general

module it may not be an involution, we call it Atkin-Lehner endomorphism.
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Definition 1.62: (a) The adjoint abstract standard Hecke algebra of level N is the Hecke
algebra adjoint to H(N), so H(N)' = Hz((Ao(N)°)",I,(N)). Define H,(N)" etc.
analogously.

(b) Denote the images of T,, S¢ and € under the isomorphism H(N) —~— H(N)' from
lemma 1.35 (b) by T}, S, and &', respectively.

Of course, H(N)' is isomorphic to Hz((A1(N)*)", T1(N)) and other Hecke algebras, analo-
gous to corollary 1.57. Hereafter we again identify all these adjoint Hecke algebras.
It is easy to see that

Ty = Ty(N) (p 1) Lo(N)
and €' = —€. For the diamond operators, it follows from the definition that

[w(d) = (d"")[w] (1.9)

for d € (Z/N)*. From this it is easy to see that Sy = [ g 2] (€)1, So from lemma 1.36 together
with (1.8), we get the following:

Corollary 1.63: If M € R-Mod (5, ,), then we have the following relations'!

Tplwl = [WIT,, T,[w]=[wlT,, [w]€=(=E)[w]

of endomorphisms of M*.

1.9. Eigenalgebras

We define the notion of a Hecke eigenalgebra. This is a special case of the general definition
of an eigenalgebra given in [Bel1o, §1.2].
Let R be a commutative ring, (2, %) a monoid with involution and (A, T') a Hecke pair.

Definition 1.64: For a right Hg(A,T')-module M, denote by T%A’r) (M) the image of the
canonical R-algebra morphism

(}‘{R(A, F) — EndR(M).
We call it the Hecke eigenalgebra of M.

The notation for Hecke algebras is not standard. Some texts use H or f, some use T or T.
We follow the convention that we use H for abstract Hecke algebras, whereas we use T and
similar symbols for Hecke eigenalgebras. When some of the parameters R, (A,T') or M are
clear, we may drop them from the notation. For important choices of M, we will introduce a
special notation.

In [Belio, §1.3-5], basic ring-theoretic properties of eigenalgebras are proved, for example
the following:

1 The parentheses in the last relation are important! This is because —I, if I is the identity matrix, does not
necessarily act as —1, it can also act trivially.

31



Chapter I Preliminaries

Lemma 1.65: Let R be noetherian and let S be a commutative flat noetherian R-algebra. Then
there is a canonical isomorphism

T (M) ®5 - TS (M ®5).

Proof: [Bel1o, Prop. 1.4.1] g

If these eigenalgebras are commutative, their geometry is related to systems of eigenvalues,
as we now explain.

Definition 1.66: A system of Hecke eigenvalues is an R-algebra morphism A: Hg(A,T) —
R. If M is a right Hg(A, T)-module and A is a system of Hecke eigenvalues, then an m € M is
called an eigenvector for A if m[T] = A(T)m for all T € Hg(A,T). These eigenvectors comprise
an R-submodule of M which we denote by M[A]. If m € M[A] we will also write M[m] for
M[A]. We say that a system of eigenvalues A appears in M if M[A] # 0.

Proposition 1.67: Let R = K be a field, let M be a right Hx(A,T')-module and assume that
TEKA’F)(M) is commutative. Then for each extension field K’ of K there is a canonical bijection
between Spec(Tg(A’r)(M))(K) = HomK(T%’F)(M), K’) and systems of Hecke eigenvalues that
appear in M ®k K.

Proof: [Bel1o, Cor. 1.5.10] O

We now consider again the special case of the abstract standard Hecke algebra. The
following observation is elementary but crucial.

Lemma 1.68: Let 3 = My(Z) N GL;(Q), T’ = ;(N), A = A(N) and let M be an R-linear
representation of (,1). Assume that there exists n € INo such that the element (¢ ;) acts on M
as multiplication by €™ for all primes € { N. Then the following R-algebras are equal:

(i) The eigenalgebra T = TEQA’F)(M),

(ii) the subalgebra T;) of Endr(M) generated by T, for all primes p and S¢ for all primes
(N,

(iii) the subalgebra Ty of Endr(M) generated by T, for all primes p and ({) for all primes
(N,

(iv) the subalgebra T ;) of Endgr(M) generated by T,, forn € IN.
g (iv) g y

Analogous statements hold for eigenalgebras away from the level. In particular, in this
situation, any element of M* which is an eigenvector of all T,, for alln € IN with (n, N) = 1 is
automatically an eigenvector of all diamond operators.

Proof: We follow the proof of [DIgs, Prop. 3.5.1]. By (1.7) and our assumption we have
S¢ = ("{{), so we have inclusions Ty € Ty From the relations in proposition 1.51 (d)
we see that we also have an inclusion T,y € T;). Further the equality T = Ty is clear by
proposition 1.51 (a). It thus remains to show (£) € Ty for all £ { N.

We use the relation £"**(£) = £S; = T} — T2, which is a special case of proposition 1.51 (d).
By Dirichlet’s theorem on primes in arithmetic progressions we can find another prime
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q # € such that £ = g (modN) (i.e. ({) = (q)) and further integers a,b € Z such that
al™? + bg"*? = 1. Then we have

(€) = (@™ + bq"**)(t) = a(T} = Tp2) + b(T; = Tpp) € Tiiy). a

Definition 1.69: For a right H(N)g-module M we write
M*={me M :m[E] = +m},

which is a right H,(N)g-module. Note that if A: H,(N)g —— R is a system of Hecke
eigenvalues, M*[1] is a well-defined R-module.

2. Miscellaneous

2.1. Determinants

In this section, we very briefly recall the formalism of determinant functors as introduced
in [FKo6, §1.2]. There, determinant functors for modules over (non-commutative) rings
are studied, but we will need this theory mostly just over fields, which simplifies matters
considerably. We first introduce the general setting, but later we will specialise to the case of
a field.

In this section, modules over rings should always be left modules.

Definition 2.1: Let A be a ring.

(a) Define a category Detp as follows. Objects are pairs (P, Q) of finitely generated
projective A-modules. The set Homg,;, (P, Q), (P’, Q")) for two such pairs (P, Q) and
(P’,Q’) is empty unless [P] — [Q] = [P’] — [Q’] in K((A). In this case, take a finitely
generated projective A-module R such that P® Q" @ R = P’ @ Q @ R and define

_ (K (A)xIsom(P® Q" ® R, P’ ® Q ® R))

Homa,, (P, Q), (P, Q")) = Aut(P’ ® Q ® R) ’

where a g € Aut(P’ @ Q ® R) acts on an (x,y) € Ky(A) X Isom(P® Q' ®R,P’®Q®R)
by g(x,y) = (x4, g"'y) (with g being the image of g in K;(A)). This does not depend
on the choice of R.

(b) For a finitely generated projective A-module P, define
Detp(P) := (P, 0) € Dety.

An isomorphism ¢: P —— Q of finitely generated projective A-modules induces
a morphism Deta(¢): Dety(P) — Dets(Q) whose class is represented by (1, ¢),
and this defines a functor Det, from the category of finitely generated projective
A-modules with isomorphisms to Detx.

(c) Let (P,Q),(P’,Q’) € Dety. Define (P,Q) - (P',Q") = (P®P',Q & Q') € Detn. We
identify the objects (P, Q) - (P’,Q’) and (P’,Q’) - (P, Q) of Detp using the obvious
canonical isomorphism. If we have isomorphisms ¢: P—— Q and ¢: P — Q’,
then this defines a morphism

Deta(¢) - Deta(y)): Deta(P) - Deta(P’) — Deta(Q) - Dets(Q”)

whose class is represented by (1, ¢ @ ).
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Let P be a finitely generated projective A-module. Then one has
Endp, (Deta(P) = (Ki(4) X Isom(P. P) [ ay(p)

which can be canonically identified with K;(A).
Definition 2.2: For a finitely generated projective A-module P and a ¢ € Auty(P), let

det3(p) € Ki(A)

be the image of Dets(¢) € Endg,:, (Deta(P)) in K;j(A). It is just the canonical image of ¢ in
Ki(A).

»

For the rest of the section, we fix a field K and specialise to the case A = K. Any “Det
from now on should mean “Detg”, any “det*” should mean “dety” and any vector space
should be a K-vector space. If V is some finite-dimensional vector space and ¢ € End(V), we
sometimes write det(¢, V) for the determinant of ¢ if we want to make clear on which space
¢ acts when this may not be clear from the context. If we moreover want to make clear that
V is a K-vector space, then we write detg(¢).

Definition 2.3: Let V, W be finite-dimensional vector spaces of equal dimension. Choose
bases y of V and 6 of W.

(a) We write is 5: V —— W for the isomorphism between V and W that identifies the
bases y and 6. Note that 15;15 = iss,y.

(b) Let ¢: V—— W be a morphism. Then we say that
de5t(qo) = det(iss,, 0@, V) = det(p o iss ,, W)
Ys

is the determinant of ¢ with respect to y and .

Definition 2.4: Letn > 2and V3,. ..,V be vector spaces of equal finite dimension together

with isomorphisms

o 2 Pn1 Pn
Vi Va e Va Vi

Applying the determinant functor to these and multiplying, we get a morphism
Det(¢1) - - - Det(¢,): Det(V;) - - - Det(V;,) —— Det(V3) - - - Det(V;,) Det(V4)

which, after identifying source an target, can be seen as an element in K;(K) = K* as in
definition 2.2. We denote this element by

det*(¢1, ..., 0n) € K*.

Lemma 2.5: Assume we are in the situation of definition 2.4. Then

det™ (g1, . .., n) = (-1)"*' det(pn 0 -+ 0 @1, V).

In particular, choosing bases y of Vi and 6 of V, and putting ¢, = iss,,, one has

det*(oy, .. ., Pn-1,185,y) = (-1)"*! ?eg((/)"—l o---0q).
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Proof: Spelling out explicitly what happens here, one sees that the morphism

Det(¢;) - - - Det(¢,) € Hom(Det(V;) - - - Det(V},), Det(V5) - - - Det(V;,) Det(V}))
- (K* ><Isom(Vlea---€BV,,,V2@---@Vn@VO)/Aut(Vz@...Vn@Vl)

is represented by (1, ¢; @ - - - ® ¢,). If we choose bases of all V; to get matrices A; describing
the ¢;, the isomorphism ¢; ® - - - @ ¢, is represented by

0o .- 0 A,
A 0
A1 0

with respect to the combined basis and the resulting identification Vi@ --- @V, =V, @ --- @
V, ® V4, while ¢, o - - - o ¢y is represented by A, - - - A; with respect to the basis chosen on V;.
By Laplace expansion, the claim follows. (]

Definition 2.6: Let V, W be finite-dimensional K-vector spaces,
f € Hom(Det(V), Det(W)) = (K* X Isom(V, W)) / Aut(W)

a morphism whose class is represented by (a, f ), and ¢ € K*. Then
¢ - f € Hom(Det(V), Det(W))
is defined to be the morphism represented by (ca, f ). See also [FKo6, p. 43].

Lemma 2.7: Let V,W be finite-dimensional K -vector spaces, let o: V— W, ¢y: W — V
be isomorphisms, and let a € K*. Then

det*(a- @,¢) = det*(p,a - ) = adet™ (¢, ¥).

Proof: This follows directly from the definition of how to view an endomorphism of some
determinant object as an element in K*. O

Lemma 2.8: Let V, W be K-vector spaces of equal finite dimension and let B be a K-algebra.
Any ‘®” below means “®k ”. Then there is a natural bijection

(Isom(V & B,W ® B) BX)/Aut(W ®B) = (((Isom(V, W) x KX)/Aut(W)) X BX) /KX i

Here, K* acts on ((Isom(V, W) x K*)/Aut(W)) x B* by

1-([{,a],b) = ([¢,1"al,Ib) forl € K*,y € Isom(V,W),a € K*,b € B
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Sketch of proof: We first define a map from the left hand side to the right hand side. Let [/, c]
be some class in the left hand side. Choose some isomorphism ® € Isom(V, W). Then there
exists an s € Aut(W ® B) such that s o y = ®. We then map

[.cl — [[s o ¥, 1], cdet(s)™] .
In the other direction, let [[¢, a], b] be in the right hand side. Then we map
[¢ ®1,ab] — [[g,al.b].
It is now a long and tedious, but essentially trivial calculation to check that
« the action of K* on ((Isom(V, W) x K*)/Aut(W)) x B* is well-defined,

« both maps above are well-defined, in particular the first map depends neither on the
choice of ® nor on the choice of class representatives,

« and the two maps are inverse to each other.

Since nothing interesting happens in this calculation, we omit it here. O

2.2. Actions of semidirect products

In this section we give a basic construction concerning actions of semidirect products of
groups. This is mainly to fix notation and for future reference. In this subsection, every
action occurring is a left action. Of course, similar statements are true also for right actions.

Let G be a group and ¥ a monoid. For a homomorphism ¢: G—— End(Z), we define
the semidirect product X x G to be the set X X G with multiplication (my, g;)(ms, g2) =
(m1g,(m2), 9192) (Where we wrote ¢4 for ¢(g), for g € G). It is a monoid, and if ¥ is a group
it is the usual semidirect product of groups.

Lemma 2.9: Let X be a topological space on which both G and ¥ act continuously from the
left in such a way that

g(m(g~'x)) = pg(m)x (2.1)
foreveryge G,me X andx € X.

(a) Putting
(m, g)x = m(gx)

gives a well-defined left action of ¥ x G on X.

(b) Assume that X is a group. Writing [x] for the orbit of x € X under X, we get a
well-defined action of G on the quotient space \X by defining its left representative by

glx] = [gx].

Proof: This is an easy calculation using the relation (2.1). O
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Example 2.10: An important application of this is the following. Here G is the group G,.
Let ¥ = GL; (R) act from the left on the complex upper half plane b by fractional linear
transformations, that is, by

_az+b _[a b +
YZ'_cz+d fory—(c d)EGLZ(R),zeb.

(a) Observe that we can write GL,(R) as the semidirect product
GLy(R) = GL; (R) % G,

with G, acting by conjugation on GL; (R). If we let o € G, act on the upper half plane
has T —— — T, where the bar means complex conjugation, it is an easy calculation
to verify the relation (2.1). So by lemma 2.9 (a) we get an action of GL,(RR) on .

(b) If we replace GL; (R) by GL;(Q) in (a), then we can extend the action of GL;(Q)
by linear fractional transformations to the set P1(Q) = Q U {oo} using exactly the
same formula as above (and the evident calculation rules for handling co, for example
dividing by 0 should result in co and so on), and similarly also for G,, so we get an
action of GL,(Q) on IP}(Q) and thus on h* = h U PY(Q).

(c) We can of course replace GL; (Q) by any submonoid A C GL; (Q) which is normalised
by 2. Then we have A’ = A x G, and get an action of A® on b, P'(Q) and b*.

(d) Further replacing GL; (Q) by SLy(Z) in the above and writing
GLy(Z) = SLa(Z) x G,

we similarly get actions of GL,(Z) on b, P}(Q) and b*. Furthermore, if T C SL,(%Z) is
a subgroup which is normalised by 3, we can form I' X G,. By lemma 2.9 (b) with
3 =T, we then get an action of G, on the quotients I'\h and I'\h*.

The motivation behind defining the action of @ on the upper half plane as 7 —— — T is
the following. Since SLy(R) acts transitively on f) with the stabiliser of i € f) being SO, there
is an isomorphism of smooth manifolds

SLy(R) [0, —=—b, yS0; — 1,

and one can check that the inclusion SLy(R) —— GL;(R) induces an isomorphism

with inverse mapping the class of a y € GLy(RR) to the class of (y/dety)~!y if dety > 0 and

to the class of (1/— dety) loy if dety < 0. Now on GL3(IR)/SO, R* we have a natural action
of GLy(RR) by left multiplication, and an easy calculation shows that under the bijection

GL2(R) / SO, RX = b

this action becomes exactly the action defined in example 2.10 (a).*
There is another example that will be important later.

12 In some texts, the matrix —s instead of 3 is used. The same easy calculation shows that this gives the same
actions of GLz(RR), GL2(Q) resp. GL2(Z) on all sets considered above.
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Example 2.11: Let A C M,(Z) N GL;(Q) be any submonoid which is normalised by .
Define an action of A on C X § by

y(z,7) = (det(y)(ct + d) 'z, y7) fory = (CCI Z) eENzeC, T€e) (2.2)

and let 5 act on C X b as a(z, 1) := (z,97) = (z,—7). Then it is again an easy calculation to
check the relation (2.1), so that we get a well-defined action of A°> = A x G, on C x 1. On the
second factor b, this is just the action we defined in example 2.10 (c), so that the projection
C x ) — b is equivariant.

2.3. Some homological algebra

Here we collect some facts from homological algebra that we will need later on.

For simplicity of notation, we will denote every differential in every degree in every
complex simply by d. For a morphism f: C* —— D*® of complexes, we define the mapping
cone following the convention in [GMo3] to be the complex cone(f)®* = C[1]* & D* with
differential given by the matrix'3

—d
74

0 R® s*

Let A be an abelian category and

T* 0

an exact sequence of complexes in A.

Lemma 2.12: The map
(f,0): R[1]* —— cone(g) = S[1]* & T*

is a quasi-isomorphism.

Proof: We prove this by showing that the kernel and cokernel have vanishing cohomology.
For the kernel this is obvious: it is even zero itself, since f is a monomorphism. The cokernel
is isomorphic to T[1]* @ T* with the differential given by the matrix

[ )

as one easily checks. We prove that this complex has zero cohomology by showing that
its identity is nullhomotopic, using an argument inspired from [GMo3, top of p. 158]. A
contracting homotopy for it is given by

s Tn+1 eT"—T'g Tn—l, (tn+1’ tn) _ (tn’ 0)’

as can be seen by a simple calculation. ]

13 Note that in [GMos, §111.3.2], the differential of the shifted complex C[i]® is defined to be (1)’ times the
original one, which is why their matrix does not contain the sign. Note also that we use a different sign
convention as [Weigq, §1.5].
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Lemma 2.13: Let
(0,id): T* —— cone(g) = S[1]* @ T*

be the inclusion into the second factor. Identifying H" (cone(g)) with H*(R[1]*) = H"*!(R®)
using the quasi-isomorphism from lemma 2.12, the map

Hn(TO) Hn+1(Ro)
induced by the above inclusion is the boundary map from the long exact cohomology sequence.

Proof: Note the similarity to [Weig4, Ex. 1.5.6].
We draw the snake lemma diagram used to construct the connecting homomorphism,
together with an additional column for the mapping cone:

0 0
oy
H™(T*) H"(cone(g))
R™ f sn g 'Iln O Sn+l®Tn
dRn1 dsn-1 dTn1 d(SreTn 1)

J J |

0 — zmI(Re) L Zmeise) L zni(re) 2" (cone(9))

0

l

Hn+1(R0) [ Hn+1(R0)

J |

Rn+1
0 dR™

Zn+2(R.),

Here, (1) is induced by the inclusion into the second factor, as in the statement, and (2) comes
from the quasi-isomorphism from lemma 2.12.

We argue by a diagram chase, i.e. using elements of the objects in the diagram. Following
the proof of the snake lemma, start with a cohomology class in H*(T*) and take a t € T"
representing it. Let s € S be a preimage, i.e. g(s) = t, map it to Z"*1(S*) with the differential,
and then take a preimage r € R""!, i.e. f(r) = d(s). This r then represents the image in
H"*(R®) of the class from H"(T*) we started with under the boundary map.

The image under the map (1) of the class in H*(T*) represented by t in H"(cone(g)) is
represented by (0, t), whereas the image under the map (2) of the class in H**!(R®) represented
by r in H"(cone(g)) is represented by (f(r), 0). The difference between these two elements
of S"*1 @ T" is (—d(s), g(s)) and is thus the image of (s, 0) € S & T"! under the differential
of the mapping cone. Hence the (0, t) and (f(r), 0) represent the same cohomology class in
H"(cone(g)). Since (2) is an isomorphism, the claim follows. O

Now consider the following situation: let

0 A B C 0
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be a short exact sequence in an abelian category A and let ¥ : A —— B be a left exact
functor. This gives us a connecting homomorphism

d: R°F(C) — R'F(A).
On the other hand, in the derived category D*(A)

All=(A—0) and (B—0)

0 0

define isomorphic objects, and we have an obvious morphism in D*(A)

Clo] — (B—©)
0

Applying the total derived functor R to this and then taking cohomology in degree zero,
this gives a morphism

R"F(C) = H'(RF(C[0])) — H'(RF(B— 9 = H'(RF (A[1])) = R'F(A). (2.3)
0

Lemma 2.14: In the situation described above, the morphism (2.3) coincides with the boundary
homomorphism

9: R°F(C) — R'F(A).

Proof: Choose injective resolutions B— I* and C — J*® of B and C, respectively, and write
f:I* —— J* for the map between them induced by the map B—— C. By lemma 2.12,
cone(f) is then an injective resolution of A[1] and hence also of the complex

B—

o—)O

The map
H(RF(C[0])) — H'(RF (B — 9)
0

is induced by the inclusion into the second factor

J* —— cone(f).

Therefore, the claim follows from lemma 2.13. [l
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2.4. Some p-adic Hodge theory

We fix a finite extension L of Q, and an extension F of Q, which is either finite or the
maximal unramified extension of a finite extension of Q. Let Fy denote the maximal subfield
of F which is unramified over Q, and F resp. F, the completions of F and F,, respectively.
Note that then F is a p-adic field in the sense of [BCog, Def. 1.3.1] and we have Gr = G; by
[BCo9, Ex. 1.4.4 (2)], and likewise for F,.

Central to the study of representations of Gr on L-vector spaces via p-adic Hodge theory
is the formalism of B-admissible representations, where B is some regular period ring.
This formalism is developed in an abstract setting e.g. in [BCog, §1.5] or [FO08, §2.1.2].
Unfortunately, the setting there only considers the case L = Q, (but see [BCo9, Exerc. 6.4.3,
8.4.3]), but it is clear that the statements there hold analogously in this more general situation.

We use the period rings Byr, Bgr, Bst and By, see [FO08, §5.1, §5.2.2, §6.1.4, §6.1.1].
The formalism of admissible representations provides us with functors from Kep, (Gr) to
categories of “linear algebra objects”. We summarise the relevant statements:

Theorem 2.15: Let ? be “HT”, “dR”, “st” or “cris” and for V € Rep, (Gr) let

Dy r(V) = (B, ®V)°F,
Qp

where G acts diagonally on the tensor product. Then D, r defines a functor as follows:
(1) Dur,F goes from Rep, (Gr) to the category of graded F ®q, L-modules of finite rank.
(2) Dar, F goes from Rep, (Gr) to the category of filtered F ®q, L-modules of finite rank.

(3) Dst,r goes from Rep, (Gr) to the category of Fy ®q, L-modules of finite rank with an L-
linear and Fy-semilinear (with respect to the arithmetic Frobenius on Fy) automorphism
Qcris, a nilpotent endomorphism N such that N¢uis = p@erisN and a filtration on
F ®F, Dst,F(_)-

(4) Dais, r goes from Rep, (Gr) to the category ofﬁo ®q, L-modules of finite rank with an
automorphism @.is and a filtration as in the previous case.

Here each filtration is decreasing, separated and exhaustive.
Let
ay: Bo®Dy p(V) — By @B V) = (B2 ®B2) @ V—— B, ®V
B B » B » Qp

be the canonical map, where Fy is F if ? € {HT,dR} and Fy if 7 € {st,cris}. Then ay is
injective and we denote by ?{ep?L(G F) the subcategory of such 'V for which ay is an isomorphism,
called Hodge-Tate-, de Rham-, semistable and crystalline representations, respectively. Then the
following hold:

(a) Rgp?L(GF) is closed under subrepresentations, duals, quotients and tensor products.

(b) Restricted to Repz(GF), the functor Do p is an exact and faithful tensor functor. To be
precise, there are canonical isomorphisms

Dy p(Vi)  ® Do p(V2) = Drp(V1® V),
F7®QPL L
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D p(Homy (V. 1)) = Hompg, 1 (D2, (V). F2 © L.
) 74

Proof: All this is well-known and in the special case L = Q, this is proven in [BCog, Thm.
5.2.1]. One can check that the same proof still works in this more general setting (using that
B?GF = F,). See also [FOo08, Thm. 2.13]. O

Remark 2.16: The statement about tensor products in theorem 2.15 (b) can be refined. If
V1, Vo € Rep,(GF) are any representations (not necessarily in Q{epZ(Gp)), then we always
have an injective map

Dy r(V)) ® Dy p(Vz) — Do p(V1 ® V),
ﬁ7®QpL L

and the map is an isomorphism if and only if both V; and V; are in Q{gp?L(GF). This is shown
during the proof of the statement in the above references.

We will often consider only the case where F = Q,, in which we write D; instead of
D2 q,- The D, are then L-vector spaces for any “?” and the automorphism ¢is of Dg and
Dgyis is L-linear.

»

Proposition 2.17: Let ? be any of the properties “Hodge-Tate”, “de Rham”, “semistable” or
‘crystalline” and V € Rep,(Gr). Let F> = F if? € HT,dR and F; = Fy if ? € {st, cris}. Then
there is a canonical isomorphism

E7* @ Dy p(V) —>= Dy (V).

In particular, V has the property ? if and only if the restriction of V to Gpn has the property ?.
Proof: [BCog, Prop. 6.3.8, Prop. 9.3.1] [l

Lemma 2.18: LetV € Rep; (Gr) be unramified. ThenV is crystalline and we have a canonical
isomorphism
Dcris,F(V) = (ﬁnr ® V)Gal(F‘“/F)‘
Qp
The action of @is on the left hand side corresponds on the right hand side to the action of an
arithmetic Frobenius Frobl;1 on the first tensor factor.

Proof: Let n = dimq,, V. That V is crystalline is clear from proposition 2.17. Let I = Gpnr.
We have a canonical injection

ﬁnr RV = BI ® VI — (Bcris g V)I = Dcris,F“’(V)~
14 P

cris
Qp

Again by proposition 2.17 and the definition of “crystalline” the right hand side is an n-
dimensional F™-vector space, as is the left hand side, so the above map is in fact an isomor-
phism. We conclude

Dcris,F(V) = (Bcris g V)GF = ((Bcris ﬂ? V)I)Gal(F“’/F) = (ﬁnr (]? V)Gal(Fm/F).
P P

»

The last statement is clear from the definition of @i on Beys. O
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Lemma 2.19: (a) Lety: Gq, — L* be a continuous character. Then the following are
equivalent:

(i) ¥ is de Rham.
(ii) ¢ is Hodge-Tate.

(iii) ¢ is a product of a finitely ramified character and a crystalline character.

(b) Lety: Gq, —— L™ be a continuous character. Then the following are equivalent:
(i) ¢ is crystalline.
(ii) ¥ is semistable.

(iii) ¢ is a Tate twist of an unramified character.

Proof: [BCog, Ex. 6.3.9, Cor. 9.3.2] O

Lemma 2.20: Let : Gq, —— L™ be a crystalline character and write {y = Ynrkye with

n € 7 and yn, unramified. Then @c.is acts on Deis(Y) as multiplication by Y (Frob, )p™.
Proof: Since Djs commutes with tensor products, it suffices to show independently that ¢yis
acts on Deis(keye) as multiplication by P~ and on Deyis (V) by multiplication with Ynr(Froby).

We first consider Deris(Keye) = (Beris ®q, Qp(l))GQP. Let ¢ be any nonzero element of
Qp(1) and consider tqr € BY ;.. Then o € Gq, acts on both ¢ and tgr as multiplication by
Keye(0) (see [BCoo, top of p. 62] for tqr). Hence & ® tgfll lies in Deyis(keyc), and since the latter
is a 1-dimensional Q,-vector space, it is a basis. Now @5 acts on tqr as multiplication by p
by [BCoo, top of p. 133] and it acts trivially on £, so the claim follows.

Now let V be a one-dimensional L-vector space on which Gq,, acts via ¢, By lemma 2.18,
we have then

p

and @5 acts as the arithmetic Frobenius Frob;,1 on the first tensor factor Qgr. Put u =
Unr(Frob,) and take an element

x = b; ® v; € (QF @ V)Gl /Qp),
2uheue @iy
Then ux is also Gal((Ql‘,}r / Qp)-invariant, so

wx = Frob!(ux) = uFrob,'(x) = u( D vecis(b) © Frob,(v1)) = D 0uss(bi) ® 04 = o).
1 1 D

We now recall the important functor Dp;.

Definition 2.21: For V € Rep, (Gq, ), put

Dypst(V) = colim (Bst ® V)7 = colim Dyt r(V)
F2Q, P F2Q,

where F ranges over all finite extensions of ), inside @p.
Itisa Q)" ®q, L-module endowed with an L-linear and Q}'-semilinear (with respect to
the arithmetic Frobenius) automorphism ¢is. We call V' potentially semistable if Dps (V) is

free of rank dim; V over Q' ®q, L.
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On Dps(V) we have a (diagonal) action of Gg, which is L-linear and Q}'-semilinear
(explicitly: o(ax) = o(a)o(x) for a € Qgr, x € Dpst(V) and 0 € Gq,). The functor Dy
commutes with tensor products, which follows from the fact that Dy does so.

One of the most important results in p-adic Hodge theory is Berger’s p-adic monodromy
theorem:

Theorem 2.22 (Berger): Any de Rham representation is potentially semistable.

Proof: [Beroz, Thm. 0.7] O

Remark 2.23: The above result can be used to describe D5t more explicitly. Let V be a de
Rham representation and fix a finite Galois extension F/Q, that V|g,. is semistable. Then for
each finite extension F’/F the canonical map

F; ® Dy p(V)=F, ® Bst ® V)" «— F; @By ®V —— By @V
Fo Fy Qp Fo o Qp Qp

is injective since it is a restriction of the map ay, and moreover its image is Gp/-invariant, so
it induces an isomorphism Fj ®f, Ds;, r(V) —— Dg, (V). Consequently, we get Dysi(V) =
Qgr ®r, Dst,r(V). Note that the action of Gg, on Dyt(V) corresponds to the diagonal action
on the right hand side, where Gq, acts as usual via is quotient Gal(Q,'/Q,) on Q" and via
its quotient Gal(F/Q,) on Dy p(V). Further ¢;s also acts diagonally, not only on Dy ¢(V)!
This is because Q;r has to be considered as a subring of By here, and thus ¢.s acts as an

arithmetic Frobenius Frobl;1 on this factor.

2.5. Galois representations and families

We fix a profinite group G (in the applications, it will mostly be either Gq or Gg,).

Definition 2.24: Let R be a commutative ring. A representation of G with coefficients in R
is a finitely generated projective R-module M together with a (continuous'4) homomorphism

p: G—— Autg(M).

The category of such representations will be denoted by Rep(G). We say that a representation
has rank n € N if the module M has constant rank n.

Definition 2.25: Let M be a representation as above and assume that M has finite length as
an R[G]-module. Then the semisimplification of M is defined as the semisimplification as an
R[G]-module, i. e. as the direct sum of the composition factors in a composition series of M as
an R[G]-module. By the Jordan-Hoélder theorem this is well-defined up to isomorphism. We
will mostly use this only when R is a field, in which case M has automatically finite length.

Theorem 2.26 (Brauer/Nesbitt): Let M and N be k-linear representations of G, wherek is a
perfect field. Then the semisimplifications of M and N are isomorphic if and only if we have an
equality of characteristic polynomials

det(1 — gT, M) = det(1 — ¢gT,N)

ink[T] forallg € G.

4 In the applications, M will usually have some natural topology.
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Proof: The “only if” statement means that the above characteristic polynomials depend only
on the semisimplification of a representation. This is clear because if we have a composition
series

0CMCM; G-~ CMy=M

of M and we write p; for the homomorphism describing the action on the quotients M;/M;_4,
then the action on M may be described by a matrix of the form

p1oF ... %

Pn

hence the characteristic polynomials coincide with the corresponding ones where only the
diagonal entries are present.

For the other direction see [CR62, Thm. 30.16]. The statement is formulated there for a
finite group G, and the proof contains an argument incorporating the finitely many isomor-
phism classes of irreducible representations of G. But inspecting the proof and its ingredients
one sees that the argument still goes through if we replace these finitely many isomorphism
classes by the isomorphism classes of irreducible representations occurring as subquotients
of M or N, which are of course still finitely many since M and N are finite-dimensional over

k. (]

In general, any representation G —— Autg(M) can be viewed as a whole family of repre-
sentations: each ring homomorphism R —— S to some other ring S induces a representation
G —— Auts(M ®r S), and we get a family of representations parametrised by such ring
homomorphisms. Of particular interest are the ring homomorphisms obtained by reducing R
modulo some prime ideal, so we get for instance a family of representations parametrised by
Spec R. Therefore, in some situations we call a representation also a family of representations
and speak of a representation in the strict sense only if R is a field; we hope this does not
lead to confusions.

Of course, one could define this notion also more geometrically: we can see M as a locally
free sheaf on Spec R, and we can then define not only affine families of Galois representations,
but also such parametrised by general schemes. One can also work in other geometric
contexts, for example one can use affinoid algebras instead of just commutative rings and
then consider families of representations parametrised by rigid analytic spaces. The rigid
analytic setting seems to be a very natural context for questions related to p-adic L-functions,
but in some situations the algebraic language is also important, and we study some relations
between the two notions. For simplicity, we restrict to the affine resp. affinoid case.

We will be interested in two particular types of rings and ideals. For both we need to fix
a finite extension L of Q, with ring of integers O. The two situations we consider are as
follows:

« Let K be a finite extension of Quot(O[T]]) and 7 the integral closure of O[T] in K.
We consider the case R = 7. Then I is 2-dimensional, it is finite and flat over O[T] by
[BGR84, §4.2, Thm. 1] and [Bou89, chap. 111, §3.4 Cor.], and it is moreover noetherian.
Further 7 is a local ring, as can be seen using [Bou89, chap. V, §2.1, Prop. 1, Thm.
1]. Let mz be is its maximal ideal. We endow 7 with the mz-adic topology. Then it
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is complete and Hausdorff by [Bou89, chap. 111, §2.12 Cor. 1, §2.2 Prop. 6], and also
compact since it is a finitely generated O[T]]-module. So in particular, I is a profinite
ring by [RZoo, Prop. 5.2.1]. We further endow any finitely generated 7 -module 7 also
with the mz-adic topology. This defines a topology on Aut7(7") such that we have an
isomorphism of profinite groups Autz(7) —— ¥i1_nn€]N Autr (7/m7 7).

+ Let A be an affinoid algebra over L. We consider the case R = A.

In the following we denote the Tate algebra over L in n indeterminates by L{Xy, . .., X,).

Definition 2.27: In the first case, we call a representation with coefficients in 1 also an
algebraic (p-adic) family of Galois representations. In the second case we call a representation
with coefficients in A also an analytic (p-adic) family of Galois representations. We will mostly
omit the word “p-adic” here.

We call each O-algebra morphism ¢: 7 —— @p a specialisation of I and each L-algebra

morphism ¢: A— @p a specialisation of A.

Algebraic families of Galois representations are studied in [Bar11, §2.2]. There, specialisa-
tions are defined as maps L[T]] — @p. But since L[[T] is a discrete valuation ring, it has a
unique prime ideal, so there is only one such map. This must have been overlooked in this
work since otherwise the theory is not interesting. A p-adic family of Galois representations
is defined there as a representation into GL, (L[ T]). Later in [Bar11, Cor. 2.11] it is proved
that any such representation contains a free Gg-stable O[T ]-lattice. This proof is also not
correct since it uses that there is a canonical map from L[[T] into the quotient field of O[TT],
which is not true. Anyways, later in [Bar11], Barth always chooses such a lattice and works
with specialisations O[[T] — @p, so the later results are not affected by this problem.
This situation is covered by our definition by choosing 7 = O[T]],*5 so this seems to be a
reasonable generalisation.

The algebraic families of Galois representations we defined should more precisely be called
“one-parameter families of Galois representations”, since we work over integral extensions of
the one-variable power series ring O[T]. In this work we just call them “families” because
we will not consider multi-parameter families. Working with multiple variables instead gives
an analogous notion of multi-parameter families. Such an approach is followed for example
in [Hidg6].

Lemma 2.28: Let¢: I — @p be a specialisation, let R be its image and F be the quotient
field of R. Then R is an integral ring extension of O and F is a finite extension of L.

Proof: We first prove this in the special case 7 = O[T]. The kernel of ¢ is a prime ideal of
height 1, so by [NSW13, Lem. 5.3.7] it is of the form (f) where f € O[T] is an irreducible
Weierstral polynomial. Let d = deg f. By the Division Lemma [NSW13, Lem. 5.3.1],
OIT]/(f) = Ris a free O-module of rank d. Then F is canonically isomorphic to L ®¢
OIlTI1/(f), which is an L-vector space of dimension d, so F/L is a finite extension.

Now let 7 be as in the general case, let P be the kernel of ¢ and let (f) be the kernel of
Ployr)> as above. Since I is a finitely generated O[[T]-module, by base change I/(f) is a
finitely generated O[T]/(f)-module and thus a finitely generated O-module. Then so is
I /P = Rsince it is a quotient of 7 /(f). The field F can be identified with L ®» R, so itis a
finite-dimensional L-vector space. O

!5 In [Bar11] there is the additional assumption that 7 be free, but since O[T] is a local ring and we required 7~
to be projective, this is automatically fulfilled.
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Definition 2.29: (a) The field of coefficients of an algebraic specialisation ¢ is the sub-
field Ly of Qp generated by the image of ¢, which is a finite extension of L by
lemma 2.28. We write Oy for its ring of integers. Note that we can view ¢ also as
amap ¢: I —— Oy since the image of ¢ is a subring of Oy, again by lemma 2.28.
In this situation we put further Ky = Ly N Q, which is a finite extension of K, and
write By for the place of Ky such that the completion at this place is L.

(b) The field of coefficients of an analytic specialisation ¢p: A — @p is its image, which
we denote Ly. It is clear that Ly is a subfield of @p, and by the rigid analytic
Nullstellensatz [BGR84, §6.1.2, Cor. 3] it is a finite extension of L. As in the algebraic
case we write Oy for its ring of integers, Ky = Lg N Q and B for the place of Ky
such that the completion at this place is Lg.

Definition 2.30: Let (7, p) be an (algebraic or analytic) family of Galois representations of
rank n and ¢ a specialisation. In the algebraic case, set 74 = 7 ®71 4 Oy, which is a free
Og-module of rank n. In the analytic case, set 7 := 7 ®4 4 Ls, which is an n-dimensional
Lg-vector space. We write

pg: G—— Aut(Ty)

for the representation induced from p and call it the specialisation of p at ¢.

Proposition 2.31: Let 7 be as above and set A .= I ®pyr) L(T). Then A is an affinoid L-
algebra. Every specialisation of I induces a specialisation of A, which we denote by the same
symbol. Every algebraic family T8 of Galois representations over I naturally induces an
analytic family of Galois representations T8 over A such that for each specialisation ¢, 7;5a1g is

a Galois-stable lattice in 7;rig.

Proof: Since 7 is finite over O[[T]|, by base change A is finite over L(T), hence A is affinoid
by [BGR84, §6.1.1, Prop. 6]. So tensoring an algebraic family with L(T) yields an analytic
family. If ¢: 7 — @p is an algebraic specialisation, then « := ¢(T) € @p has absolute value
< 1, so we can define a morphism L(T) —— Ly by T —— a (see [BGR84, §6.1.1, Prop. 4]).
This induces an analytic specialisation which we denote again by ¢. The rest is then clear.[]

Definition 2.32: (a) Let V be a finite-dimensional K-vector space. An I -lattice in V
is a finitely generated 7 -submodule which generates V as a K-vector space. See
also [Bou89, chap. vi1, §4.1, Prop. 1 & Cor.].

(b) Let p: G—— Autx(V) be a representation of G on a finite-dimensional K-vector
space V. Then p is called continuous if V contains a G-stable 7 -lattice 7 such that
the induced map

p: G— Autr(7)

is continuous with respect to the profinite topology. See also [Hid86a, p. 557] and
[Bari1, §2.2].

Lemma 2.33: Let p: G—— Autg (V) be a continuous representation of G on a finite-dimen-
sional K-vector space V. Then one can find a free G-stable I -sublattice T of V.

Proof: This can be proved with exactly the same argument as [Bar11, Cor. 2.11]. O
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2.6. (¢,T)-modules and families

We shortly review (¢, I')-modules over the Robba ring and families of such, following Berger,
Colmez and Bellovin [Ber11; Colog; Colos; BCo8; Bel15]. Throughout the section we fix a
finite extension L of Q,.

Definition 2.34: The Robba ring B ;, over L is the ring of Laurent series ).,z a,X" with
coeflicients a, € L for which there ex1sts a real number 0 < r < 1 such that the series
converges on the annulus {x € L : r < |x| < 1}.

Since L will usually be clear from the context, we denote the Robba ring mostly just by
Bjig. In other texts it is denoted by R or Ry.

The Robba ring carries a Frobenius endomorphism ¢,z and an action of G¢yc. In the
literature, the group which we call Gy is usually called I in this context, so we follow this
convention and let I' := Gy, for this section.

Definition 2.35: Let A be an affinoid L-algebra. A (¢, T')-module over A is a free A& BIi o«
module M of finite rank with an endomorphism ¢ and an action of T such that the following
properties hold:

* ¢ is A-linear and ¢,ig-semilinear,

« if B is a basis of M, then also ¢(B) is a basis,

the action of T is A-linear and semilinear with respect to the I'-action on Bjig,
« if B is some basis of M and y € T then also y(B) is a basis of M,
« the action of I' commutes with ¢.

We denote the category of (¢, I')-modules over A by B:i ¢ -Mod ff’r). It carries natural notions
of direct sums, duals and tensor products.

If A = L', the (¢,T)-module is called étale if with respect to some basis of M the
endomorphism ¢ is described by a matrix whose entries are Laurent series in BL ‘ all of whose
coeflicients have absolute value < 1.

In the case A = L, we call a (¢,T)-module over L just a (¢,T')-module. Just as in the
case of Galois representations, a (¢, I')-module over A can be seen as a whole family of
(¢, T)-modules parametrised by Sp A, the rigid space associated to A.

Theorem 2.36 (Fontaine, Cherbonnier/Colmez, Kedlaya, Liu, Berger, Bellovin): There is a
fully faithful functor
T (¢, I
rlg g{'epA(GQ ) — B _M d

This functor commutes with direct sums and tensor products and is compatible with base change
in A. If A = L, then its essential image is the subcategory of étale (¢, T')-modules.

Proof: For the general case see [Bel1s, Cor. 2.2.11]; note that since we work with an affinoid
algebra, the associated space is automatically quasi-compact and quasi-separated. For the
case A = L see [Colos, Prop. 2.7]. O

16 This notion can also be defined for general A, but since we don’t need this we omit it.
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The compatibility with base change means in particular that the functor Dji behaves well
with families: it does not matter whether we first apply it to a family of Galois representations
and then specialise the resulting (¢, I')-module or whether we first specialise a family of
Galois representations and then apply Djig.

We now restrict to the case A = L. It is possible to extend the definitions of Dy, Dggr, Dst,
Dpst and Deyis to(@, I')-modules, generalising the definitions for Galois representations. We
do not repeat the definitions here, but just summarise this fact in the next theorem. In fact it
is even possible to this for general A (see [Bel1s, §4]), but we will not use this.

Theorem 2.37 (Berger, Colmez, Bellovin): There are functors D», with ? being one of ‘HT,
‘AR’ “st”, “pst” or “cris”, going from the category Bjig -Moz[ff’r) to the category of L-vector
spaces’” with additional structure,’® such that if V is an L-linear representation of Gq,,, then

Dy(D] (V) = Do(V)

compatibly with these additional structures.

Proof: See [Bel1s, §4.2] and the references there. O

Definition 2.38: We say that a (¢, I')-module M is Hodge-Tate, de Rham, semistable resp.
crystalline if dimy D,(M) equals the rank of M, for the corresponding “?”.

We finally cite the following important definition from [Ber11, Def. 2.3.1].

Definition 2.39: We say that a (¢, I')-module M is trianguline if for some finite extension F

of L the base change B:i o F ®p7 M is a successive extension of (¢, I')-modules of rank 1. We
4 rig, L

say that an L-linear representation of Gq, is trianguline if Dji g(V) is trianguline.

2.7. Galois cohomology and Selmer groups

In this section we briefly recall some definitions and statements related to certain Galois
cohomology groups. All cohomology groups in this section are continuous cochain coho-
mology groups, which are often denoted “H,.” or similarly, but we omit this and write just
“H*”. As is common, we denote the cohomology of the absolute Galois group of a field k
by H*(k, —) instead of H*(Gg, —). We denote the complex of continuous cochains whose
cohomology is H*(k, V) (for a representation V of G¢) by RI'(k, V), and we denote its image
in the derived category by the same symbol.

In this whole section we fix a prime p and a finite extension L/Q, with ring of integers O.
Before we treat actual Galois cohomology, we record the following facts about continuous
cochain cohomology of profinite groups.

Theorem 2.40: Let G be a profinite group having the following property:

For each finite discrete p-primary G-module A and each i > 0 the groups (2.4)
H!(G, A) are finite. >4

Let V be a finite-dimensional L-vector space with a continuous G-action and fix a G-stable
O-lattice T C V. Then the following hold for all i > 0:

'7 In the case “pst”, the functor goes to Q)" ®q,, L-modules.
18 The additional structures are the same as in the case of Galois representations, e. g. filtrations, Frobenius
endomorphisms and so on.
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(a) We have H!(G,T) = lin H'(G,T/p"T).
nelN

(b) We have H'(G,V) = H(G,T) ®¢ L.

(c) The O-modules H'(G, T) are finitely generated. The L-vector spaces H'(G, V) are finite-
dimensional.

(d) The canonical homomorphism H(G,T) ®» L/ O — H(G, V/T) has finite kernel and
cokernel.

Proof: [NSW13, Cor. 2.7.6, Cor. 2.7.9, Cor. 2.7.10] O
Proposition 2.41: The property (2.4) holds for the following groups:
¢ The local absolute Galois group Gq, for any prime ¢;

e the Galois group Gq,s of the maximal extension of Q unramified outside a finite set of
places S of Q containing p and the archimedean place.

Proof: [NSW13, Thm. 7.1.8 (iii), Thm. 8.3.20 (i)] O

Now we turn to Galois representations. Let V be an L-linear representation of Gg which
is unramified outside a finite set of places of Q and de Rham at all primes. We first look at
the local behaviour. By proposition 2.41, we may then use the results from theorem 2.40.

Definition 2.42: For each place v of  we define a complex RI}(Q,, V) as

1— Frob,,

VIU - VI‘U’ v ;t p’ OO,
RFf(Q»U, V) = (1= @cris» 1) 0

Dcris(V) E— Dcris(V) ® DdR(V)/ﬁ1 DdR(V)’ v =p,

RI'(R, V), v = oo,

where the entries are in degree 0 and 1, respectively. We denote its cohomology groups by
H:(Qp, V).

Lemma 2.43: Let v be a place of Q).

(a) HAQu, V) = H(Qu, V).

dimL HO(Q‘U’V)9 v ;tp,OO,
(b) dim; HY(Qy. V) = { dimy H(Qy. V) + dim; Dar(V)/BL’ Dax(V), v = p,
0, V= 00,

From now on, let v = { be a prime number.

(c) IFC # p, then HY(Q, V) = HI(F,, VI¢) = ker (Hl(Qg, V), H(1,, V)).

(d) Ift = p, then H}(QP, V) = ker (Hl(Qp, V) — HY(Q,, Beris ®q, V)).
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(e) Under the perfect cup product pairing
H(Qe, V) x H(Q, V*(1) — H*(Qe, L(1) = L
the subspaces H%(Q[, V) and H}(Qg, V*(1)) are orthogonal complements of each other.

Proof: The statements for v = co are trivial, so we assume v = ¢ is a prime number.
We first treat the case ¢ # p. Then (a) is clear from the definition and (b) follows from the
exact sequence

1— Frob,

0 — HY(Qg, V) vie vie HY(Q¢, V) — 0.

To prove (c) we use the long exact sequence attached to the short exact sequence of G, -
representations

0 —— (1 = Frob,)V* — V¥ — H(Q,, V) — 0,
which looks like
0 —— H(IF¢, (1 — Frobe)V") — H(F¢, V') — H(F¢, HH(Qe, V)

L HY(Fy. (1 - Frobe)VY) —— H'(F,, Vi) H(F,, HY(Qr, V))
— H%(Fy, (1 - Frob,)VY¥) — ...

One knows that for any Gy, -representation V’ the dimensions of H(F, V') for i = 0,1 are
equal and are 0 for i > 2: this follows from [NSW13, Prop. 1.7.7] and theorem 2.40 (a), using
the exact sequence

1— Froby

0—— (V)© v’ v’ (Vg — 0,

where Froby is here a topological generator of G,. Hence the arrow labelled () in the above
long exact sequence is surjective, and counting dimensions we see that it is an isomorphism.
Since Gr, = Z is the free profinite group of rank 1 and acts trivially on H{(Qy, V), we get
HY(F,, H%(Qg, V)) = Hom(Gp,, H%(Q[, V)) = H%(Qg, V), completing the proof of the first
isomorphism. The second one now follows from the inflation-restriction exact sequence
[NSW13, Prop. 1.6.7] (using again theorem 2.40 (a)).

In the case ¢ = p, the statements (a), (b) and (d) follow from [BKgo, Cor. 3.8.4].

Finally, (e) is shown in [BKgo, Prop. 3.8] (for any ¢). O

Definition 2.44: We define the following variant:

HY(Qp. V) = ker (Hl(Qp, V) — HY(Q,, Bir g V)) :

Lemma 2.45: We have
dim; H(Q,, V) = dim; ( Dar(V) / A1 D g (V) ) + dimy HY(Qp, V) + dimy, Degis(V (1)) %",

In particular, H{(Qy, V) = H(Qp, V) if Deis(V*(1))75571 = 0.
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Proof: The dimension formula is proved in [BKgo, Cor. 3.8.4] and the last claim follows from
lemma 2.43 (b). O

Lemma 2.46: Let ¢ be a prime number.

(a) The group H'(Qg, V) parametrises equivalence classes of extensions of G, -representa-
tions

0 Vv E L 0. (2.5)

(b) Let{ # p. The class of an extension as above lies in H}(Qg, V) if and only if the sequence
(2.5) remains exact after taking ly-invariants.

(c) Let € = p. The class of an extension as above lies in H}(QP, V) if and only if the sequence
(2.5) remains exact after applying Dys.

(d) Let€ = p. The class of an extension as above lies in Hé(Qp, V) if and only if the sequence
(2.5) remains exact after applying Dgg.

Proof: Statement (a) is well-known and follows e. g. from [Weig4, §3.4]. The cohomology
class belonging to an extension as in (2.5) is the image of 1 € L = H°(Q¢, L) under the
boundary map H°(Q, L) —— H'(Qg, V) in the attached long exact sequence. Using this
description, (b) follows easily from lemma 2.43 (c). The proof of (c) resp. (d) works exactly
the same, using lemma 2.43 (d) resp. definition 2.44. O

We now turn to the global Galois cohomology. Since V is unramified outside a finite set

of places S, we work throughout with the cohomology groups H*(Gq,s, V), for which we
can use theorem 2.40 by proposition 2.41.

Definition 2.47: We define complexes for each place v of Q

RI(Qu, V) = cone (RIHQu, V) — RT(Qu, V)

and for a finite set S of places of Q containing p, the places where V ramifies and the
archimedean prime, we put

[-1].

RIF(Q, V) := cone (RF(GQ, 5 V)— P ROHQ.. V)

veS

We denote the cohomology of these complexes by ij(Q[, V) and H{(Q, V), respectively.

The group H%(Q, V) is called the (Bloch-Kato-)Selmer group of V (but we shall not use this
terminology).

See [BF96, §1.2.1-2] for a more precise explanation of the above definitions and for an
explanation why the definition of RI[+(Q, V) is independent of the choice of S; see also [Veno7,

§7].

The concrete meaning of these definitions is described by the following lemma.
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Lemma 2.48: Fori = 0,1 there is a canonical isomorphism

. . H(Q,.V
Hi(Q,V) —— ker |H'(Gq,s, V) @HEE V; ’
veS TN

i. e. a cohomology class lies globally in H; if and only if it does so everywhere locally. In particular,
HY(Q, V) = HY(Q, V).
Proof: Let v be a place. By definition of RI}¢(Q, V) we have an exact sequence
0 — H(Qu, V) — H(Qu, V) — H}(Qo, V)
—— H{(Qo, V) — H'(Qu, V) — H}{(Qu, V) — 0

and since the map H%(QU, V) —— HYQ,, V) is injective, we obtain

. H! 0,V
H;f(QU,V)=M for i = 0, 1.

H(Qu, V)

In particular, H(/)f(Qv, V) = 0 by lemma 2.43 (a). Then by definition of RI3(Q, V) we have an
exact sequence

0— H{(Q,V) — H'(Gg.5,V) — P HY(Qo, V)

VES
— H{Q,V) — H'Gg.s, V) — PH(Qu. V) — -+
VES
and the claim follows. O

From now on we fix a Gq-stable O-lattice T inside V.
Definition 2.49: (a) Let H}(Q, T) be the preimage of H}(Q, V) under the canonical map
HI(Q’ T) - HI(Q’ V)

(b) Let H(Q,V/T) be the image of H{(Q, V) under the canonical map H(Q, V) —

HY(Q,V/T).
Analogously we define HY(Q, T) and H(Q,, V/T) for places .

Proposition 2.50: IfH{(Q,V/T) is finite, then H(Q, V) = 0.
Proof: From the definitions and lemma 2.48 we easily obtain canonical isomorphisms

H'(Q,.T)
HYGg s, T) — |
GasD— P H%(@v,n)

H'(Q.,V/T)
HYGgos,V/T EB )
(G VID— G H}(QU,V/T))

H%(Q, T) —=— ker

H{(Q, V/T) = ker

By theorem 2.40 (d), the canonical map H'(Gq s, T) ®0 L/O — H'(Ggq,s, V/T) has finite
kernel and cokernel. One easily checks, using the definition, that it maps H;(QU, TY®L/O
into H%(Qv, V/T) for each place v, so that by (x;) we get a well-defined map

HH(Q, T)% L/o — H(Q,V/T) (*2)
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which of course still has finite kernel and cokernel.

Similarly, again using the definitions and theorem 2.40 (b), we see that the canonical
map H'(Gq,s,T) ®0 L — H(Ggqs, V) is an isomorphism which induces isomorphisms
H}(Qv, T®pL —— H}(Qv, V) for all places v. Then again by (#;) we obtain an isomorphism

HY(Q, T) ® L —~-HHQ,V). (*3)

It follows from (x,) that H(Q, T) ® L/O is finite. Since H'(Gq,s, T) is finitely generated
by theorem 2.40 (c), H%(Q, T) must therefore be a torsion group. Using the isomorphism (x3),
the claim follows. (I

Lemma 2.51: We have the dimension formula

dim; H{(Q, V) = dim; H(Q, V) — dim; H(Q, V*(1)) + dim; H(Q, V*(1))
+dimy, ( Dar(Vleg, )/ﬁ10 Dar(Vlag,) ) — dim; H'(R, V).

Proof: We use a result from [NSW13, §viir.7]. There finite Galois modules are studied,
but using again theorem 2.40 (a) we can use the results there also in our situation. By
lemma 2.43 (c), (e), the groups H%(Qv, V) for all places v define a “collection of local conditions”
with dual H;(QU, V*(1)) in the sense of [NSW13, Def. 8.7.8], whose corresponding global
groups are H}(Q, V) resp. H%(Q, V*(1)) by lemma 2.48. Using lemma 2.43 (b), the statement
then follows from [NSW13, Thm. 8.7.9]. [l

3. Motives, periods and related conjectures

Motives play a central role in this work and in the theory behind the Equivariant Tamagawa
Number Conjecture and p-adic L-functions. Many texts on these subjects do not rigorously
define what they mean by a motive, and there are good reasons for this — this work will
be no exception to this custom. Nevertheless we want to at least explain some of the
theoretical background, which will hopefully illustrate two points: first, that there is a
concept underlying the ad-hoc formalism used in the literature, and second, why it is okay
for us to use a pragmatic approach to motives. For a rigorous treatment of motives we refer
to [Ando4], and for a nice introduction to the main ideas see [Mil13].

The wish that stimulated the theory of motives is that one wants to have a “universal
cohomology theory” for smooth projective varieties'? over a field k through which any
“good” cohomology theory factors. More precisely, there is the notion of a Weil cohomology
theory [Andog4, §3.3], which is a functor from the category Var(k) of smooth projective
varieties over k to some abelian category, and one wants a universal abelian category Mot(k)
of so-called “motives” with a fully faithful functor h: Var(k) —— Mot(k) such that any Weil
cohomology theory factors uniquely through h. The objects of Mot(k) should be thought
of as “pieces in the cohomology of varieties” — Mot(k) clearly must contain more objects
than 7ar(k), which is not abelian, for example kernels and cokernels of morphisms, and
thus allows to decompose varieties into smaller pieces although they may be irreducible as
geometric objects (see example 3.16 (d) for an illustration of this phenomenon). Until today it

19 Here, “variety” means an integral, separated scheme of finite type over a field. In particular, each variety is
connected.
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is not known whether such a category exists, although candidates can be constructed using
some abstract nonsense tricks. To carry this out one needs the following notion.

Definition 3.1: Let X, Y be varieties over k. A correspondence from X to Y is a formal finite
sum of closed subvarieties of X X Y of codimension dim X.?°

Example 3.2: If f: Y —— X is a morphism of varieties over k, then its graph, which is the
image of the morphism f X idy: Y X Y —— X X, Y, is a closed subvariety of codimension
dim X (which can easily be seen on affine pieces), hence defines a correspondence from X to
Y.

To construct candidates for the category of motives, one starts with the category Var(k)
and chooses as morphisms the free abelian group of correspondences modulo a certain equiv-
alence relation and tensored with Q) (or some other field of coefficients). Then one extends
this category by formally adjoining kernels and images of idempotent endomorphisms and
the Tate motive (which we describe in fact 3.6 below). We do not give any details about this
construction (see [Andog, §4.1] for this), but one should keep in mind that correspondences
induce morphisms between motives.

The construction of this category depends on the choice of an appropriate equivalence
relation on correspondences, and there are various natural choices for this equivalence
relation. The finest reasonable equivalence relation one can use here is called rational
equivalence, while the coarsest is called numerical equivalence (in a sense that can be made
precise, see [Andog, Déf. 3.1.1.1, Lem. 3.2.2.1, Ex. 3.2.7.2]). The resulting categories of motives
are denoted Mot (k) and Moty (k) and called Chow motives and Grothendieck motives,
respectively. Both have advantages and disadvantages. While any Weil cohomology theory
factors uniquely through Mot (k), essentially by construction (see [Ando4, §4.2.4-5]), the
analogous statement for Mot,,m(k) requires an unproven conjecture of Grothendieck and
is thus not known. On the other hand, Mot (k) is an abelian category as desired and is
even semisimple [Andog4, Thm. 4.5.1.1], while Mot (k) is not abelian in general. Further
Motnum(k) has the advantage that it allows more decompositions than Mot (k) does: Every
Chow motive is a Grothendieck motive, but the converse may be false, i. e. some “pieces” in
the cohomology of varieties only exist as a Grothendieck motive, but maybe not as a Chow
motive.

The category Mot (k) thus has realisation functors (see [Andog, §4.2.5]), i. e. functors to
abelian categories induced by Weil cohomology theories. For what we want to do with mo-
tives, we only need these realisations, but unfortunately the main example we are interested
in is a Grothendieck motive.

We now specialise to the case k = . Then we have the following Weil cohomology
theories (see [Andog, §3.4.1]): Betti cohomology (i. e. singular cohomology of the complex
manifold obtained by taking complex points of a variety), algebraic de Rham cohomology
and ¢-adic étale cohomology for every prime £. Between these we have comparison isomor-
phisms after tensoring with appropriate period rings (see [Andog, §3.4.2]). We thus obtain
a functor from Mot (Q) to the (abelian!) category PreMot(Q)) whose objects are tuples
consisting of a vector space for each above-mentioned Weil cohomology theory, together
with certain additional structures and comparison isomorphisms between them. Such objects
are also called premotivic structures (see [DFGog, §1.1.1] or [Veno7, §2]), and we explain

20 More precisely, this is a correspondence of degree 0, but we will not use correspondences of higher degree, so
we omit this.
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them in section 3.1. Of course that functor cannot be fully faithful since Mot,(Q) is not
abelian. Nonetheless yet another way to define a category of motives over QQ would be as
the smallest abelian subcategory of PreMot(Q)) containing the essential image of this functor.
Conjecturally there should be an analogous functor Mot,ym(Q) —— PreMot(Q), and if it
were fully faithful then yet another possibility to define a motive would be as an object in
the essential image of this latter functor.

The pragmatic solution to this dilemma that most texts implicitly choose is to work just
with the category PreMot(Q)) of premotivic structures, keeping in mind that the realisations
one works with should somehow come from geometry. We follow this practice, keeping in
mind the background explained above.

3.1. Realisations and comparison isomorphisms

From now on we fix a number field K which we use as coefficients of the motives we consider
and recall that we have fixed a pair of embeddings (ic, £) of Q for each prime p. We imagine
motives just as being given by their realisations, and we list those that will be important in
this work and the Weil cohomology theories that induce them. There are other realisations,
but we shall not need them. Each motive has a rank, which is a non-negative integer n € INy,
and the following realisations:

« The Betti realisation: an n-dimensional K-vector space Mp with a K-linear action of
GR (coming from singular cohomology).*!

« The de Rham realisatior}: an n-dimensional K-vector space Mgr with a decreasing and
exhaustive filtration fil' Myg (i € Z) called the Hodge filtration (coming from algebraic
de Rham cohomology).

« For each finite place p of K the p-adic (étale) realisation: an n-dimensional Ky-vector
space M, with a continuous K,-linear action of Gal(Q/Q) (coming from p-adic étale
cohomology).

Then there are the following variants which we use occasionally.

« The Hodge realisation: an n-dimensional graded K-vector space My, which is the
graded vector space associated to Mgg.

« For each rational prime p the p-adic (étale) realisation: this is a free K,-module M, of
rank n which is the product of M, for all places p | p of K.

Definition 3.3: For a motive M, we define its tangent space by

tm = Mar /610 Mg -

Next we list the comparison isomorphisms that relate these realisation.

21 This space has as a further feature a Hodge structure, but we will never use it in this work. It is related to the
Hodge filtration on the de Rham realisation, and everything we will need from the Hodge structure can also
be obtained from this filtration.
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(1) The complex comparison isomorphism
CPe: M ® C —=— Mg ® C,
Q Q
which is an isomorphism of K ®g C-modules with a linear action of Gr. Here Gr
acts diagonally on the left side and through the factor C on the right side.

(2) The p-adic (étale) comparison isomorphism of K,-modules
CPgt: MB%QP = Mg (I%Kp ;>Mp.
It is compatible with the action of Gr, which on M, is induced by the fixed embedding
leo: Q —— C and is trivial on Q.
(3) The comparison isomorphism from p-adic Hodge theory
C : M, @ B —— Mar ® Bar
Par: Vip Q, o

which is an isomorphism of filtered (Bar ®q, Kp)-modules. It respects the action of

Gq,, where the Gq,-action on M, comes from the fixed embedding 1, : Q—— @p
and Gq, acts on the left side diagonally and on the right side through the factor Bgr.

There are the following variants of these, for which we have to fix an embedding K —— Q.
This fixes a place p of K and embeddings K, —— Bggr and K, —— Byr. By abuse of notation,
we use the same names for the comparison isomorphisms again.

(1) An isomorphism of C-vector spaces with Gr-action

pr:MB%CL’MdR%C'

(2") An isomorphism of K,-vector spaces
CPer: Mp %Kv — My
respecting the action of GR.
(3") An isomorphism of filtered B4r-vector spaces
CPar: My I% Bagr —— Mgr % Bar
respecting the action of Ggq,,.
There are further variants.
(3") After taking Gq,-invariants, cpy gives an isomorphism of filtered Kj,-modules
CPar: Dar(Mp) —— Mar % Qp-

Since this isomorphism respects the filtrations, it induces further an isomorphism of
K,-modules

cpgr: Dar(Mp) / fil’ Dgr(M,) —— tm % Qp.
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(3”) If we tensor the above isomorphisms over K, with K,,, we obtain isomorphisms of
K,-vector spaces
cpgr: Dar(Mp) —~— Mgr % K,

(which respects filtrations) and

Pa: Dar(My) [ 610 D () —— tur @ K.

(4) Finally there is the Hodge-Tate version
cpyr: Mp ® Bur —— My ® Bur,
Qp Q
which is an isomorphism of graded (K, ®q » Byr)-modules, and its p-adic variant
cpyr: My ® Byr —— My @ Byr,
K, K

which is an isomorphism of graded Byr-modules. Both respect the actions of Gq,,.

Definition 3.4: A collection of realisations as listed above together with comparison iso-
morphisms between them is called a premotivic structure. The category of these objects, with
morphisms being maps between the realisations respecting all additional structures and all
comparison isomorphisms, makes up the abelian category of premotivic structures over Q
with coefficients in K, denoted by PreMot(Q)k.

When we write “motive”, we will from now on mostly mean just such a premotivic
structure.

Remark 3.5: The category of motives has some additional features. First, it admits a tensor
product. We do not explain here where it comes from. The only thing that will be important
for us is that it commutes with realisations, i. e. the realisations of the tensor product of
motives are just the tensor products of the realisations. Second, there is a notion of duals,
which on realisations is given by taking the dual space. Finally there is a notion of extension
of scalars: if K € F C Q are number fields, then there is a functor from the category of
motives over Q) with coefficients in K to the category of motives over Q with coefficients in
F, which we denote by M —— M ®x F. On realisations it is given by tensoring each vector
space with F over K resp. with F, or Fy over K, for the p-adic realisation, where B | p is the
place of F lying over p fixed by F —— Q.

3.2. Examples: the Tate motive and Artin motives

In this section we give two basic examples of motives that will be important later. We do
not introduce them rigorously but just list their realisations and comparison isomorphisms.
References for this are [Veno7, Ex. 2.1] and [DFGoq4, §1.1.3].

Fact 3.6: The Tate motive Q(1) is a motive of rank 1 over Q with coefficients in Q. It has the

following realisations:

* Q) is a one-dimensional Q-vector space with a canonical”® basis bl?(l). Complex
conjugation acts as —1 on Q(1).

22 The basis depends on the choice of a root i of —1in C. Once we have fixed this choice (as we have throughout
this work), the basis is canonical.
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e Q(1)gr is a one-dimensional Q-vector space with a canonical basis bg{(l). The Hodge
filtration on Q(1)gr is given by fil' Q(1)qr = Q(1ar fori < —1 and fil' Q(1)gg = 0 for
i>0.

* Q(1), is a one-dimensional Q,-vector space with a canonical®® basis bf?(l). The action of
Gq on Q(1), is given by the cyclotomic character.

The comparison isomorphisms are as follows:
* Py Q1) ®q C —— Q(1)ar ®q C sends bl?(l) ®1to b?R(l) ® 27ri.
* cpy: Qs ®q Qp —— Q(1), sends bl?(l) ®1to bﬁ?(l) ® L

* cpgr: Q)p ®q, Bk~ Q(Dar ®q Bar sends b2 @ 110 b3 @ tag.

Note that by the above fact, the cyclotomic character has Hodge-Tate weight —1.

Next we describe Artin motives, which one should think of as “pieces” of H’(Spec F),
where F is a number field. By an Artin representation, we mean a finite-dimensional vector
space V over a number field K with a homomorphism p: Gg —— Autg(V) with finite
image.

Fact 3.7: The Artin motive M(p) attached to p is a motive of rank dimg V over Q with coef-
ficients in K. It has the following realisations:

* M(p)g = V. The action of Frob., comes via p from the embedding Gg — Gq.

* M(p)ar = (V ®q Q)°¢, where Gq acts diagonally on both factors. The Hodge filtration
on M(p)ar is given by fil' M(p)ar = M(p)ar fori < 0 and fil' M(p)gr = 0 fori > 1.

* M(p), =V ®x K, with Gq acting just on V via p.
* Both comparison isomorphisms cp,, and cpgp are induced by the inclusion

S6e e veD
(V%Q)Q V%Q,

while the comparison isomorphism cpy, is the identity.

We describe the comparison isomorphisms more explicitly in the following special case.
Let y be a Dirichlet character of conductor f € IN. Then we can view y as an Artin
representation as above with K = Q(yr). Choose an embedding K —— Q and let { € K*
be the primitive root of unity which is sent to >/ by the induced embedding K —— C.
We may view ( then also as an element in Qp and thus as an element in Bgg. Let G(y) =
> a x(a){? be the Gaufl sum of y with respect to our chosen embeddings, where a runs over
(Z.] f)*. The following is easily derived from the above fact.

Fact 3.8: The Dirichlet motive attached to y is a motive M( ) of rank 1 over Q with coefficients
in K. It has the following realisations:

 M(x)s is a one-dimensional K -vector space with a canonical basis b} . Complex conjuga-
tion acts as multiplication by y(-1).

23 The basis depends on the choice of a compatible system (&;,),>1 of p-power roots of unity in Qp. Once we
have fixed this choice, the basis is canonical.
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* M(x)dr is a one-dimensional K-vector space with a canonical basis b()fR. The Hodge

filtration on M(y)qr is given by fil' M(y)ar = M(x)ar fori < 0 and fil'’ M(y)ar = 0
fori>1

e M(x)y, is a one-dimensional K -vector space with a canonical basis bé{ and with Gq acting
via x.

The comparison isomorphisms are as follows:
¢ cpy,: M(x)s ®k C —— M(x)ar ® C sends by ®1toby, ® G(x)™.
e cpe: M(x)s ®k Qp —— M(x), sends bg@ to bé( ® L

e cpgr: MYy ®k, Bar —— M(x)dr ®k Bar sends b;,( ®1to bé(R ® G(y)™L

Definition 3.9: We define the following using remark 3.5.

(a) For n € IN, we define Q(n) := Q(1)®". We let Q(—n) be the dual of Q(n) for n € IN. If
K is a number field, then we define K(n) = Q(n) ®q K.

The canonical bases b?(l) for ? € {B, dR, p} of the realisations of (1) induce canonical

bases of the realisations of Q(n) for each n € Z. We denote these bases by b?(n),

respectively. For K(n) we denote them by bf ),

(b) For a motive M with coefficients in a number field K, we define M(n) := M ®x K(n)
and M(p) = M ® M(p) for n € Z resp. p an Artin representation.’

Lemma 3.10: (a) Let R be a ring with 2 € R* and let M and N be R|GR ]-modules. Then
(M®N)"=(M"®@N") e (M @N7).
R R R
(b) Let M be a motive over a number field K, let p: G—— GL,(K’) be a representation
with coefficients in a finite extension K’ of K and let n € IN. Then
M(p)(n)g = Mg ® M(p)g ® K(n)p ® My* ® M(p)g ® K(n)s
with s = (=1)". In particular, if p = y is a Dirichlet character, then
M) = My ® M(x) ® K(n)g

withs = y(-1)(-1)".

Proof: Part (a) is an easy calculation. For (b), note that M(n); = M ®x K(n) for s = (=1)".
Using this, the claim follows immediately from (a). O

24 More precisely: Let F be the field of coefficients of p and let F/ = KF be the composite field. Then we mean
M(p) = (M ®k F') ®p (M(p) ®F F’). We will often ignore this detail.
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3.3. L-functions, criticality and complex periods

Fix a number field K and a motive M over Q with coeflicients in K.

Most of the content of this section is from [Del79], to where we refer for more details.
Recall that we have fixed a pair of embeddings of Q for each prime p. Choose further an
embedding K —— Q. Everything we do in this section can also be done without such a
choice, but as we will have fixed an embedding most of the time, we omit explaining this.

We first introduce motivic L-functions.

Definition 3.11: Let £,p be primes, let p | p be a place of K and let L = K,,. Further let
p: Gq, — Autr(V) be a representation of Gg, on a finite-dimensional L-vector space V.
Define a polynomial P,(V,T) € L[T] by

detr (1 — p(Frob,)T, V), ¢ #p,

PV, T):=
f( ) { detL(l = QerisT, Dcris(V))a t= p.

Conjecture 3.12: The polynomial Py(M,, T) lies in fact in K[T| and is independent of the
choice of p and p.

We assume that conjecture 3.12 is true and write P¢(M, T) := Pp(M,, T).

Definition 3.13: Define the complex L-function of M by the Euler product

L(M,s) = l_[ Po(M,05)™Y, Res> 0.

€ prime

Here we use the embedding K —— C.

Remark 3.14: By theorem 2.26 the L-function of a motive depends only on the Galois
representations up to semisimplification. More precisely: if M and M’ are motives with
coefficients in K such that for all finite places p of K the representations M, and M, of
Gq have isomorphic semisimplifications, then L(M, s) = L(M’, s) for all s € C (where the
L-functions are defined).

Conjecture 3.15: The L-function L(M, s) has a meromorphic continuation to all of C and
satisfies a functional equation

Leo(M, s)L(M, s) = &(M, s)Loo(M*(1), —s)L(M*(1), —s), s € C,
where the Lo, are certain “Euler factors at co” and ¢ is an e-factor, which will be explained in
section 3.4.

We assume also that this conjecture is true. We will not need the functional equation in this
work; in particular we will not need the precise formulas for the Euler factors at co. These
are built from the I'-function and we refer to [Ser7o, §3.2, (25)] for their definition.

Example 3.16: (a) The L-function of the Tate motive is the shifted Riemann zeta func-
tion:

LQ(1),s) = (s +1) (s € C~{0}).

In general, it is easy to check that for any motive M we have L(M(n),s) = L(M, s + n)
fors € C.
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(b)

(©

The L-function of the Artin motive is the Artin L-function for the representation p,
if we define the latter using geometric Frobenii:

LM(p).s) =L(p,s) (s € O).

The L-function of the Dirichlet motive L(M( y*), s) is the classical Dirichlet L-function
L(y, s):
LIM(x").s) =L(x,s) (s € O).

This perhaps confusing formula comes from our normalisation of class field theory:
the isomorphism Gal(Q(y/)/Q) = (Z/f)* identifies each prime ¢ € (Z/f)* with an
arithmetic Frobenius, whereas in the definition of the Euler factors of the motivic
L-functions the geometric Frobenius is used; see also [DFGog, §1.1.3].

For any number field F we have a corresponding motive which comes from the
variety Spec F over Q. Its L-function is the Dedekind zeta function {F attached to F.
For details see again [DFGog, §1.1.3].

Assume that F is Galois over Q. Using the Artin formalism (i. e. the inductivity of
Artin L-functions, see [Del73, Prop. 3.8]), we know that {F is the Artin L-function
of the regular representation of Gal(F/Q). This representation can be decomposed
into irreducible ones. More precisely, if py, . . ., pi are all irreducible representations
of Gal(F/Q) on C-vector spaces, then the regular representation is isomorphic to
dim p; dim py
L-functions

. The L-function can then be written as a product of Artin

k
Zk(s) = [ [ L™, 9).
i=1

This product representation is the manifestation on the L-functions side of the
fact that the motive Spec F decomposes into irreducible pieces. This illustrates the
usefulness of the concept of motives: it really provides a finer look at varieties, since
such a decomposition does not exist at the level of varieties.

A similar phenomenon also happens with modular forms: using modular curves
one can construct for each N > 4 and k > 2 a so-called Kuga-Sato variety KS(N, k),
which is a projective smooth variety over Q. The motive it defines decomposes into
pieces belonging to the newforms of level N and weight k. We will study this in
detail in section 115,

Definition 3.17: We define the period map

cp&:Mﬁ%@%tM%@

to be the composition

CpDO
M{®@C—Mg®@C— Mg ® C — ty ® C.
K K K K

If cpZ, is an isomorphism, M is called critical.

See [Coag1, Lem. 3] for a proof why this definition of criticality is equivalent to the one
given in [Del79].
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Definition 3.18: Choose K-bases y of M| and § of tj;. Then define

QLo (M) = det(cpl,) € C.
Y,

This is the complex period of the motive M. Obviously, if M is critical, then Q;{;‘S(M) e C~.

Deligne’s conjecture is then the following:

Conjecture 3.19 (Deligne): Assume the conjectures 3.1z and 3.15. If M is critical, then
LM, 0
% e K
QL7 (M)

Obviously the truth of this conjecture does not depend on the choice of y and é.

3.4. e-factors and e-isomorphisms

We briefly recall e-factors and e-isomorphisms. The former appear in the conjectural func-
tional equation for L-functions of a motive M with coefficients in a number field K, see
conjecture 3.15. The expression &(M, s) appearing there is a product of local expressions
€u(M, s) for each place v of QQ which roughly arise as follows. In the rank 1 case, the L-
functions of motives are covered by those of Hecke characters (by Class Field Theory and
lemma 2.19 (a)), and for these the functional equation is known to hold. Tate’s thesis shows
that in this situation there is a canonical way to define the expressions ¢, (M, s) to make
the functional equation hold. If the rank of M is now larger than 1, one needs a result due
to Langlands and Deligne showing that there is a unique way to extend them to higher-
dimensional objects such that some reasonable properties (like inductivity) are fulfilled and
one still has Tate’s original e-factors in the one-dimensional situation (see [Del73, Thm. 4.1]).

The higher-dimensional objects alluded to above are representations of Weil groups
(together some other data). We recall the definition of the Weil group of Q, for a prime p,
which is the only one we need. If v: Gg, — Gal(Qgr /Qp) —— 7. is the canonical map,
where the last isomorphism sends an arithmetic Frobenius to 1, then the Weil group is defined
as Wq,, = v™Y(Z). There is a commutative diagram with exact rows

0——1, —— Wq, ——Z——0

|,

O%IP%GQP—»z—»O.

The Weil group is considered as a topological group not with the subspace topology, but by
requiring the inertia group I, which should still carry its profinite topology, to be open. We
choose an element 7 € Wq, such that v(r) = 1 and fix it for the following.

Let E be a field of characteristic 0 containing all p-power roots of unity and let W be a
finite-dimensional E-vector space with a continuous action of the Weil group Wq, (where W
is endowed with the discrete topology). Further let /: Q, —— E* be a continuous character
with open kernel and y a Haar measure on Q,. The result of Deligne attaches to such a set

of data a scalar
eW,y, ) € E*
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called the e-factor attached to (W, ¢, yr). We will always fix the Haar measure to be the one
which gives 7, the measure 1 and omit it from the notation.

Definition 3.20: For a finite-dimensional E-vector space W with a continuous action of
Wq » let
eW, ) = e(W, ¢, )

be the e-factor as defined in [Del73] with ¢ and y as above. If p: Wq, —— Autg(W) is the
homomorphism describing the action, then we also write (p, i) instead. If the character i
is clear from the context we may omit it.

To define the local e-factors of the motive M, one needs the following more general
concept.

Definition 3.21: (a) A Weil-Deligne representation of Wq,, on an E-vector space W is a

pair (p, N) consisting of a continuous homomorphism p: Wq, —— Autg(W) and
N € Endg(W) such that

p(zHNp(z) = p'N.

(b) For a Weil-Deligne representation (p, N) and a character i as before we define its
e-factor as

ewn(W, ) := e(p, ) det(—z ", W' /(ker N)'»),
where (p, ) is the e-factor from definition 3.20.

One can also define a Weil group at infinity W and corresponding Weil-Deligne representa-
tions, but we will not need this. If now v is a place of @, then one can produce a Weil-Deligne
representation of the corresponding Weil group out of M, and the local e-factor ¢,(M, s) is
then defined to be the one from definition 3.21 (b) for this representation.>s

We will not need the archimedean e-factors, for which we refer to [Del73, §5.8B], and
thus let v = p be a prime. Then one can get a Weil-Deligne representation of W, out of
M in various ways. Fix a finite place A of K. If p 1 A there is a classical way to produce a
Weil-Deligne representation of Wq,, out of the Gq,,-representation M,, due to Grothendieck.
While this is important in the theory of e-factors in general, we will not use this definition;
see [Tat79, §4.1-2, esp. §4.1.6, §4.2.4] for details. Instead, using p-adic Hodge theory one
can also produce a Weil-Deligne representation out of M, if p | A, which we describe below.
Similarly as for the Euler factor in the L-function in conjecture 3.12, it is conjectured that the
e-factor from definition 3.21 (b) does not depend on the choice of A.

To describe the Weil-Deligne representation coming from the A-adic realisation (1 | p)
we do not need that the representation comes from a motive, and in fact we do not need a
representation at all — the definition works for (¢, I')-modules, for which it was introduced
by Nakamura [Nakis, §3.3] generalising [FKo6, §3.3.4]. Since we will need this later only for
true representations, we omit discussing the more general case of (¢, I')-modules, but one
should keep in mind that the theory works essentially the same also in this situation.

Construction 3.22: Let L be a finite extension of Q,, fix an embedding 17: L —— @p and
let V be a de Rham representation of Gg, with coefficients in L. Let further E = @p. We

construct a Weil-Deligne representation with coefficients in Qp out of Dpe(V) (which is

25 More precisely, this is &,(M, 0), see [Tat79, §4.1.6] for the formula for general s € C. Also one needs an
embedding of E into C to consider ¢,,(M, s) as complex numbers.
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a Q) ®q, L-module). Via the embedding Q) — @p and our fixed 17, we get a map
Q) ®q, L— @p. If we tensor Dps(V) with @p along this map, we get a @p—vector space
W,,, carrying a semilinear action of Gg, coming from the one on Dp(V). We need a Q,,-
linear action of Wq , € Gq, on W, . To obtain it, we use the endomorphism @5 of W,
coming from ¢cjs on By, which is also semilinear. If we define an action of W¢q , on W, ,
denoted by “e” to distinguish it from the original action of Gq,,, by

cex=0cx)p ) (o€ Wq,),

cris
then one can then check that this action is linear. From remark 2.23 it follows easily that
a finite index subgroup of the inertia group acts trivially, hence by the definition of the
topology on Wq, the action on W,, is continuous. On the other hand, the endomorphism N
of Dpst(V) induces an endomorphism N of W, satisfying the relation in definition 3.21 (a).
So W,, is a Weil-Deligne representation of Wg,,.

—_ —X
Being now in the situation E = Q,, we can define a character ¢: Q, — Q , as the
unique one with kernel Z, satisfying y/(p™") = &, for all n > 0, where & = (&,), is our fixed
system of p-power roots of unity. From now on we only use this character to define e-factors.

Definition 3.23: For a de Rham representation V, define

—x
e(V,1) = ewp(W,,) € Q,,
where ewp(—) on the right hand side is from definition 3.21 (b).
We may sometimes drop ¢, from the notation but one should keep in mind that ¢ depends on
this choice.

Lemma 3.24: We have

E(V’ [L) = S(ML)lL(det(_(PcriSa Dst(V)/Dcris(V)))
where ¢(W,, ) is as in definition 3.zo.

Proof: Since Bs is the subring of By which is the kernel of N, and consequently Dis(—) =
Dgi(—)N=0, it suffices to check that Dpst(V)IP = Qgr ®q, Dst(V).

By theorem 2.22 we can choose a finite Galois extension F/Q, such that V|, is semista-
ble, and we then have Dpst(V)IP = Qgr ®F, Dst, r(V)lp by remark 2.23. There is an obvious
injection

Fo ® Da(V) — Dy, r(V)'. ()
p

Consider the sequence of maps

. A A I

Q) ® Dy(V) — Q) @ Dy r(V)? = (Q)F ® By @V)°F)”

Qp Fo F Qp
(+) A
— (Bq @ V) == Q) ® Dy(V).
Qp QP

Here the map labelled (+) is injective since it is a restriction of the map ay from theorem 2.15
and the last isomorphism comes from proposition 2.17. It follows that all maps in the above

composition are isomorphisms and hence the Fy-vector spaces in () have the same dimension,
completing the proof. O
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In [Nak1s], the e-factor of a de Rham (¢, I')-module is defined using the formula from
lemma 3.24. This is different from the definition given by Fukaya and Kato, which does
not contain the second factor, but it should be the correct one since it is multiplicative in
short exact sequences, while the one by Fukaya and Kato is not, as Nakamura explains in
[Nak1s, Rem. 3.6], and is moreover consistent with the one “away from p” from [Tat79]. Note
however that if V is one-dimensional, then the two definitions coincide since one-dimensional
representations are semistable if and only if they are crystalline (see lemma 2.19 (b)).

We will later apply this only to one-dimensional de Rham Galois representations. By
lemma 2.19 we have an explicit description of de Rham characters. In this case, using
some well-known formal properties of e-factors and of the functor Dy, the e-factors can be
expressed quite explicitly, as the next proposition shows.

Proposition 3.25: Let y: (Z/p™)* —— O* be a primitive Dirichlet character viewed as a
finitely ramified character of Gq,, let  be an unramified character of G, andn € Z. Let
u = 17(Y(Froby)). Then

(X ® Y ® keyeo 1) = u"p "G, 1r).

Proof: [LVZ1s, Prop. 2.3.3] O

From the e-factors for de Rham representations one can build e-de Rham-isomorphisms,
which play a central role in Fukaya’s and Kato’s local e-conjecture in [FKo6, §3]. This
conjecture concerns the question whether the Equivariant Tamagawa Number Conjecture
(ETNC) for the motive M*(1) can be deduced from the ETNC for a motive M. It is shown that
this is the case if certain “equivariant e-isomorphisms” exist for each prime, and the content of
the conjecture is this existence. We are only interested in the prime p, where the equivariant
e-isomorphism is characterised by the property that it interpolates the aforementioned e-de
Rham-isomorphisms. For us only the latter ones will be important since they also appear in
the definition of p-adic periods, we will not need equivariant e-isomorphisms. For a detailed
explanation of these and the conjecture see [Veno7, §5].

To explain ¢-de Rham-isomorphisms, let again V be a de Rham representation of Gq,, of
dimension n with coefficients in L. We have the canonical map ay from theorem 2.15, which
is an isomorphism of Bgr ®q pL-modules

ay: Bgr ® Dgr(V) —=— Bgr ®V
Qp QP
to which we apply the determinant functor to obtain

Bar ® Dety(Dgr(V)) — Bar ® Detr(V). (3.1)
Qp Qp

The definition of the p-adic period involves the so-called e-isomorphism for V, a modification
of the above isomorphism which we now describe.
For each choice of an embedding i : L —— Q,,, we have &(V, 1) as defined in defini-

tion 3.23. Since
Qp ® L= ]_[ Qp,
Qp 1
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where i} ranges over all embeddings L —— Qp, the collection of the &(V, 11) for all iy defines
an element

eL(V) € (Q, ® D)™,
Qp
Recall further the Hodge invariant

tu(V) = ) rdim (gr" Dar(V)).
rez

Definition 3.26: We define

eqr(V) € Hom(Bgr (Si’ Detr(Dgr(V)), Bar g’ Detr(V))
P P

to be t;}:H(V)eL(V) times the isomorphism (3.1), using the multiplication from definition 2.6.

This element of course depends on &, but since we have fixed &, we do not include it into
the notation, in contrast to [FKo6].

Proposition 3.27 (Fukaya/Kato): We have in fact

ear(V) € Hom(L ® Det; (Dagr(V)), L ® Det (V).

Proof: [FKo6, Prop. 3.3.5] O

Remark 3.28: At first sight the definition of ¢4r(V) in [FKo6] looks a bit different from
definition 3.26. They put I = Isom(Dety(Dg4r(V)), Det;(V)) and regard the isomorphism (3.1)
as an element of (I X (Bqr ®q PL)X) /L*. Then they define a scalar multiplication on this set in
a way analogous to definition 2.6. They do not say how the action of L* on I X (B4r ®q,L)*
looks like, but if we assume it is as in lemma 2.8 with the K there being L, the V there being
Dgr(V), the W there being V and the B there being Bir ®q,, L, then we get a bijection

(I x (Bar ®q, L)) / 1% = Hom(Bgr ® Det; (Dar(V)), Bar ® Dety (V)).

This bijection is compatible with our definition of the scalar multiplication, so our definition
is in fact the same as the one in [FKo6]. To obtain proposition 3.27 above, on has to use
lemma 2.8 again, with the K, V and W there as before but now with the B there being L.
Since g4r(V) is afterwards used in the form given here, we prefer this to viewing it as an
element in (I x L*)/L*.

3.5. p-adic periods of motives after Fukaya and Kato
3.5.1. The Dabrowski-Panchishkin condition

Fix a number field K, a critical motive with coefficients in K, an embedding K —— Q (or
equivalently a place p | p of K) and put L := Kj,.
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Condition 3.29: (a) We say that the motive M satisfies the strong Dabrowski-Panchish-
kin condition at p if there is a subspace MII?P C M, stable under the action of Gq,
such that the inclusion MEP C M, induces an isomorphism

Dan(MT) = Dar(Mo) [ 610 by u1,)
of L-vector spaces. See [FKo6, §4.2.3, (C2)].

(b) We say that the motive M satisfies the weak Dabrowski-Panchishkin condition at p
if the (¢, T')-module D := Dji g(Mp) contains a sub-(¢, I')-module DP? such that the

inclusion DP? C D induces an isomorphism

Dar(DP?) —= Dgar(My) / fil° Dar(My)

of L-vector spaces.

If M satisfies the strong Dabrowski-Panchishkin condition, then the subspace M,?P is
unique: it is the largest Gq,-stable subspace of M, whose fil’ Dy vanishes. Analogously if
M satisfies the weak Dabrowski-Panchishkin condition, then DP? is unique.

From theorems 2.36 and 2.37 it is clear that the strong Dabrowski-Panchishkin condition
implies the weak Dabrowski-Panchishkin condition. Since the (¢, I')-module DY in condi-
tion 3.29 (b) does not need to be étale, the weak Dabrowski-Panchishkin condition is really
weaker than the strong one.

Lemma 3.30: Assume that M is critical and let p: G—— GL,(K’) be a representation with
coefficients in a finite extension K’ of K and n € IN such that M(p)(n) is still critical.

(a) If M satisfies the strong Dabrowski-Panchishkin condition, then M(p)(n) still satisfies
the strong Dabrowski-Panchishkin condition and

M(p)(n)y" = MP¥ ® M(p) ® K(n),.

(b) If M satisfies the weak Dabrowski-Panchishkin condition, then M(p)(n) still satisfies
the weak Dabrowski-Panchishkin condition and

D}, (M(p)(n)y)™" = D}, (My)™" ® D}, (M(p)) ® DI, (K(n)y).

Proof: We give the proof only in the case of the strong Dabrowski-Panchishkin condition,
the weak case works similarly.

We first show this for n = 0. For simplicity of notation, we assume without loss of
generality that p has coefficients in L. Since tensoring a motive with M(p) does not change
the Hodge filtration, we have fil° Dgr(M(p),) = fil° Dgr(M,) ®1 M(p),. This shows the
statement for n = 0.

Then we assume that p is trivial, which suffices to complete the proof. If M and M(n)
are both critical, then by dimension counting one easily sees that fil’ Mgz = fil" Mgg, us-
ing the definition of criticality. This implies fil’ M(n)qr = fil® Mgg ®x K(n)qr and thus
fil’ Dgr(M(n),) = fil° Dgr(M,) ®1 K(n)y. This completes the proof. O
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3.5.2. The p-adic period

We first introduce the following notation following [FKo6, §3.1.1].

Definition 3.31: (a) A ring A is called p-adic?® if it contains a two-sided ideal I such
that for each n € IN the quotient A/I" is finite of p-power order and

—~  lim A
A lim Afpn .

n

For such a ring, we denote by J, its Jacobson radical. We denote by p-AdicRings
the category of p-adic rings, where a morphism ¢: A; —— A; should be a ring
homomorphism such that ¢(Ja,) € Ja,-

(b) For a p-adic ring A, we define
A= i A n
A= hm(W(IFp)ZSZ) /]A) .

n P

(c) If Lis aring such that L = A[ 1—1)] for a p-adic ring A, then we write further

L= A[].

It is easy to check that definition 3.31 (b) defines a functor
(-): p-AdicRings —— W(Fp)-ﬂ[g.

Further note that if L is a finite extension of Q,, we have L= Qgr ®q, L.

Now let K, L and M be as before and assume that M satisfies the strong Dabrowski-
Panchishkin condition. We denote the isomorphism given by the condition by dp.

The definition of the p-adic period relies on a fixed choice of an isomorphism??

L7 + o~ F DP
B: L%Mp %L%Mp s
so assume that such an isomorphism f exists and fix it for the following.
The definition of the p-adic period further uses the ¢-isomorphism ejr = ng(MI?P) at-

tached to?® M}?P as defined in definition 3.26 and the comparison isomorphisms for the motive
M. Finally we choose K-bases y of M} and & of tj;, which gives us

iss,y : ty —— Mg.

26 This is the condition called (*) in [FKo6, §1.4.1]. In other texts, e. g. [Bar11, Def. 1.11], a ring with this property
is simply called adic, but since the notion depends on p we use the term p-adic instead.

*7 Fukaya and Kato choose f in [FKo6, §4.1.3] as an isomorphism of determinant objects Lo Det L(My) —— Lo

DetL(M?P). Of course our choice of f: Ler M;r —~ e M{?P induces such an isomorphism of determinant
objects and the converse is not true, so we are requiring here more than Fukaya and Kato. In our application
we will always choose f directly as an isomorphism between the vector spaces, so for simplicity we decided
to explain the theory only in this case. There is not much generality lost conceptually, but some arguments
become a little simpler this way.

28 Note that Mp ®k,, Ky = M. This is why the p-adic representation used in [FKo6, §4.1.10] is in fact (isomorphic
to) Mp.
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Definition 3.32: The isomorphisms listed above induce isomorphisms of determinant ob-
jects

ei L® Det;(MyF) — L ® Dety (Dar(M;"))
dp: DetL(DdR(MlI,)P)) —— Dety (DdR(Mp)/ﬁlo DdR(Mp))
Cpgr: Detr (DdR(Mp)/ﬁlo DdR(Mp)) — L % Detg(tp)

iS5’y: Detg(ty) — DetK(Mg)
cPa: L® Detg (Mg) — Dety(M;)

B: L %{) DetL(M;') —1L QLQ DetL(M,?P).

Tensoring these with L, multiplying all these isomorphisms together and applylng det™, this
gives us an element Q € L* (see definition 2.4). Using the canonical map L —— L™ induced
by the embedding L — Qp, we obtain an element Qg 0. (M) € (L™)* which is the p-adic
period attached to M.

This definition (which is the original definition from [FKo6]) is rather inexplicit and not
so useful for calculating periods. First, the use of determinant functors is not very concrete.
Second, during the process of the definition our fixed embedding L —— @P is not used until
the very end.

To change the second point, note that if we tensor  with L™ along the map L —— L™
induced by the embedding L —— @p, we get an isomorphism

. Tn + ~ _ fn DP
ﬁ.Lr?Mp %Lr%Mp .

Also £4g can be defined as an isomorphism over L™ instead of L. To explain this, we abbreviate
V= M,PP and come back to the isomorphism of Bgr ®q, L-modules

ay: Bgr ® Dgr(V) —=— Bgr ®V
Qp Q

P

and tensor it over Bqr ®q oL with Bgr along the map Bqr ®q ,L— Bar induced by L ——
Qp. This gives us an isomorphism of Bgr-vector spaces

ay: Bar QLQ Dgr(V) —— Bar @LQV-

We now modify it using just e(V, i1) for our fixed embedding ¢ instead of ¢1(V') to obtain
ear. Using these definitions over L™ instead of L directly gives us element in (L™)* after
applying det”, and it is clear that this element equals Q) 0F (M).

In this way we can get rid of the second complication mentioned above. The first is then
accomplished by the following proposition, which describes the period in a rather accessible
way.
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Proposition 3.33: Denote by ¢ the composition

-1
[24
MDP

CP¢ B
Bar @My — Bap @My —— Bar @M, —

-1
a
DP
My

dp CPdr
— Bar @ Dan(M}") — Bar @ (Dar(My) [ 610 Dy () ) > Baw @t

Then
tr(MPF)
QP = —— R det(p) € BY, .
P ( ) S(MDP, [L) )/,5((]3) dR

In particular, the above expression lies in fact in (L")*.

Proof: If we denote, by abuse of notation, the scalar extensions of the morphisms in def-
inition 3.32 to L™ by still the same symbol, then we have with the notation of definition 2.4
(with n = 6 there)

.8, - :
Q,{ p M) = detx(edé, dp, cpyr-iss,y» CPeis B)-

The statement then follows directly from lemmas 2.5 and 2.7, using the easy observation that

det (@i, . .. Ons @1, - - - @i—1) = det* (@1, . . ., @n)

for any sequence ¢, . . ., ¢, of isomorphisms between vector spaces and eachi € {1,...,n—

1. O

Remark 3.34: The above proposition shows in particular that

@@e@@gwb
Y

Therefore, to compute the p-adic period we do not have to tensor up to Bgp, it can already
be computed over Byr. More precisely: let V and W be K-vector spaces with bases y and 6,
respectively, and let W be filtered. Let ¢: Bggr ®xV —— Bgr ®x W be an isomorphism of
filtered vector spaces such that det, s(¢) = até’R witha € C, and h € Z. We apply the functor
gr to ¢ to obtain an isomorphism of graded vector spaces ¢’: Byr ®xV —— Byt ® gr(W).
If we use tgr to identify Byt with Cp[tgr, tgﬁ], then by construction we know that still
det, 5(¢") = atS‘R.

Let us now assume that W is pure of weight h € Z (i.e. fil'w =w, fl''w = 0), which
is for example the case if W is one-dimensional. It then even suffices to tensor with C,,. More
precisely, we have then

Bur@gr(W) = (H Cplg-h e W
K et K

and since 1 ® y € Byt ®kV lies in the weight 0 part, its image under ¢’ also lies in the
weight 0 part,i.e. at" ® § € C,(—h) ®k W. Therefore if we define ¢ := gr’(¢), which is an
isomorphism
":Cp@V =5 Ch(-h) @ W,
#75 Cp 0 p(-h)®

then we know that det, 5(¢) = det, s(¢").
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As mentioned before, the definition of the ¢-constant of a de Rham representation in
definition 3.23 also works for any de Rham (¢, I')-module (not only Galois representations),
and the definition of e-isomorphisms can also be extended to (¢, I')-modules, see [Nakis,
§3.3]. In fact, given an isomorphism

B: Bar ®M; — Bar ® Dar(Dy;, (My)™)
one can extend the definition of the p-adic period to motives satisfying only the weak
Dabrowski-Panchishkin condition. If ¢ denotes the composition

CP¢ B
Bir ®My —— Bar ®M; ——
K L

+ dp cp,
Bgr Q]? DdR(Dlig(Mp)DP) — Bgr (%) (DdR(Mp)/ﬁlo DdR(Mp)) R Bar %tM.

then we have similarly as before

ty(Dar(D), (My)PF))

rig
Py = -8 det() € Bz -

e(Df (M)PP, 11) -0

We will not use this in this work, it will only be mentioned in the final section 1v.6.

3.6. Families of motives

We now define families of motives following and generalising [Bar11, §2.2]. However, in one
aspect we deal with a special case, namely, we assume that the number field F there is just
Q. This simplifies the notation while not much is lost conceptually.

Let K be a number field, p a finite place of K, L = K, the completion and O = Of be

the ring of integers. We use the notations and results from section 2.5, so in particular we
write I for the integral closure of O[T] in a finite extension K of Quot(O[T]) and A for an
affinoid algebra over L.
Definition 3.35: A p-adic (analytic resp. algebraic) family of motives (3, T, p, (M(¢))pes)
consists of a p-adic (analytic resp. algebraic) family of Galois representations p: Gg —
Aut(7), aset X of (analytic resp. algebraic) specialisations and a motive M(¢) over Ky for each
¢ € X such that for each ¢ € X the specialisation 77 is isomorphic to a Gg-stable Oy-lattice
in the Py-adic realisation M(¢)y, of M(¢) in the algebraic case, resp. 7 is isomorphic to
the B4-adic realisation M(¢)p, of M(¢) in the analytic case.

One often assumes that the set ¥ is Zariski dense in Spec I resp. dense in Sp A, which is
a reasonable assumption with regard on p-adic L-functions (see below).

Condition 3.36: Let (%, 7, p, (M(¢))4ex) be an analytic family of motives.

(a) We say that the family satisfies the strong Dabrowski-Panchishkin condition at p if
every motive M(¢) satisfies the strong Dabrowski-Panchishkin condition at B4 and
moreover there is a free A-submodule 7PF of 7~ which is a direct summand and
stable under Gq,, such that its image in 7, which we denote ‘7"2P, is the subspace

M ((f))gg from the strong Dabrowski-Panchishkin condition for the motive M(¢).

72



3. Motives, periods and related conjectures

(b) We say that the family satisfies the weak Dabrowski-Panchishkin condition at p if every
motive M(¢) satisfies the weak Dabrowski-Panchishkin condition ‘¥4 and moreover

the (¢, T')-module D := Djig((]') contains a sub-(¢, I')-module 7PF such that the base
change 777 @ ABB] (L¢® BT.g) is the sub-(¢, I')-module Djig(M (P)p, )PP from the
weak Dabrowski-Panchishkin condition for the motive M(¢).

Il

Now let (2, 7, p, (M(¢))gex) be an algebraic family of motives.

(c) We say that the algebraic family satisfies the strong resp. weak Dabrowski-Pan-
chishkin condition at p if the associated analytic family (see proposition 2.31) satisfies
the strong resp. weak Dabrowski-Panchishkin condition.

The strong Dabrowski-Panchishkin condition for algebraic families is then the condition
used in [Bar11, Cond. 2.12].

By theorems 2.36 and 2.37, it is again clear that the strong Dabrowski-Panchishkin
condition implies the weak Dabrowski-Panchishkin condition for families of motives.

3.7. Conjectural p-adic L-functions

As mentioned in the introduction (page x), the existence of p-adic L-functions interpolating
complex L-values of motives can be deduced from the Equivariant Tamagawa Number
Conjecture (ETNC). Since we do not need the ETNC in this work, we here just state the
resulting existence statements for p-adic L-functions as conjectures.

Let K be a number field inside Q, p the thereby fixed place of K, let L = K, be the
completion and O = Oy the ring of integers.

3.7.1. The isomorphism j

The p-adic L-functions constructed from the ETNC depend on a choice of a certain iso-
morphism f. We first collect some technical statements about this which we will need
later.

We begin with the situation for a single motive. For this we fix the following data:

« An almost everywhere unramified Galois extension Fo,/Q with Galois group G such
that G has a topologically finitely generated pro-p open normal subgroup. The latter
is the condition called () in [FKo6, §1.4.2]. We assume that outside p the extension
Fo/Q is at most finitely ramified.?” We further assume that F., contains Q(p~), so
that Gy is a quotient of G. Write A = O[[G]].

« A critical motive M over a number field K that satisfies the strong Dabrowski-Pan-
chishkin condition at p. Let ¢ be an O-stable lattice in M, and put t°% := t N MEP.

« Define T = A ®p t and TP? := A ®¢ tP7, see [FKo6, §4.2.7]. Let g € Gq acton T by
x ® y —— xg ! ® gy and analogously on TP?. Then fix an isomorphism of A-modules
B: A®y T* —=— A ®, TP, Such an isomorphism exists by [FKo6, Lem. 4.2.8].3°

29 This assumption is for simplicity, it is not necessary for the theory. It implies that the set called Y defined in
[FKo6, §4.2.13] is empty, which simplifies our discussion a little.

3¢ Fukaya and Kato choose f as an isomorphism A ®p Detp(TT) —=— A ® Deta(TPP). This is a little bit more
general, but our choice suffices for our purposes and simplifies some arguments a little.
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Lemma 3.37: Let p: G—— GL,(K") be a representation with coefficients in a finite extension
K’ of K and n € IN such that M(p)(n) is still critical. Then the fixed [ induces canonically an
isomorphism

Plp,n): L& M(p)(m); — L & M(p)(n),".

Proof' We first note that if A is a p-adic ring and n € IN, then M,,(A) is also a p-adic ring and

n(A) =M (A) This is easy to see from the definitions. Hence by functorlahty, p induces
p: A—— My(L). In the same way the cyclotomic character induces & Keye: A—b W(IFP)
Let .

Yy=p® Keye: A—— Ma(L) ® W(]Fp) = Mu(L).
W(Fp)

We regard L" as a A-module via /. Then we have

TOA® L"=t®A®A ® "=t @ ["=M, 8l (n)(p)p®L
A " O A Ay O,t// Ly

J>z

In the same way we see TPF @4 A ®iy [ = M(n)(p)ll?P ®r, L. Here we used lemma 3.30.

Now we discuss T*. Note that A also carries a Gg-action. Let V be any A-module with
an action of GRr. One can easily check the V* ®; A¥ = 0. From this and lemma 3.10 (a), one
can easily derive that V ®; A* = V*. Similarly one sees that A* ® A = A*. Therefore

TPQAQV=(t"9A" @t QA )RAQV =tV et @V =t V)".
A A o o A A o o 5]
Putting V = L" here gives T+ ®y A ®; L" = M(n)(p), ®rL L.
Altogether, we see that tensoring f with L" over A along ¢ induces f(p, n) as desired.[]

We now turn to the setting for algebraic families. For this we fix the following data:

« Aring I asinsection 3.6 and a set of specialisations . We use the notations introduced
there.

« A Galois extension F.,/Q with Galois group G just as before. Put3* A = 7[[G] and
Ay = Oy[[G]l for each ¢ € 3. Note that any ¢ induces a map A —— Ay which we
also denote by ¢.

« A family of critical motives (M(¢))ses given by p: Gqg —— Autz(7) that satisfies
the strong Dabrowski-Panchishkin condition and such that all the motives M(¢) are
critical.

« Define3* T:= A®7 7 and TP := A®; 72F. Letg € Gg acton T by x®y —— xg ™' ®
gy and analogously on TP?. Then fix an isomorphism of A-modules g: T+ —~ TPF,
Such an isomorphism exists by [Bar11, Lem. 2.14].

31 The ring A should play the role of the ring A in [Bar11, §2.2], which is defined there as O[G][T]. Using the
notion of completed tensor products of profinite rings [RZoo, §5.5], we see that O[G][T] = O[G]@0O[T] =
OITI[G], so if we specialise to the case 7 = O[T] our definition coincides with the one in [Bar11]. We thus
could have defined A = T8, O[G].

32 In [Bar11, p. 22] the tensor product in the definition of T is formed over O instead of 7 (which is O[T] there).
We think that this is a typo since otherwise the statement in lemma 3.38 below is not true.
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Lemma 3.38: Let ¢ € X. We have canonically T ®5 4 Ay = T4 ®0,, Ay, TPP ®N ¢ Ny =
7—1;}) ®0y Ay and T @5 4 Ay = T; ®0, Ag. In particular, p induces an isomorphism

LT @ Ay —— TP ® Ag.
Po: T & Do o &N

Proof: The first two statements are obvious and the third one can be proved by similar
arguments as lemma 3.37. See also [Bar11, Lem. 2.14]. O

3.7.2. The conjectures

First note that if M is a critical motive and we choose bases y of Mg and § of tyy, then the
ratio s
o’ m)
QL (M)

is well-defined independently of the choices of y and §. More precisely: the ratio above
does not make sense since the two objects lie in different rings, but if we change y to y’
and 6 to ¢’, then Qg’ 5"6(M)Q,): 0 ’lg(M)_1 = Q?;;S(M)QZO"S (M)™L. This follows directly from
the definitions. We therefore omit y and § in the following when we write down such an
expression and always mean that implicitly some y and § are chosen.

Definition 3.39: Let M be a critical motive over K that satisfies the strong Dabrowski-
Panchishkin condition. Define the local correction factor at p by

Pp(M,T)

LF,(M) = ———
p
P,(MP?, T)lT=1

Pp(MyF)"(1),1) € L,

where P,, is defined in definition 3.11.

A p-adic L-function in the general setting should be an element of some localised K-group
that can be evaluated at certain representations of G and produces values in L™. We do not
recall the details about this but refer to [FKo6, §4.1.2—5].

There is a technical restriction on the evaluation points at which we can hope to describe
the value of the p-adic L-function. We thus introduce the following notion.

Definition 3.40: Fix a critical motive M satisfying the strong Dabrowski-Panchishkin con-
dition, a finite extension L’ of L, an Artin representation p: G —— GL,(L") and n € IN. We
say that (p, n) is an appropriate pair for M if

(1) M(p*)(n) is still critical,
(2) LE,(M(p*)(n)) # 0,
(3) H{(Q,V) = HY(Q, V*(1)) = 0 for V = M(p*)(n), and i = 0,1.

These conditions are formulated in [FKo6, Prop. 4.2.21]. There is a further condition
related to a set called Y there, but as we remarked in footnote 29 this set is empty in our
setting, so this further condition is vacuous.
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Conjecture 3.41 (Fukaya/Kato): Fix a critical motive M satisfying the strong Dabrowski-
Panchishkin condition, an extension Fo,/Q and an isomorphism [ as in section 3.7.1. Attached
to this data, there is a p-adic L-function such that for each appropriate pair (p,n) for M the
value of the p-adic L-function at px g is

. dimg gr™7 Mgr * Qf(p*’n)(M(p*)(n))
!;I(]—l)! g LE, (M )n) g

L(M(p"), n).

Here B(p*, n) is from lemma 3.37.

We now turn to families of motives. In this setting the p-adic L-function should also be

an element of a localised K-group that can be evaluated (in particular) at pairs (¢, /) where
gAb: I — Q, is a morphism and ¥ is a representation of G, and again produces values in
L™, see [Bar11, §4.2-3].
Conjecture 3.42 (Fukaya/Kato, Barth): Fix I, 3, Fo/Q, an algebraic family of critical mo-
tives (M(§))gpes satisfying the strong Dabrowski-Panchishkin condition and an isomorphism 8
as in section 3.7.1. Attached to this data, there is a p-adic L-function such that for each ¢ € =
and each appropriate pair (p, n) for M(¢), the value of the p-adic L-function at (¢, px_e) is

cyc

QP (M($)(p*)(m)
Qu(M($)(p") ()

[ |G - acimeer™ MO L, (M()(p")(n)) L(M(g)(p"), n).

jx1
Here B is from lemma 3.38 and By(p*, n) is from lemma 3.37.

We finally remark that in both situations there is an Iwasawa Main Conjecture which
says that the p-adic L-function is a characteristic element (suitably defined) for some Selmer
complex constructed using certain Iwasawa modules attached to the motive resp. the family.
Since this work is focused on the analytic side of Iwasawa Theory, we do not repeat these
Main Conjectures here.

As mentioned before, the above interpolation formulas are in fact consequences of the
Equivariant Tamagawa Number Conjecture (ETNC), see [FKo6, Thm. 4.2.22] resp. [Bar11,
Thm. 4.31]%3 and also [Veno7]. Moreover the ETNC also implies the above-mentioned Main
Conjecture.

As a further generalisations of these results and conjectures, it seems plausible to expect
the existence of such a p-adic L-function also for analytic families and also in the case
where the families satisfy only the weak Dabrowski-Panchishkin condition. Note that each
expression in the interpolation formula (in particular the p-adic period) is still well-defined
in this setting, so we can hope for the same interpolation formula. Also it is natural to
ask whether the existence of the p-adic L-function can still be deduced from the ETNC by
methods similar to the ones of Fukaya, Kato and Barth. We do not pursue these questions
further in this work. The recent thesis [Zae17] shows that the work of Fukaya and Kato can
be generalised to the case of a single motive satisfying the weak Dabrowski-Panchishkin
condition.

33 In [Bar11], this is only proved for families for which I = O[T]. In view of this result conjecture 3.42 seems to
be a reasonable generalisations.
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Chapter II.

Modular curves and motives for modular forms

We introduce and study modular curves, modular forms and motives attached to them. This
chapter contains no new results, but it collects a large amount of properties of these objects.
Almost everything in this chapter is well-known to the experts, but some statements or their
proofs are rarely to be found in the literature.

For the whole chapter we fix an integer N > 1 (later we will assume N > 4) which will
be the level. In this chapter we will only look at one fixed level (apart from section 7), while
in the next chapter the level can vary.

1. Modular curves

1.1. Arithmetic theory of modular curves

In this section, we introduce modular curves as moduli spaces for elliptic curves (or gener-
alised elliptic curves) with level structure, in an arithmetic-geometric setting. Although this
theory is well-known, the results we need are scattered around the literature, so we collect
some facts and references here.

Over rings or schemes on which N is invertible, it is not too difficult to see that the functors
classifying elliptic curves with an appropriately defined level structure are representable by
affine schemes (which after complexification are quotients of the upper half plane §)). There
are then two points on which one wants to improve: first, to get rid of the requirement that
N be invertible. Second, to “compactify” the moduli schemes to proper ones (which after
complexification should give quotients of the extended upper half plane h*) by classifying
more general objects.

There are three major texts (among others) about moduli of elliptic curves with level
structures. First Deligne and Rapoport [DR73] introduces generalised elliptic curves by
allowing certain singularities and then considers moduli of these generalised elliptic curves
with level structures. This gives compactifications of the moduli schemes and moduli in-
terpretations of the cusps, as intended. The disadvantage of their approach is that a level
structure as they define it can only exist if the level N is invertible on the base scheme, so
that the moduli schemes live over Z[1/N]. On the other hand, Katz and Mazur [KM85]
uses so-called Drinfeld level structures which do not need N to be invertible. This gives
moduli schemes of elliptic curves over Z, which are then compactified using a normalisation
construction. Unfortunately, this does not give a moduli interpretation of the cusps.

The two approaches are unified by Conrad in [Cono7], which provides schemes over Z
with a modular interpretation also of the cusps. We follow this text and cite the main results,
supplying them with results from other articles where it seems necessary.

An elliptic curve is a proper smooth irreducible curve E—— S over some scheme S whose
geometric fibres are connected curves of genus one, together with a fixed section S — E.
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A generalised elliptic curve is a stable curve of genus 1, i. e. a proper, flat, finitely presented
morphism of relative dimension > 1 whose smooth geometric fibres are connected curves of
genus one and whose non-smooth geometric fibres are Néron polygons, together with some
additional structure. For the precise definition see [DR73, Déf. 11.1.12].

For a generalised elliptic curve E—— S we write E[N] for its N-torsion, i. e. the kernel
of the multiplication by N.

Proposition 1.1: E[N] is a finite flat group scheme over S, locally free of rank N*. It is étale
overS if and only if N is invertible on S. In this case it is étale locally isomorphic to the constant
group scheme (Z/N)Z/S.

Proof: [DR73, §11.1.18-20], [KM85, Thm. 2.3.1, Cor. 2.3.2] O

The following definition uses (relative) effective Cartier divisors, see [KM85, (1.1.1-2),
Lem. 1.2.2] for the necessary background on these. Further it uses the Weil pairing on the N-
torsion of a generalised elliptic curve E—— S, which is a pairing en : E[N] X E[N] — un
of group schemes over S; see [KM85, §2.8.5] and [DR73, 1v.3.21].

Definition 1.2: Let E—— S be a generalised elliptic curve.
(a) A naive I'(N)-structure on E is a homomorphism of group schemes over S
2
¢: (Z/N) — E[N]
A A

such that there is an equality of effective Cartier divisors on E

EINI= > [o(a,b)]

(a,b)e(Z/N)*

and the above Cartier divisor meets each irreducible component in each geometric

fibre.

(b) A naive I{(N)-structure on E is a homomorphism of group schemes over S

0: L[N ——EIN]
/S

such that the effective Cartier divisor

> o]

ae(Z/N)*

is a subgroup scheme of E and meets each irreducible component in each geometric

fibre.

(c) An arithmetic T'(N)-structure on E is an isomorphism of group schemes over S

$: N X Z/N L E[N]
/S

of determinant 1. The latter condition means that if we view ¢ as a pair of embeddings
¢1: UN —— E[N], ¢2: Z/N —— E[N], then en(91({), p2(n)) = {" under the Weil
pairing, for all { and n.
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1. Modular curves

(d) An arithmetic I;(N)-structure on E is a closed immersion of group schemes over S

¢: uy — E[N].

See also [Cono7, Def. 2.4.1-2], [Kat76, §2.0].

Note that any S-homomorphism from a finite constant group scheme over S to any sepa-
rated S-scheme is automatically a closed immersion, because if f: X —— S is any morphism
of schemes with X separated, then each section s: S —— X is a closed immersion by [EGA1,
Cor. 5.4.6]. In particular, naive I'(N)- or I(N)-level structures are closed immersions.

We now define 8 moduli functors for elliptic curves.

Definition 1.3: For * being nothing or “1” and ? being “naive” or “arith” let
X.(N): Sch— Sets

be the functor associating to a scheme S the set of isomorphism classes of pairs (E, ), where
E is a generalised elliptic curve over S and ¢ is a naive resp. arithmetic I'.(N)-structure. Let
Y.(N)’ € X.(N)’ be the subfunctor associating to S the set of isomorphism classes of pairs
(E, ) with E a (usual, non-generalised) elliptic curve and ¢ as before.

Remark 1.4: (a) If a generalised elliptic curve is a usual elliptic curve, then the re-
quirement about the irreducible components in the geometric fibres is automatically
fulfilled since elliptic curves are irreducible, so this gives back the definition in [KM8s5,

(3.1-2)].

(b) If Sis a Z[1/N]-scheme and E—— S is a generalised elliptic curve, then a full level
N structure on E is just an isomorphism of group schemes over S

(Z/N)Z/S —~ L E[N],

while point of exact order N on E is just a monomorphism of group schemes over S

Z|n ——EIN]
/S

whose image meets each irreducible component in each geometric fibre, which is the
definition given in [DR73, §2.3, §4.7]. This is shown in [KM85, Lem. 1.4.4, Lem. 1.5.3].

(c) Over Z[1/N] there is a canonical isomorphism of functors
Y(N)naive ~ .szr % Y(N)arith

where py; is the group scheme of primitive roots of unity, see [Kat76, (2.0.8)] or
[DR73, chap. V, (4.4.1)].

(d) Over Z[pun] there is then a canonical isomorphism of functors
on: Y ( N)naive ~ .Y, ( N)arith

since the group schemes Z/N and py are canonically isomorphic over this ring.
Later we will often be working over a ring containing the N-th roots of unity (see
remark 5.5), so we can then identify these modular curves.
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Chapter II. Modular curves and motives for modular forms

Theorem 1.5 (Shimura, Igusa, Katz/Mazur, Deligne/Rapoport, Conrad): If N > 4," then all
8 moduli functors from definition 1.3 are representable over Z. by a scheme which we denote by
the same symbol as the corresponding functor. They have the following geometric properties:

(a) Y(N)"3Ve and Y;(N)"3V¢ are finite flat regular curves over Z.. Over ZJ[1/N] these curves
are affine finite étale.

(b) X(N)"aVe and X;(N)"¥¢ are proper flat regular curves over Z.. Over Z[1/N] these
curves are projective and smooth.

(c) Y(N)™ gnd Yi(N)™ gre smooth affine curves over Z.

(d) X(N)™™ and X;(N)™ gre smooth curves over Z.. Over Zi[1/N| theses curve are proper.

Proof: We begin with the statements about the naive moduli problems. The claims about
Y(N)™e and Y;(N)"@ve follow from [KM8s5, Cor. 2.7.2—3, Thm. 5.1.1, Scholie 4.7.0, Cor. 4.7.1].

By [Cono7, Thm. 3.1.7], the functors X(N)™V¢ and X;(N)"®"¢ are represented each by a
Deligne-Mumford stack over Z. We claim that this Deligne-Mumford stack is an algebraic
space. This is equivalent to the fact that its geometric points have no non-trivial automor-
phisms, see [DR73, §v1.2.1].> For elliptic curves with level structure, this is proved in [KM85,
Cor. 2.7.2-3], while for Néron polygons with a chosen point of exact order N, this is easy to
see using the description of automorphisms of Néron polygons in [DR73, §11.1.9]. Recall that
we assumed N > 4.

The properness over Z is proved in [Cono7, Thm. 3.2.7]. That it is a curve, i. e. of pure
relative dimension 1, is proved in [Cono7, Thm. 3.3.1]. The regularity is proved in [Cono7,
Thm. 4.1.1].

That the algebraic spaces are in fact schemes follows from the general fact that a regular
algebraic space over Z of relative dimension 1 is always a scheme. This is claimed in [DR73,
p- 69, after Cor. 1v.2.9]. See also the proof of [Cono7, Thm. 4.2.1 (2)].

Now we turn to the arithmetic moduli problems. The statements about Y(N)ih and
X(N)™ith follow similarly as a above from [DR73, §v.4.4]. More precisely, the rigidity of the
moduli problem follows from the isomorphism in remark 1.4 (c) and the fact that the naive
I'(N)-problem is rigid. By [DR73, Lem. v.4.5, v.4.7] the moduli problem is represented by
a smooth Deligne-Mumford stack, which is hence regular, and it follows as above that is a
scheme.

The geometric properties of the arithmetic I'(N)-moduli problems are not stated in our
references, but they follow from the corresponding ones for the arithmetic I3(N)-moduli prob-
lems (see below) since the I'(N)-functors are étale (Z/N)*-torsors over the I3(N)-functors
and the properties are étale local and stable under base change.

For Y;(N)®th see [KM8s5, (4.9-10), p. 120] and [Dlgs, Var. 8.2.2]. For X;(N)*™, see [DIgs,
Thm. 9.3.7] and [Grogo, Prop. 2.1]. [l

Remark 1.6: For general N, the moduli functors are represented by Artin stacks instead
of schemes. This is shown in the same references cited in the above proof, but we will not

! For the I3(N)-structures, it suffices to assume N > 3. In what follows, we will often assume that N > 4
although in some situations it might suffice to assume N > 3; but see remark 1.6.

2 Note that what Deligne and Rapoport call “champ algébrique” is what nowadays is called a Deligne-Mumford
stack.
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1. Modular curves

use this fact. Nevertheless, let us remark at this point that although we will later always
assume N > 4, everything we are going to do should carry over to low level by replacing
modular curves by modular stacks. This makes the theory technically more complicated, but
conceptually the same techniques should still work. However, we will not check the details.

Definition 1.7: (a) The curves from theorem 1.5 are called modular curves. From
now on, whenever we write X, (N) or Y.(N) (for * being nothing or “1”) without a
superscript, we will always mean the naive versions of the modular curves. The
curves classifying arithmetic I'(N)-structures will play no role in this work and were
mentioned only for completeness. If we are working over some ring containing the
N-th roots of unity, then we identify the curves classifying naive and arithmetic
[1(N)-structures using the isomorphism from remark 1.4 (d). Thus in this setting
X1(N) and Y;(N) denote also the arithmetic versions.

(b) We denote the universal elliptic resp. generalised elliptic curves over these moduli
schemes by E.(N)’ and E.(N)’, respectively, with * and ? as before, and by abuse of
notation we denote all the maps from any of these universal curves to the bases by f
and every unit section by e.

(c) We denote the complements X.(N)’ \ Y.(N)? by C.(N)’. They are closed subschemes
equal to the locus over which the universal generalised elliptic curve E.(N)’ is not
smooth, and for ? being “naive” they define relative effective Cartier divisors [Cono7,
Thm. 4.1.1 (1)]. We call them the cusps or the cuspidal divisors.

Remark 1.8: Note that if # is any one of these moduli functors which is representable, M is
the representing object and f: E—— M is the universal (maybe generalised) elliptic curve,
then E represents the functor

Sch —— Sets,
T+——{(t,1):t € P(T) =Hom(T,M), | € Hom(T,E) s. th. f ol =t}.

Although this is trivial, it means that giving a point on the universal elliptic curve is the
same as giving a point in M, that is, an elliptic curve with level structure, and a point on this
elliptic curve.

The group GL,(Z/N) acts on naive I'(N)-structures on (generalised) elliptic curves by
precomposing them with automorphisms of Z/N?. We normalise this action by saying
that GL,(Z/N) should act on (Z/N)? by multiplication on the left with the transpose matrix,
so this gives a right action on level N structures and thus by universality a right action
on E(N) — Y(N) and E(N) — X(N). This is described more explicitly e.g. in [Conog,

§4.2.3].
Every full level N structure on a (generalised) elliptic curve yields a point of exact order

N by precomposing it with the embedding

2
Z/Nx{O}% (Z/N) : (1.1)
This defines morphisms of functors

Y(N)— Yi(N), X(N)— Xi(N). (1.2)
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Chapter II. Modular curves and motives for modular forms

Remark 1.9: If E—— S is an elliptic curve and ¢: Z/_N/S —— E[N] is a naive [}(N)-
structure, then ¢ is uniquely determined by P := ¢(1) € E[N]. We may use this to define
morphisms between the moduli functors we introduced, which by the Yoneda lemma corre-
spond to morphisms between modular curves. For example, any automorphism o of Z/N
gives rise to another torsion point o(P) := ¢(c(1)), and we can define an automorphism
of Y;(N)"¥¢ by (E, P) —— (E, o(P)) (see definition 3.1). We will often use this method to
define similar morphisms between modular curves without further explanation. As a further
example, we can write the morphism (1.2) as (E, P, Q) —— (E, P).

Lemma 1.10: The quotient of E(N) —— Y(N) by the subgroup

1 (2

exists as a scheme and is canonically isomorphic to E{(N) — Y;(N). Here we mean the naive
quotient in the sense of [HidGMF, §1.8.1]. The analogous statement is true for the compactified
versions.

Proof: This subgroup is obviously the one fixing pointwise the image of (1.1) (recall that we
act by the transposed matrix!). Hence the quotient functor of Y(N) by this subgroup is Y;(N),
from which the claim follows. For details, see [HidGMF, §1.8.1]. See also [KM85, Thm. 7.4.2
(3)] or [DR73, Prop. 1v.3.10 (iii)]. O

Lemma 1.11: There is a cartesian diagram of schemes

E(N) — Ey(N)

|

Y(N) — Yi(N)

in which the bottom arrow is the map (1.2). The same holds for the corresponding compactified
versions.

Proof: We will prove the statement only for the non-compactified versions, the proof for the
compactified versions works similarly.

We use the language of stacks as explained in [Beh+06]. The stacks Y(N) and Y;(N)
defined by Y(N) and Y;(N) classify elliptic curves with the respective level structure. Let
M1 be the moduli stack of elliptic curves (see [Beh+06, §1.5]) and let € be the stack of
genus 1 curves with two sections (defined like M, 5 in [Beh+06, Ex. 1.1c] except that the two
sections need not be disjoint). Via the morphism & — M ; forgetting the second section,
& can be seen as the universal elliptic curve over M ;: this can be shown similarly as in
[Beh+06, Ex. 2.25 (4)]. We have morphisms from both Y(N) and Y;(N) to M; 1, sending an
elliptic curve with level structure to just the underlying elliptic curve. Now, as stacks, the
universal objects E(N) resp. E;{(N) are in fact isomorphic to the pullbacks of & along these
respective morphisms, that is, the diagrams

E(N) — & Ei(N) — &

Ll w ]

Y!N!"Ml,l Y](N24’ Ml,l
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1. Modular curves

are 2-cartesian. We will prove this for E(N), the other case being similar. The statement then
follows from this.

Let T be a scheme. By definition of the fibre product of categories fibred in groupoids
[Beh+06, §2.5], an object over T in the fibre product Y(N) X »,, & consists of

a morphism T —— Y(N) (which corresponds to an elliptic curve C’ —— T with
level structure), a genus 1 curve C —— T, two sections o, 7: T —— C and an isomor- (1.3)
phism 0: C’ —— C over T compatible with the unit section of C” and the section o

of C.
An object of E(N) over T consists by remark 1.8 of

a morphism T —— Y(N) (which corresponds to an elliptic curve C"" —— T with (1.4)
level structure) and a section 7: T —— C”’. .

We define maps between the sets of data of this type. Sending an element of type (1.4) to the
same morphism T —— Y(N), the genus 1 curve C”’ —— T, the unit section of the elliptic
curve C”” —— T and the section 7, together with the identity isomorphism C” —— C”’ gives
a map of the set of elements of type (1.4) to the set of elements of type (1.3). In the other
direction, we send an element of type (1.3) to the same morphism T —— Y(N) and the
section7 :=0lor: T— C".

It is not difficult to verify that the collection of these maps for every T defines a natural
isomorphism between the fibre functors (functors of points) of the stacks E(N) and Y(N)X sy, ,

&, and hence an equivalence of categories between these stacks. (]

1.2. Complex analytic theory of modular curves and GAGA

We now work in the category of complex analytic spaces. An analytic elliptic curve is a proper
smooth map f: E—— S of analytic spaces of relative dimension 1 whose fibres are curves
of genus 1, together with a specified section e: S—— E. In the complex analytic setting,
modular curves (as Riemann surfaces) are often introduced as quotients of the complex upper
half plane f). We explicitly construct two (isomorphic) elliptic curves over b and then look at
quotients by congruence subgroups. In this way we get analytic elliptic curves over these
quotients that have a universal property similar as in the arithmetic situation. We follow
closely [Conog, chap. 1, esp. ex. 1.1.1.16].

In this section, for z, w € C being two RR-linearly independent vectors in the complex
plane, we write [z, w] for the Z-lattice generated by them.

Definition 1.12: (a) Define A as the image of
7P xh——Cxhb, (mn,1)— (mr+n,71), (1.5)
so we have
A= Jlrlx ), (16)
T€ED

and put Ep o == (C X h)/A. Equivalently, we could define Ej 5 as the quotient of C X
by the left action of Z? given by

(m,n)(z,7) =(z+mr +n,71) (m,n € 7). (1.7)

The map frat: Erat —— b is defined as the projection onto the second factor and with
the obvious identity section this makes Ej,; an elliptic curve over b.
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Chapter II. Modular curves and motives for modular forms

(b) Let p, forar € b denote the Weierstrafl function for the lattice [1, 7] and let g, = 60G4
and g; = 140G, denote the usual Eisenstein series on }) occurring in the differential
equation describing ¢ (see [Sil86, Rem. 3.5.1]). We put

Ewei = {(z.[x : y : z]) € ) x PX(C) | v’z = 4x° — gy(r)xz” — g3(7)2"}
and let
fweit Ewei — D
be the projection on the first factor. The identity section is again the obvious one.
Here, “Wei” stands for “Weierstraf3” and “Lat” stands for “lattice”.

The map
Cxb— Ewei, (2,7) = (7,[p:(2) : 97(2) : 1]),
which is obviously invariant under the action of Z? on C x b, induces an isomorphism of
elliptic curves Ep,; —— Ewei over b.

The upper half plane is in fact also the solution of a moduli problem for elliptic curves,
which can be interpreted as a “level co moduli problem” (it has no solution in the category of
schemes, but does have one in the category of analytic spaces). Both Eye; and Ep are then
universal elliptic curves over f). We won’t need this, for details see [Conog, Thm. 1.4.3.1].

Let 3 :== My(Z) N GLy(Q). In example 1.2.11, we defined an action of ¥ on C X . On the
other hand, we defined an action of Z? on C X b in (1.7). One can then check that we get a
well-defined left action of ¥ on the quotient Ey,;.3

Since fi, is equivariant for this action, we can take quotients by any subgroup I' C SL,(Z)
to get fiar: I'\Epat — T'\D (which has the same name as before, by abuse of notation).

The compatibility between the analytic and the arithmetic theory is stated in the following
proposition.

Theorem 1.13: There is a commutative diagram of analytic spaces

E{(N)™ — Ty(N)\Er

| |

Yi(N)™ —— T(N)\b

in which the horizontal maps are isomorphisms.

Hence T1(N)\D is the solution for the moduli problem on analytic spaces associating to an
analytic space the set of isomorphism classes of elliptic curves with (naive) level I;(N)-structure.*
The fibre over some T € 1) is E; := C/[1,7] and the point of exact order N in this fibre is .

Proof: [Conog, Thm. 4.2.6.2; §2.1.3]° [l

3 Note that we cannot use lemma 1.2.9 (b) here because the relation (1.2.1) does not hold; nevertheless this can
be checked by a direct calculation. More precisely: For (m,n) € Z2,y € ¥ and (z,7) € C x b one has to find
(u,v) € Z2 such that y((m, n)(z, 7)) = (4, v)(y(2, 7)). One checks that (%) :=="Ty"("™) does the job if dety > 0.
For y = 2 one chooses (u,v) = (-m, n).

4 The definition of a I3(N)-structure on an analytic elliptic curve is totally analogous to the algebraic case, see
definition 1.2 (b). The requirement about the geometric fibres is vacuous in this case since we are dealing with
smooth elliptic curves, whose fibres are connected anyway.

5 We remark here that in the text [Conog], right actions of SLy(Z) on both h and Ep 5 are used. However the
corresponding left actions obtained from these via the involution : are exactly the left actions defined here; in
particular the quotient spaces we get are the same. To see this, we refer to [Conog, Thm. 1.5.2.2, p. 73] for the
action on ) and to [Conog, proof of Lem. 1.5.4.4, p. 84] for the action on Ey 4.
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1. Modular curves

In the following, we identify Y;(N)*" with I3(N)\b.

Remark 1.14: (a) Note that the above statement holds for both naive and arithmetic
[(N)-structures since we are working over C. Hence for analytic considerations it
does not matter which version of the I3(N) modular curve is used.

(b) The analogue of the above theorem for Y(N)®" is not quite true: the analytic space
T'(N)\D does not classify all full level N structures in the analytic setting, but only
those with a fixed Weil pairing, see [Conog, §2.1.2] or [DSos, §1.5]. Since the possible
values of the Weil pairing are the primitive N-th roots of unity, the analytification of
Y(N) can be identified with the disjoint union of ¢(N) copies of I'(N)\} (where ¢ is
the Euler totient function). See for this also [DR73, Introduction, p. 15] or [Katog,

§1.8].

(c) However, for (Y(N)*ith)2" the analogous statement is true, which follows easily from
remark 1.4 (d).

1.3. The action of complex conjugation

In this section we identify the groups Gr and G, in the only possible way. Note that then
Gr acts on b by the action we defined in example 1.2.10. Our purpose is, loosely speaking, to
prove that it is reasonable to make this identification.

We begin in the analytic setting. Denote again by [z, w] the Z-lattice generated by two
R-linearly independent vectors z, w € C in the complex plane. The spaces C and IP"*(C) will
be endowed with the canonical action by complex conjugation.

Lemma 1.15: We get induced actions of Gr on Ewei and Er, and all maps in the diagram

ELat ? EWel

ﬁ\ %Nm

are GR-equivariant.

Proof: First we observe that for any 7 € ), the lattice [a7,1] is just the image of the lattice
[r,1] € C under complex conjugation on C. This means that A C C X b is invariant under
the diagonal action of G on C X b, hence we have a well-defined action on the quotient
ELat, and moreover, the map fi ¢ is Gr-equivariant.

We let GR act diagonally on b x P?(C). To see that this induces a well-defined action on
Ewei, it suffices to note that Eisenstein series have real Fourier coefficients, which implies
that G(r) = Gx(-7) = Gi(a7) for every even k > 2 and r € §. This shows at the same time
that fivei is Gr-equivariant.

Finally, to see that the isomorphism Ep,; —— Ewe; is Gg-equivariant, we observe

0:(2) = p_7(2), 9r(z) =9 (2) forreh, zeC. O
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Chapter II. Modular curves and motives for modular forms

From example 1.2.10 we have an action of Gg = G, on the quotient of h by I3(N) since
[(N) is normalised by . For the diagonal action of G on C X }) and the action of SLy(Z) on
the same space defined in (1.2.2), it is an easy calculation to verify relation (1.2.1), so we also
get an action of Gg on I3(N)\ELs. On the other hand, we have a natural action of G on the
set of complex points of the schemes Y;(N) and E;(N) from theorem 1.5, hence also on the
corresponding analytifications.

Proposition 1.16: All maps in the diagram in theorem 1.13 are GR -equivariant.

Proof: By universality of E1,; and Ewej and lemma 1.15, we can also prove the claim with Ep,;
replaced by Ewei, and by surjectivity of the vertical maps we have to prove Gr-equivariance
only for the isomorphism in the top row of the diagram.

Solety: Spec C —— E{(N) a complex point of E;(N) and let x: Spec C —— Yi(N) the
point in Y1(N)(C) below it. By the universal property of Y;(N), the fibre of the universal
elliptic curve E;(N) — Y;(N) at x is an elliptic curve E, over C that comes equipped with
a point P € E,[N] of exact order N, and y is a point in E,(C) (see remark 1.8). Under the
isomorphism Yi(N)(C) = I;(N)\D, x can be lifted to some 7 € §) and we see that the elliptic
curve E, can be embedded into projective space as the curve described by the Weierstrafl
equation Y? = 4X® — g,(7)X — g5(r), with the point P having coordinates [¢, () : 95 (3) : 1].

The action of complex conjugation on x and y (denoted by a bar) is given by the diagram

EY Ex El (N)

| o=

Spec C — Spec C — Yi(N),

x

where the left map in the bottom row is induced by complex conjugation and both squares
are cartesian. It is immediate to check that the elliptic curve Ex can be given by complex
conjugating the coefficients in the Weierstrafl equation for E, and that the point y is obtained
from y by complex conjugating its coordinates, if we view it as a point on Ex embedded into
projective space. The same happens to the point P. Hence this action is compatible with the
action of GR on Eyye;. O

2. Some sheaves on modular curves

2.1. The symmetric power local system

Fix n > 0. If f is the map from any of the universal elliptic curves described so far to the
corresponding moduli space, then the local systems R! f.Z and Sym” R! £,Z on this moduli
space will play a fundamental role. We call the latter one the symmetric power local system.

For a discussion of symmetric powers and actions on them see appendix A.1. We will use
the content of this section without further comments.

First, we study the local system R!f,Z in the analytic setting, so let f be either fe;
or fia and look at the local system R!f.Z on §). Since b is contractible, this local system
is in fact constant, so it is isomorphic to Z? (as one can see by looking at a stalk, using
the topological proper base change theorem [Conog, Thm. 1.2.1.1]). However, there is no
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2. Some sheaves on modular curves

canonical isomorphism, we have to choose one. We choose the same one as in [Conog,
(1.2.1.6), p. 34/35] and call it a. The same choice is also made (less explicitly) in [Kato4, §4.7].

To describe this explicitly, we focus on f = fi. For 7 € b, write E; for the fibre of fi
over 7, so E; = C/[1,7]. The choice of a trivialisation a: R' f,Z —~— Z? is equivalent to a
consistent choice of bases of the homology groups H;(E;, Z) = [1, 7] for all 7, since its dual
basis on cohomology defines such an isomorphism on each stalk, which suffices since the
local system is constant. We choose once and for all the ordered basis (z, 1) of this homology
group.

Of course this choice is somewhat arbitrary, we could also choose another basis. Some
consequences of this choice and how they compare with other situations in the literature are
listed in appendix A.

From the action of ¥ = M(Z) N GL,(Q) on Ey, and b, we get a Hecke sheaf structure on
R! fia1+Z (Where we view Z as a trivial X-module, which gives us the constant Hecke sheaf Z
on Er,). On the other hand, the constant sheaf Z? on ) has a natural Hecke sheaf structure
coming from the canonical left action of 3 € M,(Z) on Z? by left multiplication.

Lemma 2.1: « is an isomorphism of Hecke sheaves on 1.

Proof: If we let ¥ act on Z? from the right by left multiplication with the transposed matrix,
we can consider the attached constant Hecke sheaf Z? on ) coming from that action, and
of course the claim is equivalent to the claim that the dual map a¥: Z? —~— (R!f.Z)" is a
morphism of Hecke sheaves for this Hecke sheaf structure on Z?. This can be checked on
stalks.

Let 7 € h and y € X be given, and abbreviate f = fr,;. We use corollary 1.1.14 with
X =Era, Y=0,F =%Z,R=A="7 and p = 7 € }), which makes X, = E;. This tells us that
the map on stalks (R'£,Z),, — (R'f,Z), is the dual of the map Hy(E., Z) — Hy(E, ., Z)
induced by the map C x ) —— C x ) given by the action of y. We thus have to show that
the diagram

Y
HI(ETs Z) — HI(E)/T’ Z)

7? 7?

»

commutes, where the top map is induced by the action of y (on C; we will denote it by “e
below) and the bottom map is multiplication by ' from the left (for the reason why this
really has to be y* and not Y, see the last sentence in construction 1.1.10).

We first assume det y > 0 and write y = (¢ Z) First note that y'(§) = (_db ). Using this
and the definition of ", we calculate

vt fl),_, ar+b
@y (o))_d cvad 0!
_d(ar +b) — b(ct +d)
B ct+d

= (dety)(ct +d) ',
while y o (a/(§)) =y @ 7 = (dety)(ct + d)'z by definition of " and the definition of the

action in (1.2.2). A similar calculation can be done with () instead of (). This shows the
commutativity of the above diagram for dety > 0.
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Chapter II. Modular curves and motives for modular forms

To complete the proof, it suffices to check the commutativity for y = . This works totally
analogously to the above calculation. ]

We now turn to Y = Y1(N)?", so from now on we write f also for the map E;(N)*" —
Yi(N)* or T'\Epat — I'\b.

Lemma 2.2: The sheaf Sym™ R'f,Z on Y;(N)* = T'\} is isomorphic to 1\ Sym™ Z? as a G-

sheaf, where : ) —— T'\} is the canonical projection.

Proof: 1t is easy to see that the diagram of analytic spaces

Erat — Iﬂ\ELat

| s

h ———T\h

is cartesian, where f also stands for the left map and 7 is the projection. By lemma 1.15,
the maps are Gg-equivariant. By proposition 1.1.40, the sheaf R' f.Z on T'\} is isomorphic
to 7' 'R f,Z. Since the formation of the sheaf R!f,(-) is compatible with base change,
7*R .7 is the corresponding sheaf R! f,Z on §). By lemma 2.1, the latter sheaf is isomorphic
to the constant Hecke sheaf Z? on I), where Z? carries the canonical action of My(Z)NGL2(Q)
by left multiplication. ]

Lemma 2.3: The groups Hy(Y;(N)*, Sym" R' f,Z) are free of finite rank, for? being “c” or p”.
The group H(Y;(N)*, Sym" R! £.Z) is finitely generated.

Proof: For ? = p and the final statement see [Conog, Lem. 2.3.2.4] and the comment before it.
The case ? = ¢ will be proved later in proposition 111.2.2 (b). ]

Note that the morphism Y(N) —— Y;(N) from section 1.1 induces a map
Hy(Yy(N)™, Sym" R f.Z) — H}(Y(N)™, Sym" R' /. Z) (2.1)

for ? being nothing, “c” or “p” by lemma 1.11 and the fact that the formation of the sheaf
SymY, R'f.Z is compatible with base change.

We remark at this point that for any abelian group which is flat as a Z-module, we have
canonical isomorphisms

RAZ®A - RfA

and
H (Yi(N)*, Sym" R'f.Z) ® A—— Hy(Y1(N)™, Sym" R' f.A)

by [Conog, Lem. 1.7.7.2]. We will use this in the following without further comment.
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2. Some sheaves on modular curves

2.2. Sheaves of differentials on modular curves
We begin with some algebraic considerations.

Definition 2.4: Let S be a scheme and f: E—— S be a generalised elliptic curve over it
with unit section e: S —— E. Define a sheaf on S by

WE/s = e*QZ-/S.

This sheaf has the following properties:

Lemma 2.5: (a) The formation of the sheaf wg /s is compatible with base change along
anyS’ —— S.

(b) The sheaves Q}E and wgs are line bundles.

/s

1

(c) There is a canonical isomorphism wg;s = f*QE/S.

1
E/S

with base change. For (b) and (c) note that in our case Q}s s is the relative dualising sheaf
for the morphism f; it is denoted by wg/s in [DR73]. With this observation the two claims
follow from [DR73, Prop. 1.1.6 (ii)]. O

Proof: Statement (a) follows easily from the fact that the formation of Q. is compatible

This definition applies in particular when S is a modular curve and E is the universal
(maybe generalised) elliptic curve.

Proposition 2.6: Let Y be one of the modular curves Y.(N)’ we considered. Let X be the
corresponding compactification, let E resp. E be the universal elliptic resp. generalised elliptic
curve overY resp. X, andletC = C.(N)’ = X\Y be the cuspidal divisor. There is an isomorphism

of line bundles on Y

®2

~ 1
Wy — > y

called the Kodaira-Spencer map, which can be extended to X to an isomorphism

® _~ . ol
T Q5 (0).

Proof: This holds in fact on the stack Mm of all (generalised) elliptic curves used also in the
proof of lemma 1.11 by [DR73, §v1.4.5]. So by base change it holds on any modular curve.
See also [KM85, (10.13.10), Thm. 10.13.11].

See [Conoo, §1.5.3, Thm. 1.5.4.1, Thm. 1.5.7.1] for a proof in the analytic setting. O

Now we work in the analytic situation. For the rest of this section let Y denote either
Y(N)™ or Y1(N)*", let X be the corresponding compactification and f: E—— Y the universal
elliptic curve over it. In the following, all sheaves occurring should be thought as living in
the category of sheaves of just abelian groups.

Lemma 2.7: The complex Q3. is a resolution of f1Oy.

/Y
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Chapter II. Modular curves and motives for modular forms

Proof: The question is local on E. The map f is a proper submersion of relative dimension 1,
so it is a family of complex manifolds in the sense of [Voio2, Def. 9.2] and the results from
there apply. By [Voioz2, Thm. 9.3] f is locally on E of the form

DXxY—Y

where D is the unit circle in C. So it suffices to prove the claim for f being the second
projection D X Y —— Y, and we write p for the first projection. By the Poincaré Lemma, QF,
is a resolution of C on D, so p~'Q}, is a resolution of C on D X Y. We have

Q}y =[O0y %p_lQb

by [Har77, Prop. 8.10], so Q3 is quasi-isomorphic to

/
f_IOY % Q = f_IOy. O

Lemma 2.8: There is a commutative diagram of sheaves on Y

RI£,Q°

1 °
R £.QF E/Y

| |

RIL.C —— RIf.C@c Oy

in which the vertical maps are isomorphisms.

Proof: In the diagram of sheaves on E

0 C Og QL 0

N

0*>@®Qf_1(9y — O — Q}E/Y — 0

the rows are exact by lemma 2.7 (and the usual Poincaré lemma), and it is obvious that
both squares commute. Hence we get a commutative square of morphisms of complexes of
sheaves on E

Qp ——

qiSl qiSl
Clo] —— C®¢ f'Oy[0]

in which the vertical maps are quasi-isomorphisms. By applying R!f. to this square and
using the projection formula, we get the desired diagram. ]

3. Hecke operators and related topics

In this section we explain how Hecke operators are defined algebraically. This is very
important because it gives us Hecke actions on (most) cohomology groups attached to
modular curves, compatible with additional structures, whereas the abstract Hecke theory
from section 1.1 is limited to a more concrete setting. The two approaches will be compared
in section 3.3.
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3.1. Diamond automorphisms and Hecke correspondences

We first define certain automorphisms of modular curves giving rise to diamond operators.
These are defined directly as automorphisms of modular curves. For details, see [Conog,
§2.3.1, §4.2.7].

Definition 3.1: Let S be a scheme and let (E, P) be an S-valued point of Y;(N) or X;(N),
given by a (maybe generalised) elliptic curve E—— S and a point P € E[N] of exact order N.
Then for any d € (Z/N)*, dP is again a point of exact order N. The association P —— dP
defines an automorphism of the scheme Y;(N) or X;(N) which we denote by (d) and call a
diamond automorphism (see remark 1.9).

This induces endomorphisms of cohomology groups of X;(N) or Yi(N). If ¥ is any sheaf
on Yi(N) or X;(N) and we are given a morphism (d)*¥ —— ¥, then we get an induced
endomorphism of Hf,(Z , F), where Z stands for X;(N) or Y;(N) and ? is nothing, “c” or “p”.
We denote it again by (d).

Next, we define Hecke correspondences on modular curves and an abstract prototype of
Hecke operators. For simplicity, we restrict to the case of the curve Y;(N) and the modules
attached to it. Similar definitions can be made also for Y(N) and the arithmetic versions,
however we do not give the definitions here but refer to [Del69, (3.13)-(3.18)] for this.

Continue to assume N > 4. We need to study yet another moduli problem for elliptic
curves. For this, let p be a prime. The I;(N, p) moduli problem classifies triples

(E—S,P,0)

with E—— S a generalised elliptic curve, P a (naive) I3(N)-structure and C a locally free
subgroup scheme of order of the smooth locus of E which is cyclic of order p, subject to
some extra conditions. See [Cono7, Def. 2.4.3] for the precise definition. It is representable
over 7 by a proper flat regular curve X;(N, p) which is projective and smooth over Z[1/N].
This follows from [Cono7, Thm. 3.1.7] by exactly the same argument used in the proof of
theorem 1.5. If we restrict to usual (non-generalised) elliptic curve, we get a finite flat regular
subscheme which is affine finite étale over Z[1/N], and which we denote by Y;(N, p). The
universal elliptic curve over it will be denoted by E;(N, p) — Yi(N, p).
We define two maps called degeneracy maps

m: Yi(N, p) — Yi(N),
(E,P,C) — (E,P),

(3-1)
m2: Yi(N, p) — Yi(N),
(E,P,C) —— (E/C,PmodC).
By [Cono7, Thm. 4.4.3] the morphisms 7y, 7, extend uniquely to finite flat morphisms
Iy, T & Xl(N,p) —_— XI(N)
We picture these morphisms in the diagram
Yi(N, p) Xi(N,p)
Yi(N) Yi(N) Xi(N) Xi(N).

(3-2)
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Chapter II. Modular curves and motives for modular forms

Remark 3.2: Since X;(N) is proper over Z by theorem 1.5 and 7; and 7, are finite, hence
also proper, it follows easily that the natural morphism X;(N, p) — X (N) Xz X;(N) arising
from (3.2) is proper. Moreover its image has codimension 1 = dim X;(N), so this defines a
correspondence (see definition 1.3.1) on X;(N) called the p-th Hecke correspondence.

From the above maps we can build a diagram

E/(N.p) 4 E/(N.p)/C
E/(N) Yi(N,p) E/(N)
Yi(N) Yi(N)

(3:3)

in which the squares are cartesian and C is the order p subgroup from the universal I3(N, p)-
structure on E{(N, p). Here ¢ is the canonical quotient map with kernel C, so it may be seen
as the universal p-isogeny.

We now define an abstract prototype of Hecke operators. We are being a bit imprecise
here; one could formulate this in full generality using Grothendieck’s six functors formalism,
but we want to apply this only for the following three types of sheaves: Zariski sheaves,
étale sheaves, or sheaves on the analytification.

Suppose we are given a sheaf # on E;(N) (in this sense) and further a morphism of
sheaves ¢*w,F —— w;F on Ei(N,p) (in our application, there will always be a natural
choice of such a morphism). Using the natural morphism w, — ¢.¢*w;7 (the unit
for the adjunction ¢ + ¢.), we get from this a morphism w; ¥ — ¢@.w;¥. We want to
apply Riu,. to this (for any i > 0). Since ¢ is an isogeny, it is a finite morphism, so ¢, is
exact and we have R(u; o ¢). = (R'uy.) o ¢,.. Using u; = u, o ¢, we thus get a morphism
RluzwyF —— Rlug, w} F. Since the two squares are cartesian, this is the same as a morphism

0" : R f.F — m R LF.
In the situations we described we have further a trace map®
try s H'(M(N, p), () — H'(Yi(N), ).

Here H* means the appropriate cohomology for our situation, i. e. Zariski, étale or analytic
sheaf cohomology. This allows us to make the following definition.

Definition 3.3: The abstract p-th Hecke operator is defined as
T, :=try, 0 ¢" o m; € End(HY(Yy(N), R .9)),
forany g > 0,i > 0 and .

We will study this in more concrete situations in the next section and in section 4.3.

© For the analytic situation see remark 1.1.46. For Zariski cohomology it comes from the construction explained
in [Stacks, Tag oBsy]. For étale cohomology see [SGA4.3, exp. XVII, §6.2].
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3.2. Hecke operators in Betti and étale cohomology

We first apply the abstract definition of Hecke operators in the analytic situation and where
the sheaf F on E;(N)*" is the constant sheaf Z and i = 1. In this situation we have nat-
ural isomorphisms w;7Z = ¢*w;Z = Z since the maps w;, w, and ¢ are surjective, so
we have a natural choice for the morphism w,# —— ¢*w;#. We can of course apply
Sym" for any n > 0 to all the morphisms of sheaves. We then get endomorphisms T}, of
HI(Y;(N)™, Sym" R! £,Z) for ? being nothing, “c” or “p”. Further, it is easy to see that on
Y1(N)2® there is an isomorphism of sheaves (d)*R'f,Z = R'f.Z, so we get also diamond
operators on HY(Y;(N)*", Sym" R! £, Z).

Let now O be the ring of integers in a finite extension of Q,. We can then look at
étale cohomology of modular curves with coefficients in O/p’ (for integers t > 0) and
sheaves constructed out of this, and by taking the limit we can take O as coefficients. Totally
analogously as in the analytic situation described above, we can define Hecke and diamond
operators also on these étale cohomology groups.

«_»

Proposition 3.4: For ? being nothing, “c” or “p”, there are canonical isomorphisms of O-
modules .
Hy((N)™, Sym" R' £.0) = Hj, ,(Yi(N) é Q,Sym" R'£.0).

These isomorphisms respect the Hecke operators T, and the diamond operators. The natural
action of Gq on the right hand side commutes with these operators.

Proof: The comparison theorem of étale cohomology and its variant for compact support
[SGA4.3, Exp. XI, Thm. 4.4; Exp. XVII, Cor. 5.3.5] show that the left hand side is isomor-
phic to Hlét’?(Yl(N) xq C,Sym" R'f,©). That this in turn is isomorphic to Hét’?(Yl(N) XQ
Q, Sym" R £,0) follows from the smooth base change theorem in étale cohomology, see
[SGA4%, Exp. V, Thm. 3.2 and Cor. 3.3].

That the isomorphisms are compatible with the Hecke operators is clear by construction.
The final statement is also clear since the Hecke correspondences and all the maps involved
in the definition of the T,, operators and the diamond operators are defined over Q. O

Of course, one can perform similar constructions also with Y(N) instead of Y;(N), but we
omit this since we did not introduce Hecke correspondences in this context.

3.3. Comparison with the abstract Hecke theory
By lemma 2.2, we have an isomorphism
Sym 2R, Z = #fSym* 2 72

of Gr-sheaves on Y;(N)®® = I'\b, and Sym*~2 Z? is a Hecke sheaf on b). Hence as explained
in section 1.1.7, we have an action of the abstract standard Hecke algebra H(N) on its
cohomology groups. The purpose of this section is to prove that this gives the same action
as the definitions from the previous section.

In case of the diamond operators, it suffices to check that for d € (Z/N)* the auto-
morphism (d) of Y;(N)*" corresponds under the identification Y;(N)*® = I;(N)\D to the
automorphism of I3(N)\) induced by the action of a matrix o4 € SLy(Z) with

-1
ogq = (d d) mod N
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on b. This can be checked explicitly using the modular description of points on b, see e. g.

[DSos, p. 175].
We now discuss the T, operators. Put

(10
a-—op,

O, = a 'Ii(N)a NT}(N) and % = ad,a”'. It is easy to see that &, = FIO(N,p) and
O% =T o(N,p) = [1(N) N IH(Np). Further abbreviate I' = I3(N). We then have a diagram

Dy \h —— D\D

o r (3.4)

in which the vertical maps are the canonical projections and the map in the top row is
induced by the action of a on I). Note that the latter map is an isomorphism with inverse
given by the action of o' (because aa' is a scalar matrix, which acts trivially on b).

The analytic I3 (N, p)-moduli problem from section 3.1 can also be solved by a quotient of
the upper half plane, as stated in the following theorem. Note the similarity to theorem 1.13.

Theorem 3.5: There is a commutative diagram of analytic spaces

Ei(N,p)™ — @4 \Epat

| |

Yi(N, p)™™ —— @ \b

in which the horizontal maps are isomorphisms. The class of a point t € ) corresponds to the
triple (E;,1/N, C;) where E, is the complex elliptic curve C/[1, t] (with [1, t] again denoting
the Z-sublattice of C generated by 1 and t) and C, being the subgroup of E; generated by t/p.
In the diagram (3.4), the maps s, and s* o a: ®,\b —— T'\D correspond to the maps /m and 7,

from (3.1).

Proof: That there is a bijection of sets is easy to see. This is stated e. g. in [DSos, Ex. 1.5.6], as
well as the final statement about the projections. That the maps are analytic isomorphisms
can be seen as in the proof of [Conog, Thm. 4.2.6.2]. [l

~

Denote the isomorphism Yi(N, p)** —=— ®,\b by p. This allows us to extend the diagram
(3.4) to
Ei(N,p)™ —— ®a\Erar —— ¥\ Frar

o | ..

Yi(N, p)*" Bo\h) —— B¥\h > Ki(N,p)™

| ) - E |

Yj(N)y*™ ———— T\ I'\h ——— Yy(N)™.
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The map a: ®y\Ep ot —— P*\ELa has degree p, and in the fibre over some 7 € b, it is just
the quotient map E; —— E;,, whose kernel is the subgroup C, generated by 7/p. Hence
this map is a model of the universal p-isogeny. Further it is easy to see that the square

(Da\ELat I 1—‘\ELat

|
®\h
o |~

P\ —— T\
is cartesian, so the left vertical map corresponds to v. This allows us to complete our previous
diagram to

¢

T

Ey(N, p)™ ——— @ \Epyt ——— ®*\Epat —— (Es(N, p)/C)*™

] | e I

Yi(N, p)* Dp\h —— DU\ ——— Vi(N, p)*

I S

ni(N)* I'\h I'\D - Yi(N)™.

(3-5)

This diagram includes the (analytification of the) diagram (3.3).

Using this diagram, the definition of the T, operator from definition 3.3 and proposi-
tion I.1.47, one can see that the action of T, on H(Y;(N)™, Sym* 2 R! £,Z) corresponds to
the action of the element T,, € H.(N) on H' If’ 7l Sym*=2 7?2), for each i > 0. We omit the
details necessary to verify this.

Henceforth we view H!(Y;(N)**, Sym =2 R!f,Z) as modules over H,(N). This gives a
definition of operators T, for any n € IN.

3.4. The Atkin-Lehner involution

Over Z[un], the curve Y;(N) carries an important involution which enriches the theory of
modular curves. We define it here and briefly state important properties. Similar definitions
are made in [DR73, §v1.4.4], [KM85, §11.3] or [Conog, §2.3.6], but not precisely in our setting.
Our exposition follows [FK12, §1.4.2].

Recall from remark 1.4 (d) that over Z[uy] there is a canonical isomorphism of modular
curves

. nai ~ rith
on: iNYjzr = YNz

There is another isomorphism between these modular curves which will be important.
We define
wn: Y ( N)arlth Y, ( N)nalve

as the unique morphism which is given on points over Z[1/N] as follows (see remark 1.9).
Let (E,a) € Yi(N)™™(S), so E—— S is an elliptic curve and a: iy —— E[N] is a closed
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Chapter II. Modular curves and motives for modular forms

immersion. We then define
wn(E,@) € KNP (5) = (E [im(a) . B)

where f sends 1 € Z/N to the unique element e € E[N] such that enx(«({), e) = {, where {
is an N-th root of unity and ey is the Weil pairing.

The resulting endomorphisms wy o vy} of Y;(N arith

/Z[pN]

naive

/Zlun are

, and vy o wn of Yi(N
in fact involutions.

o . ; -1 naive -1 arith
Definition 3.6: The endomorphisms wy o vy, of Yi(N 17w and vy o wy of YI(N)/Z[HNJ
are called Atkin-Lehner involutions.

Following a common convention, we denote them again just by wy because we will
hardly ever use one of the isomorphisms vy or wy alone. We hope that this will not cause

any confusion.

One can show that there is an equality of automorphisms
wy o (d) = (d)owy

for any d € (Z/N)*.

As in the case of diamond operators, the Atkin-Lehner involution induces endomorphisms
of cohomology modules attached to Y;(N). For example we get an endomorphism wy of
Hi(Y;(N)™, Sym*~2 R! £,Z) for any k, i > 0 and ? being nothing, “c” or “p”, as we now explain.
Look at the diagram

E(N) —— E(N)/C — Ey(N)

I

Yi(N) —— Y;(N)

where C is the image of the universal I3(N)-structure on E;(N) and the square is cartesian.
This induces a morphism (see [Stacks, Tag 02N7])

wyR'iZ — R'g.y*Z — R'9.Z— R'£.Z

of sheaves on Y;(N)® and thus an endomorphism of Hi(Y;(N)*", Sym* 2 R!f,Z). It is im-
portant to note that this endomorphism is not an involution: we have wi = (-N k=2 as
endomorphisms of HY(Y;(N)*", Sym*~?R'£,Z) by [Conog, Lem. 2.3.6.1], so it is not even
invertible. This may seem surprising, but the reason is that the top map E;(N) — E;(N) in
the diagram above is no longer an isomorphism, it has degree N.

Lemma 3.7: Under the isomorphism from theorem 1.13, wy becomes the involution of [;(N)\)
induced by the action of the matrix
A -1
NTAN

Proof: [Conog, §2.3.6] [l

onb.
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4. Modular forms

The matrix wy is the standard Atkin-Lehner element of level N from definition 1.1.60. By
lemma 2.2 and corollary 1.1.43, there are isomorphisms

HY(Y(N)*™, Sym* 2 R! ,Z) = Hl(%, 7L Sym*~2 7?) =~ HY(T, Sym*~2 7?). (3.6)
) 2y =
On rightmost space the matrix wy defines an endomorphism, as explained in section I1.1.6.
Under the isomorphism (3.6), it corresponds to the one we defined before on the leftmost
space.
Inspired from lemma 1.1.36, let us define the following:

Definition 3.8: Define endomorphisms of H}(Y;(N)", Sym*2R!£,Q), for ? being nothing,
“C” or “p”’ by put‘tlng
T! = wyTown, {(d)' = wy{d)wn.

Define analogous endomorphisms in étale cohomology.

Note that since we used Q as coefficients, the Atkin-Lehner endomorphism wy is in fact
invertible on H%(Yl(N )™, Sym* 2 R £,Q), so the above is well-defined. Moreover, it is clear
that these endomorphisms correspond under the isomorphism (3.6) to the ones with the
same name defined in definition 1.1.62 (b). As endomorphisms of H%,(Yl(N )™, Sym* 2 R'£.Q)
we have (d)! = (d)"! and T} = (n)"'T,,, see (1.1.9) and [Miy89, Thm. 4.5.4 (1)].

4. Modular forms

In this section, when we write “ring” we will always mean a commutative ring.

4.1. Definition(s) of modular forms

LetT C SLy(Z) be a congruence subgroup and k > 2 an integer (we will not consider weights
less than 2 in this work). The classical way to define modular forms (of weight k and level
T') is to view them as holomorphic functions on the upper half plane f: ) —— C satisfying
the transformation rule f[y]x = f with respect to elements y € I' (where [-]x was defined in
example 1.1.24) and such that the limit

Jim_ f1y Ik (iy)

exists for all y € SLy(Z); if the latter limit is always 0, then they are called cusp forms. We
denote the C-vector spaces consisting of classical modular resp. cusp forms by My(T") resp.
Sk(T); we will however rarely use them. Here we shall define modular forms algebraically
using the modular curves introduced before, which makes the arithmetic nature of modular
forms more apparent. The resulting spaces will be denoted slightly differently to distinguish
them from the classical modular forms.

From now on, we fix a level N > 4 and a weight k > 2 for the whole section. Let X be
one of the modular curves X,(N)’, with * being nothing or “1” and ? being “naive” or “arith”,
and let E be the universal generalised elliptic curve over it. Let Y be the corresponding open
modular curve and E the universal elliptic curve over it. Let C = X . Y be the cuspidal
divisor. Further let R be any ring, and write X, g := X Xz R and for a sheaf ¥ on X, we write
F/r = p*F for the pullback of # to X/g along the projection p: X Xz R— X.
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Chapter II. Modular curves and motives for modular forms

Definition 4.1 (Modular forms): (a) The R-module of weight k modular forms on X is
defined as

— 170 k-2 1
Mi(X.R) = H (X, (0, © Q)

(b) The R-module of weight k cusp forms on X is defined as

110 k-2 1
Sk(X.R) = H'(Xg. (w0 e Qx)/r)-

It is clear that Si(X, R) is an R-submodule of Mi(X, R).

Proposition 4.2: IfR is aring and S is a flat R-algebra, then we have natural isomorphisms

Mp(X,S8) = Mp(X,R)® S, Si(X,S) =Sk(X,R)®S.
R R

Proof: This follows from [EGA3, Prop. 1.4.15] by choosing X = Xz, Y = SpecR and Y’ =
Spec S there, together with the fact that base changes of surjective morphisms are surjective
[Stacks, Tag o1s1], since the morphism X —— Spec Z is clearly surjective. O

Proposition 4.3: There are canonical isomorphisms

Mi(X.R) = H'(Xg. (0f )/R): - Sk(X.R) = H'(X)k, (wf  (=C))/R).

Proof: This follows from proposition 2.6. O

Remark 4.4: In view of proposition 4.3, we could also have defined modular forms and cusp
forms by the cohomology groups appearing there on the right hand sides. This may seem
more natural at a first glance, but in fact it isn’t (at least for the applications we have in mind).
First, in the way we initially defined the spaces of modular forms and cusp forms, they fit
better with the motivic viewpoint, in that the space of cusp forms is naturally a subspace
of the de Rham realisation of a motive called JZ(W to be introduced in section 5 below (see
proposition 5.9 and the comments after it), and the definition of the Eichler-Shimura map is
also more natural in this context (see section 6.1.1). Second, the definition of Hecke operators
looks more natural in this description, see section 4.3 below.

Proposition 4.5: For a ring R the R-modules M (X, R) and Si.(X, R) are free of finite rank.

Proof: By proposition 4.2 it suffices to prove this for R = Z. Of course it suffices to consider
M (X, R). We distinguish the naive and arithmetic modular curves.

The naive modular curves are proper and flat over Z. Since pushforwards of coherent
sheaves under proper morphisms remain coherent, it is clear that My (X, Z) are finitely
generated. So it remains to see that these groups are torsion free. To see this, cover X by
affine schemes Spec Ay, . .., Spec A,. Then M (X, R) embeds into the direct sum

HO(SpeCAl, w%/X|SpecA1) ©--- D HO(SPECAH wg/X|SpecAr)
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4. Modular forms

and it suffices to see that these summands are torsion free. Since X is flat, the A; are flat

Z.-modules. Since the sheave w%/x is a line bundle, it is flat over A,, hence over Z, and the

claim follows.
For the arithmetic modular curve the statement follows from the g-expansion principle
below, see theorem 4.15 and remark 4.16. O

We now explain another way to define modular forms, which often goes by the name
“Katz modular forms” or “geometric modular forms” in the literature, see for example [Kat73,
§§1.1-2].

To begin with, let X be a scheme and # a sheaf on it. Then giving a global section
s € H(X, F) is equivalent to giving the following data: for each scheme f: Xy —— X over
X a global section sf € H(Xy, f*F) subject to the obvious compatibility relations: if we
have morphisms

Xpog — X Lo x
and sy € H(Xy, f*F) and sfoq € H(Xfog, g* f*F) are the attached global sections, then the
natural map

H(X¢, f*F) — H' Xfog. 9" f*F)

should send s¢ to sfog. This is true for trivial reasons: any global section s € H'(X, ¥)
produces such a collection of compatible global sections on all X-schemes by pulling back,
and any such collection gives a global section s = siq, on X by looking at id: X — X, and
these two processes are obviously inverse to each other.

If now X represents some set-valued functor £ on Scf,7 then giving an X-scheme is
equivalent to giving an element of P(X), so global sections in H(X, ¥) are equivalent to
compatible global sections parametrised by $(X).

Let us now come back to the situation where X is a moduli scheme of elliptic curves with
level structure as before. Then since formation of the sheaves wg,, and QY is compatible
with base change, the above discussion easily shows that modular forms in My (X, R) are
bijection with functions associating to each isomorphism class of generalised elliptic curves
E —— Sover an R-scheme S with appropriate level structure a global section of in H’(S, wg / $)
compatible with base change along morphisms of R-schemes in the above sense, and similarly
for cusp forms.

Since any scheme is a sheaf for the Zariski topology,? it suffices to consider affine schemes
S in the above description. If S = Spec A is affine, then since wg/s and Qj are line bundles,
- To QY corresponds to a free rank 1 A-module. This proves the following proposition.

Proposition 4.6 (Katz): The R-module of modular forms My (X, R) is canonically in bijection
with “rules” f which assign to each triple (E/A, w, @) consisting of a generalised elliptic curve
over an R-algebra A, a global section 0 € H°(S, “)5752 ®0; Q) and a level structure ¢ (depending
on what X is) an element f(E/A, w, ¢) € R subject to the following conditions:

(a) f(E/A, w, @) depends only on the R-isomorphism class of (E/A, w, ¢).

7 Of course any scheme represents its own Hom functor. This is most interesting when # is a reasonably
interesting moduli problem. Moreover, this can be used to define global sections on functors which are not
representable.

8 More precisely, we mean that the functor of points Hom ;(—, S) of a scheme S is a sheaf on the big Zariski
site, 1. e. the category of all schemes with covering families being jointly surjective families of Zariski open
immersions.
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Chapter II. Modular curves and motives for modular forms

(b) f is homogeneous of degree k in the sense f(E/A, Aw, ¢) = AF f(E/A, w, ¢) for A € R.

(c) Ifg: A—— B is a R-algebra morphism, then f(E ® 4 B/B, wp, ¢B) = g(f(E/A, v, ¢))
(where wp, pp denote the pullbacks to E @ 4 B).

The above characterisation obviously does not need that the moduli functors for elliptic
curves with level structures are representable. Thus it gives a way to define modular forms
also for small level.

Remark 4.7: In some texts, modular forms are defined as rules obeying similar axioms
as in proposition 4.6. Many texts do not use generalised elliptic curves as above, but just
usual ones, and call the resulting objects meromorphic modular forms. Using the theory of
g-expansions, one then defines holomorphic modular forms as the ones whose g-expansions
are power series (see section 4.2). The element w is often replaced by a nowhere vanishing
translation invariant differential® w on E. The reason for this is that for a usual elliptic
curve f: E—— S, for each global section wy € H’(S, wg/s) there exists a unique translation
invariant differential » € H(E, Q}E / ) such that e*@ = wo, see [BLR9o, Prop. 4.2.1].

We end this section by briefly explaining why the spaces of modular forms introduced
before give back the classical definition from the beginning of the section if we specialise to
R = C and X = X{(N). For details see [Katog, §3.8] or [Conog, §1.5].

By GAGA it is clear that Sg(X;(N), C) is isomorphic to the corresponding cohomology
group on the analytification of X;(N), with the corresponding analytic sheaves of differentials
(this is the definition given in [Conog, Def. 1.5.7.3]). Using the cartesian diagram

Erat — Ei(N)™®

|

h —— n(N)™

we can pull back modular forms to ). More precisely, we obtain a map

~ 10 k-2 1
SkXa(N). ©) = HECG(N)™, (@ vy ) ™) ) 8 Q) —

XNy

HO(Yi(N)™, (@F, (v v)™) ) —— HO(b, (g, 5)"),

with Ep, as in section 1.2 and wg,, j = ( fLat)*QlELat b The latter sheaf is still a line bundle
and thus globally trivial since [ is contractible (see [/Conog, §1.2.2, esp. Lem. 1.2.2.1]), and if
we write (z, 7) for the standard coordinate on C X b and recall that Ej . is a quotient of C X
we can write the pullback of an f € My (X;(N),C) to b as

f(2rmidz)®*

with a holomorphic function f on b. The function f satisfies the usual property

fyo) = (cr + df f(r) fory = (jf Z) € T(N)

9 See [BLR9o, §4.2] for the precise meaning of “translation invariant differential.”
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4. Modular forms

because the form f (2ridz)®* has to be I}(N)-invariant. This pullback establishes an isomor-
phism between My (X;(N), C) and the space My (I7(N)) of classical modular forms for the
group I3(N) as defined before.

Note that the above works for both X;(N)™¥¢ and X;(N)2h since they are isomorphic
over C. However if we replace X;(N) by X(N)"¥"¢, then the space M (X(N)"@Ve, C) is not
isomorphic to the space of classical modular forms for the group I'(N), but rather to a direct
sum of ¢(N) copies of it, where ¢ is the Euler function. The reason for this is explained in
remark 1.14 (b). If we use X(N)*"" instead, by remark 1.14 (c) we do get the space of classical
modular forms for the group I'(N).

From now on we will use the classical viewpoint as well and we will switch freely
between the viewpoints without further comments, thus identifying f with f as above if we
are working over C. With the link to the classical situation we have at once all theorems
from the classical theory at our disposal. Some of these will be cited during the next sections,
using that we now know how to translate between the viewpoints.

4.2. The Tate curve and g-expansions

The Tate curve Erye is a generalised elliptic curve over the ring Z[q]| which has certain
special properties and therefore plays an important role. It can be given explicitly as the
curve in IPZZ[q] defined by a certain equation [Dlgs, Ex. 8.1.3], but there is a more conceptual
construction due to Raynaud using formal schemes and algebraisation which is explained in
[DR73, §vir.1] and [Cono7, §2.5]. In this description the Tate curve can also be viewed as a
quotient of G, over Z[q].

We do not repeat the construction here, but we just list the properties we need. These are

stated in [KM85, §8.8], [DR73, chap. VII, (1.16.1—4)] and [Cono7, §2.5].
Fact 4.8: The Tate curve Etye has the following properties:

(a) Over Z(q) it is a smooth elliptic curve and its fibre over ¢ = 0 is a Neron 1-gon.
(b) It carries a canonical translation invariant differential wrate.

(c) For each N there a short exact sequence of group schemes over Z.(q)

anN

b
04’,UN4’ETate[N]4N’ Z/N —0
such that for any Z(q)-algebra R, any { € un(R) and any x € Etye[N](R) we have

en(an({),x) = (PN

arith

Corollary 4.9: (a) The Tate curve has a canonical arithmetic [y(N)-structure o3, 7.

naive

(b) Over Z[ qll ®z Z[{N] the Tate curve has a canonical naive I1(N)-structure p13"°.

Proof: Claim (a) follows from fact 4.8 (c). Claim (b) follows from this since yy and Z/N are
canonically isomorphic over Z[un]. (]

Hence (Etate, WTates qo?Tate) with ? being “arith” or “naive” is a triple as in proposition 4.6,
and we can evaluate modular forms at this triple.
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Definition 4.10: Let ? be either “arith” or “naive”. Let R be any ring in the first case and a
Z[{n]-algebra in the second case.

Let f € Mi(X1(N)?, R). We call f(ETates WTates (p?Tate) € R[[q] the g-expansion of f. We call
the resulting map

g: McCG(N)', ) — Rlgl, [ —— f(Etater @Tater PTase)

the g-expansion map. The coefficients of the power series are called the Fourier coefficients of
f- We call f normalised if the coefficient of ¢! in its g-expansion is 1.

For the T'(N)-moduli problems (both naive and arithmetic), one can of course also define
g-expansion maps, however there are no canonical ones. For the I7(N)-problems there are of
course also more (non-canonical) g-expansion map, one for each choice of a level structure.
We will not need these other g-expansion maps.

Remark 4.11: The following viewpoint on g-expansions is also important. Let again ? be
either “arith” or “naive”. Write as abbreviations Z’ to denote Z in the first case and Z[{y]
in the second case, and Z[q]’ to denote Z[ q] in the first case and Z[q]| ®z Z[{n] in the
second case. Let R be a Z’-algebra.

The pair (Etate, (p7Tat6) corresponds by the universal property of the modular curve X;(N)’

to a morphism Spec Z[[q]]" —— Xi(N)’. Pulling back a given f € My(X;(N)’, R) along this
morphism gives rise to a global section

’ 0 ? x 1 k
f* e HiSpecR 8 ZIql). (" Qp, o, . (ve,z1q1) (R, Z1q1)) 1)
The latter is a free R ® > Z[q]]’-module of rank 1 and a)llfate is a canonical basis. Then g(f) is

the unique element in R ®, Z[q]’ such that £’ = ¢(f )w%te.

Lemma 4.12: Let ? be either “arith” or “naive”, and let Z[q|’ be as in remark 4.11. Let
00y € X1(N)’ be the image of the prime ideal (q) under the morphism Spec Z[ q]" — Xi(N)*
from remark 4.11. Then co5 is a cusp of X;(N)’, i.e. 0o, € C;(N)’.

Proof: We have to show that oo is not contained in Y;(N)’. For this it suffices to see that
E((N)’ is not smooth over co,. If it were smooth, then by base change Et,te would be smooth
over (g). But this is not the case by fact 4.8 (a). O

Definition 4.13: We call oo, the cusp at infinity of X;(N)’.

Corollary 4.14: Let ? and R be as before. If f € Sp(Xi(N)’,R) is a cusp form then q(f) €
qR[ql-

Proof: If f’ is defined as in remark 4.11, then we have

’ 0 ? 1 k
f € H (SpeC(R %7 Z[[q]] )’ (e QETatexz[q]?(R®Z7Z[q]?)/<R®Z7Z[q]?)(_C))/R)

because f is a cusp form. This means in particular that f” vanishes at co; by lemma 4.12,
i. e. the pullback of f” to a global section on Spec(R ®y;: Z[q]l’/(q)) is zero. This means that
g(f) has to be divisible by gq. |

Theorem 4.15 (Katz, g-expansion principle): Let ? and R be as before. Then the following
hold:
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(a) The g-expansion map q: My(X1(N)’,R) — R[[q] is injective.

(b) IfS C R is a subring resp. a Z|{n]-subalgebra, then the diagram

Mi(Xi(N)",8) — S[[q]

1| |

Mi(X1(N)",R) — Rlq]

is cartesian. It other words, a modular form f € My(Xi(N)’, R) comes from a modular
form in Mg(X1(N)*,S) if and only if its Fourier coefficients lie in S.

The analogous statement for cusp forms instead of modular forms is also true.

Proof: See [Dlgs, Thm. 12.3.4] for the case X = X;(N)™". The other case follow from this
since X;(N)™¢ and X;(N)! are isomorphic over Z[{n]. O

Remark 4.16: For the modular curve X(N)*™", we also have a g-expansion principle (over

Z) similar to the one in theorem 4.15; see [Hid86b, p. 237]. We will not need this.

In the case R = C our notion of g-expansion as introduced above coincides with the
classical g-expansion of modular forms defined via the theory of Fourier series. Using the
description in remark 4.11, this follows from [Conog, §1.6.6, Def. 1.6.6.1, Thm. 1.6.6.2] (note
that the analytification of our Tate curve Eru is denoted “Tate,” there, see [Conog, Cor.
1.6.2.6 and its proof], and that the integer h there is 1 in our case).

Corollary 4.17: Fora subring R of C, let My (I3(N), R) be the R-submodule of classical modular
forms My (I1(N)) whose Fourier coefficients lie in R.
Then My(Xy(N)®™, R) is canonically isomorphic to Mg(Iy(N), R). For an arbitrary commu-
tative ring R we have
M(X(N)*™, R) = Me(Ty(N), Z) & R.

Analogous statements hold also for cusp forms instead of modular forms.

The g-expansion principle is the main reason why one considers arithmetic level structures.
The analogous statement for corollary 4.17 over X;(N)"¥¢, namely that for any subring R
of C (in particular R = Z) the R-module M (X;(N)"V¢, R) is canonically isomorphic to the
R-submodule of classical modular forms M(I3(N), C) with Fourier coefficients in R, is false,
see [Cono7, Rem. 4.4.2]. The problem is that the cusp cop,ive Which belongs to the Tate curve
is not defined over Z in this case, but only over Z[ ], while for X;(N)2ith
defined over Z; see also [DIgs, Rem. 12.3.6].

the cusp cogyi, s

4.3. Hecke and Atkin-Lehner operators on modular forms

We now study Hecke operators on modular forms. For simplicity, we restrict our attention
to X;(N), since we did not introduce Hecke correspondences for X(N). Everything we do in
this section works similarly also for X;(N)ith,

So we go back to the setting from the end of section 3.1 and work with Zariski sheaves

there. We choose ¥ = Q}EI(N)/Yl(N) as the sheaf ¥ on E;(N) from section 3.1, and i = 0
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there. Then by base change, we have w;Q and w; Q

1
Q5 (N.p)/C) Ny SO

1 — Ql 1 —
Ei(N)/Y1(N) Ei(N,p)/Yi(N,p) Ei(N)/Ya(N)

T WE(N)/(N) = QE(N,p)/%i(N.p)» T @E(N)/Hi(N) = O(E(N,p)/C)/¥i(N.p)-
Further ¢ induces a natural map

* 1 1
¢ Qe N.p)/CYN.p) " EWN.p)/MNp)

as required in the definition of the abstract Hecke operators. So we now have the map

Q" T OE(N)/Y(N) — T OE(N)/Ki(N)-
By [Conog, Thm. 4.4.3] it extends to a map

—mn

P T WF (N)/Xy(N) WE,(N)/X:(N)

of sheaves on X;(N, p). Hence we can apply the construction from section 3.1 to get endo-
morphisms of cohomology groups on X;(N).

However, there is one subtlety when we apply this to modular forms: we do not just
take k-th tensor powers of the above construction, but we rather take (k — 2)-th tensor
;1 (N’ In this way we get endomorphisms of My (X;(N), Z)
and Si(X1(N), Z), and by base change also for other coefficient rings. The reason to do this
is explained in remark 4.4. For the definition of Hecke operators on H(X;(N), wgl( NY/X( N))
using k-th powers the isomorphism from proposition 4.3 is not Hecke equivariant, rather

the T, on My (X (N), Z) corresponds to pT;, on HO(X1(N), a)él(N)/Xl(N)) (see [Cono7, §4.5]).

Since for d € (Z/N)* we have a canonical morphism QlEl(N)/Y](N) — <d>*Q}€1(N)/Y1(N)’
we get also diamond operators on modular forms, i. e. we have an action of (Z/N)*.

One can prove that this definition of Hecke operators gives back the classical definition on
the complex analytic fibre. This is shown during the proof of [Conog, Thm. 2.3.3.1]. Therefore
we can now view Mg (Xj(N), R) and Si(X;(N), R) for any commutative ring R as modules

over the standard Hecke algebra H, (N)g.

powers and then tensor with Q

Definition 4.18: Let ® C (Z/N)* be a subgroup and £: ® —— R* be a character.

(@) If f € Sk(X1(N), R) is such that the action of ® on f is given by the character ¢, then
we call € the nebentype of f with respect to .

(b) We denote by Si(X1(N), d, ¢, R) the submodule of Si(X;(N), R) of forms which have
nebentype ¢ with respect to ®. If ® = (Z/N)* we write just Si(Xi(N), ¢, R).

If the order of @ is invertible in R, we have a decomposition

Sk(X(N), R) = EP) Sk (Xu(N), @, &, R)

where ¢ runs over all characters of ®.
In most situations we will consider only the case ® = (Z/N)*.
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Definition 4.19: Let f € M (Xj(N), R). Then f is called an eigenform if it is an eigenvector
of all T, for p prime and of all diamond operators (d) with d € (Z/N)*. By lemma 1.1.68 this
is equivalent to f being an eigenvector of all T, for n € IN. It is called an eigenform away
from the level if it is an eigenvector of all T, for all primes p { N and of all diamond operators
(d) with d € (Z/N)*, or again equivalently an eigenvector of all T,, for (n, N) = 1.

We now look at the Atkin-Lehner involution. Similarly as explained in section 3.4, we
get an Atkin-Lehner endomorphism wy of spaces of modular forms like Si(X;(N), R) for a
Z[un]-algebra R (which is not an involution, of course). Note that since we now work over
Z[un], the naive and arithmetic modular curves are isomorphic.

From definition 3.8 we see that if f is an eigenform, then so is wy f. However it need not
be normalised even if f was normalised.*®

Definition 4.20: Let R be a Z[un]-algebra. For a normalised eigenform f € Si(Xi(N), R)
we define the dual eigenform f* to be the unique normalised eigenform which is a scalar
multiple of wy f.

Proposition 4.21 (Li): Let K be a Galois number field containing the N-th roots of unity, and
fix an embedding K C C. Let f € S(X1(N),K) be a normalised eigenform and write

q(f) = Z anq", ape€C.
n=1
Then
() =) anq",
n=1

where a,, is the complex conjugate of ay,.

Proof: Define a cusp form f € Si(X;(N), K) by its g-expansion

[0

q(f) =D ang".

n=1

This definition is also made at [Li7s5, top of p. 296]. The notation there is different: our f is
denoted f|K there and our wy f is denoted F|Hy there. Then at [Li75, bottom of p. 296] it
is shown that f is again an eigenform and that wy f is a nonzero multiple of f . Since f is
obviously normalised, we must have f = f*. (]

Definition 4.22: Let K be a number field and fix an embedding K € C. Inspired from
the above proposition, we define for any f € Si(Xi(N), K) the dual cusp form to be the
f* € Sp(X1(N), K) such that

(o)

q(f) =) anq".

n=1

Similarly we define f* for f € Sg(X(N), K).

10 Note that we defined the property “normalised” in terms of g-expansions, so we really need to work over a
Z[un]-algebra here.
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4.4. Hecke eigenalgebras and their duality to modular forms

Let R be a ring. For simplicity we assume in this section that R is noetherian and flat over Z,
although some statements below are still true for general R (see the references for this). In
our applications R will always satisfy these requirements.

Definition 4.23: Let ® C (Z/N)” be a subgroup and e: ® —— R* be a character, and
write X for either X;(N) or X;(N)™¥¢, We introduce the following notations for Hecke
eigenalgebras, using the notation from section 1.1.9:

. Ti(N,®@,¢,R) = T NI\ (X, @, 6,R))
A L
. TL(N,®,¢&,R) = T ™M (v (X, 0,6, R))

In the case ® = (Z/N)* we again omit ® from the notation, and in the case ® = {1} we
omit both ® and ¢ from the notation (i.e. Tx(N,R) := TEQAI(N)’F‘(N))(M;C(X, R)) and so on).
Analogously we can define eigenalgebras with modular forms replaced by cusp forms, and
we denote these in the same way with “T” replaced by “t”.

Note that our notation is not really well-defined yet, because on the right hand sides we
could choose X to be either X;(N)2th or X;(N)™Ve, But we will see below in lemma 4.25
that the Hecke eigenalgebras for both versions of the modular curve are in fact canonically
isomorphic, so we do not distinguish them notationally.

Since the R-modules of modular resp. cusp forms are finitely generated by proposition 4.5,
their endomorphism rings are also finitely generated as R-modules, and hence so are all the
Hecke eigenalgebras defined above.

All these are quotients of the abstract standard Hecke algebra of level N, H..(N)g, resp.
the adjoint abstract standard Hecke algebra of level N, H,(N),. We denote the images
of T, S¢ € Hi(N) and T, € H,(N)' in these eigenalgebras still by the same symbols. By
lemma 1.1.68 they contain the diamond operators (d) for d € (Z/N)*, and they are generated
by these and the T, for all primes p and also by all T;, for all n € IN.

Lemma 4.24: IfS is a noetherian flat commutative R-algebra, then there is a canonical iso-
morphism
Tk(N,R) ®S5 —— Tk(N.,5),

and similarly for all the other Hecke eigenalgebras defined above.
Proof: This follows immediately from proposition 4.2 and lemma 1.1.65. |

Lemma 4.25: The Hecke eigenalgebras do not depend on whether we choose the naive or
arithmetic version of X1(N) in their definition. If we define

Ti(N,R) = TNV (|l (v (N)2", Symk~2 RU£,R)),
(N, R) = T TN HL (v (N)™, Sym* 2 R'£.R)),

then there are canonical isomorphisms
t(N.R) = t(N.R), Tr(N.R) = Ti(N.R).

Similar statements hold also for the other Hecke eigenalgebras introduced in definition 4.23.
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4. Modular forms

We will prove this lemma later in section 6.1.4. Hereafter we identify the Hecke algebras
from above which are isomorphic.

We now introduce an important pairing. To begin with, we define for each n € IN a linear
form a,,: Sp(Xy(N)ith, R) —— R as the composition

SLCGINY™®, R) —L, Rl[q] — R,

where the right arrow maps a power series to the coefficient at ¢".

Lemma 4.26: Let f € Si(Xy(N)™™, R) and p be a prime.

(a) We have a\(T,, f) = an(f).
(b) If f is an eigenvector of T, with eigenvalue a € R, then a - a;(f) = an(f).
Proof: (a) By proposition 4.2 and R-linearity of the involved maps, it suffices to consider

the case R = Z. In this case the claim follows from the classical formulas for the
action of Hecke operators on Fourier coefficients [Shi71, (3.5.12)].

(b) Using part (a) we get a - a1(f) = ai(T,f) = an(f). O
Corollary 4.27: (a) If f is a normalised eigenform, Si.(X;(N )™, R)[f] is free of rank 1
over R, generated by f.

(b) Normalised eigenforms in Si(Xi(N)™™" R) are in bijection with R-valued points in
Spec ti(N, R). The bijection maps f € Si(X;(N)*", R) to the morphism t;(N, R) ——
R sending a Hecke operator to the corresponding eigenvalue.

Proof: We have

an(9) = ai(Tng) = (9, Tn) = (Tng, T) = an(f){9. T1) = ar(g)an(f)

foralln € N, so by the g-expansion principle (theorem 4.15) it follows g = a;(g) f. This proves
the first statement. It follows that normalised eigenforms are in bijection with systems of
Hecke eigenvalues that appear in S (X;(N)**, R) (see definition 1.1.66). By proposition 1.1.67,
these are in turn in bijection with R-valued points in Spec ti (N, R), so we also have the second
statement. (]

For @ and ¢ as before, we now define a pairing
() SEXN)™™, @, £, R) X tx(N,®,&,R) — R, (f,T) — ai(Tf).  (4.1)

This pairing is obviously bilinear and Hecke equivariant in the following sense: for T, T, €
t(N,®,6,R) and f € Si(Xy(N)™ @, ¢, R) we have (T, f,T,) = (f,T,T;). The following
important fact is derived essentially from the g-expansion principle.

Theorem 4.28: The pairing (4.1) is perfect.
Proof: [HidMFG, Thm. 3.17] O

Thus Sk(Xl(N)arith, ®, ¢, R) can be identified with Hompg(tx (N, @, ¢, R), R), where “Hompg”
means morphisms of R-modules, and the normalised eigenforms correspond under this
identification to the morphisms of R-algebras.
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Corollary 4.29: The Fourier coefficients of any f € Si(Xy(N)*™, R) lie in a finitely generated
Z.-submodule of R, and if f is a normalised eigenform, then they lie in a subring which is finitely
generated over Z and hence integral.

Proof: This follows from theorem 4.28 since ti(N, R) is a finitely generated R-module and
Homg(tx(N, R), R) = Homz(tx(N, Z), R). 0

Remark 4.30: If R is a domain of characteristic 0, then one can always view the Fourier
coefficients of any f € Si(Xy(N)h R) as lying in some subfield of C by choosing some
embedding, so one can view such modular forms as classical ones.

4.5. Newforms

Definition 4.31: Let X be one of the modular curves X,(N)’ with * being nothing or “1” and
? being “naive” or “arith” and R be a commutative ring. Let f € S¢(X, R) be nonzero. Then
f is called a newform if it is a normalised eigenform and moreover the following property
holds:

There do not exist a proper divisor M | N, a finite ring extension S of R
and a g € Sg(X, S) which is an eigenform of almost all Hecke operators (4.2)
with the same eigenvalues as f.

Newforms are usually studied in the classical context of the theory of Atkin, Lehner and
Li, and they are sometimes also called “primitive forms”. This theory is exposed in [Miy89,
§4.6], and we first explain why our definition of newforms agrees with the definition of
primitive forms there if R = C and X = Xj(N).

If f € Sp(X4(N),C) is a primitive form in the sense of [Miy89, p. 164, bottom], then
by definition and [Miy89, Thm. 4.6.13] it is a normalised eigenform. If property (4.2) was
violated, i. e. there would exist M and g as there, then by [Miy89, Lem. 4.6.2] g considered as
an element of S (X;(N), C) would still have the same eigenvalues as f at almost all Hecke
operators, so by [Miy89, Thm. 4.6.12] it would be a scalar multiple of f, but since it comes
from a lower level, it would follow from the definition of primitive forms that g must be 0,
which is a contradiction. In the other direction, if f € Si(X;(N), C) is not primitive in the
sense of [Miy89], then by [Miy89, Cor. 4.6.14] there exists a proper divisor M | N and an
eigenform g € Sg(X;(M), C) which is an eigenform of almost all Hecke operators with the
same eigenvalues as f, so such an f is not a newform in our sense.

Theorem 4.32: Let K be a field of characteristic 0 and f € Si.(Xy(N)™™, K) be a normalised
eigenform away from the level. Write Si.(X;(N )™, K)[£]’ for the f-eigenspace of the restricted
Hecke algebra H(N)k, i. e. the submodule where the Hecke operators T, for (n, N) = 1 act by
the same eigenvalues as on f. Then the following are equivalent:

(i) f is a newform.

(ii) f is a normalised eigenform away from the level and has property (4.2).
(iii) f is normalised, an eigenvector of T;, for almost all primes p and has property (4.2).
(iv) For each finite extension K’ of K, Si.(Xy(N)™™ K"\ £’ is 1-dimensional.

If these hold, then for each finite extension K’ of K there exists a unique (normalised) eigenform
in Sp.(Xy(N)™th, K”) whose eigenvalues away from the level coincide with the ones of f.
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5. The motives YW and M(f)

Proof: First note that by remark 4.30 we can assume without loss of generality that K is a
subfield of C. This enables us to exploit results from the classical theory.

The implications (i) = (i) = (iii) are trivial. Further if Si(Xy(N)™™ K")[f]" is 1-
dimensional, then all its elements are eigenforms because Hecke operators commute and
hence the space is stable under all Hecke operators, so (iv) implies the final statement.

For the implication (iii) = (iv) we use that in the special case K = C the implication
follows from [Miy89, Thm. 4.6.12] or [DSos, Thm. 5.8.2]; note that the statement there
assumes the stronger condition from (ii), but the proof works in fact with the weaker one
from (iii). For general K, if (ii) holds for f, then it follows from (4.2) that it still holds for f
considered as an element in S;(X;(N)**, C), so Sx(X;(N)**h, C)[ f]’ is 1-dimensional. But
SkCG(N)H K)[ ]’ ®k C € Sp(Xy(N)Mth O)[£] and Sk (X3 (N)™ K)[f]” is non-trivial
since it contains f, so it must be 1-dimensional. This shows (iii) = (iv).

It remains to show (iv) = (i). Over C, this follows from [Miy89, Thm. 4.6.14] and [DSos,
Thm. 5.8.3] (see also [Bel1o, Thm. 1.6.4]). In general, if (iv) holds, then Sy (Xy(N)™, C)[ £’ is
also one-dimensional, hence f is a newform over C. But then f has to be already a newform
over K, which concludes the proof. O

Theorem 4.33: Let K be a field of characteristic 0 and f € Si(Xi(N)**, K) be normalised
eigenform away from the level. Then there is a divisor M | N, a finite extension K’ of K and a
newform fy € Sp(Xy (M), K’) whose eigenvalues for T, with (N, p) = 1 are the same as the

ones for f.

Proof: Again by remark 4.30 we can assume without loss of generality that K is a subfield of
C. Then the result follows from [Miy89, Cor. 4.6.14] O

5. The motives NkW and M(f)

We now introduce a motive called JZ(W which is defined in [Schgo] and a submotive M(f)
which is the motive attached to a newform f. In Scholl’s article the explanation of the
construction is rather brief, but there is a draft of an unpublished book [Schg7] whose
chapter 7 supplies a lot more details and also some motivation; see also [Schog4, §6] for some
motivation. The construction is also given in [Sch88, §v.1] and [Katog, §11.1-3].

As in section 1.3, we can view the motive IZ‘W as given by its realisations and comparison
isomorphisms. In this manner, the motive is described in detail in [DFGog, §1.2], [DFGo1,
§2]. Though, in [Schgo] 1}(’(W is introduced as a Chow motive in the rigorous sense.

5.1. Construction of the motives

Fix N > 4, k > 2. We explain the construction of the motives A,f’W and M(f) following
[Schg7, chap. 7]. To be consistent with great parts of the literature on this topic, we use
the modular curve X(N) below, but it should be clear the same motive M(f) can also be
constructed using X;(N) instead; this approach is taken in [Sch88, §v.1].

In this section we consider the modular curves as curves over @, but often we omit writing
down the base change from Z to Q) explicitly. We define preKS(N, k) to be the (k — 2)-fold
fibre product of the universal generalised elliptic curve E(N) with itself over X(N). It is a
singular projective variety over Q.
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Theorem 5.1 (Deligne, Scholl): There is a canonical desingularisation of preKS(N, k), i.e. a
smooth projective variety KS(N, k) together with a canonical birational projective morphism
KS(N, k) — preKS(N, k) which is an isomorphism on the regular locus.

Proof: [Schgo, Thm. 3.1.0]; [Schg7, chap. 7, esp. §7.4.1] O

Definition 5.2: The desingularisation KS(N, k) from theorem 5.1 is called the Kuga-Sato
variety of level N and weight k.

We have several groups acting here. By remark 1.8, a point in E(N) over @ is a quadruple
(E/S, P, Q, x), where E is a generalised elliptic curve over a QQ-scheme S, P and Q are a basis
of E[N] and x € E(S). If we put (a, b)(E/S, P, Q, x) = (E/S,P,Q,x+aP + bQ) fora,b € Z/N,
then this defines an action of (Z/N)? on E(N) (over Q). Further sending (E/S, P, Q, x) to
(E/S, P, Q, —x) defines an action of {1}, and we get an action of the semidirect product
(Z/N)? x {x1} on E(N). On preKS(N, k) we thus have an action of ((Z/N)? x {+1})*? and
moreover of the symmetric group Si_, permuting the factors. Altogether we now have an

action of
k-2

G(N, k) = ((Z/N)z X {il}) X Sp_y

on preKS(N, k). This action extends to an action on KS(N, k), see [Schg7, §7.4.1].

As indicated at the beginning of section 1.3, a motive may be described by a projective
smooth variety and an idempotent endomorphism (and maybe a Tate twist). Hence the
following is well-defined.

Definition 5.3: (a) Let £: G(N,k) —— {£1} be the character that is trivial on each
factor Z /N, is the product map on {+1}*~2 and the sign on S_,.

(b) Let 7, € Q[T%] be the projector onto the e-eigenspace and define a motive A,f’W =
(KS(N, k), ,). JZ"W is sometimes called the parabolic cohomology motive, see [Schg7,
Def. 7.4.1.1].

One can show (see [Schgo, §4]) that the Hecke correspondences from remark 3.2 extend
to correspondences on KS(N, k) and thus induce endomorphisms of the motive JZ(W . This
defines actions of Hecke operators on NkW, and thus also on its realisations. Further the
action of GLy(Z/N) on E(N) — Y(N) also carries over to endomorphisms of IZ(VV This
raises the question whether it is possible to decompose IZ(W into Hecke eigenspaces.

Now fix a newform f € Si(X;(N), K) with coefficients in a number field K. In [Schgo,
§4.2.0], Scholl explains that if we view i(W ®q K as a Grothendieck motive, then one can
indeed look at these eigenspaces, so that the following definition makes sense.

Definition 5.4: The motive M(f) attached to f is defined as the (Grothendieck) submotive
of ]Z(VV ®q K on which the Hecke operator T, acts precisely by the Hecke eigenvalue a, for
all primes p { N (where the a,, are the Hecke eigenvalues of f) and where the subgroup

BN

acts trivially.
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The first condition above is plausible from theorem 4.32. In view of lemma 1.10, the
latter condition can be explained by the fact that f is a modular form for I}(N). We remark
that Scholl uses the subgroup (1) instead, but he does not explain where in his case the
GL,(Z/N)-action comes from. This subgroup, acting from the left on level N structures (i.e.
without transposing) fixes the subgroup {0} X Z/N C (Z/N)?, so it would correspond to
another morphism Y(N) —— Y;(N), forgetting the first basis vector of the N-torsion instead
of the second. Probably Scholl uses this morphism, however we will work with the subgroup
as above, since it seems to be the more common convention (e.g. used also in [Del79, §7.4],
[KM85, Thm. 7.4.2 (3)]).

For working with the motive NkW , we will mostly need only the attached premotivic
structure. In the following sections, we describe the relevant realisations and comparison iso-
morphisms of IZ‘VV (which is a Chow motive, so its realisations are well-defined). Ultimately,
we will be interested in the motive M(f), but since it is only a Grothendieck motive, strictly
speaking it does not have realisations right-away (see the beginning of section 1.3). But by its
construction, we may take the subspaces of the realisations of JZ(W tensored with K where
the Hecke correspondences act by the eigenvalues given by f and (} ?) acts trivially as the
realisations of M(f), so this particular Grothendieck motive does have realisations and we
have an attached premotivic structure.

Remark 5.5: Let us remark at this point that whenever we later work with the motive M(f),
it will not do any harm to assume that K is large enough to contain the N-th roots of unity.
Under this assumption the modular curves X;(N)™"¢ and X;(N)**" become canonically
isomorphic. In our descriptions of the motives we always work with the naive version to be
consistent with the literature, while in many other situations we work with the arithmetic
version because it is better suited for g-expansions. Assuming that K is large enough will thus
allow us to use results that initially require the arithmetic version also in motivic situations.
We will not always write this down explicitly.

5.2. The Betti realisation

Theorem 5.6: The Betti realisation ofl\,fW is the parabolic cohomology group
YWh = Hy(Y(N)™, Sym* * R'£.Q).

The isomorphism comes from the Leray spectral sequence for the morphism KS(N, k) —— X(N).
The action of G comes from its natural action on Y(N)* and E(N)*"* and the resulting G -sheaf
structure on Sym 2 R1 £, Q.

Proof: [Schgo, Thm. 1.2.1]; [Schg7, Thm. 7.4.1.3] O

On the group HIID(Y(N )™, Sym*~2 R!£,Q), we have Hecke operators as explained in sec-
tion 3.2. The motive JZ“W also carries Hecke operators induced by the Hecke correspondences
on KS(N, k). These definitions are compatible by [Schgo, Prop. 4.1.1].

Remark 5.7: The Betti realisation can also be described more explicitly as follows. The
Riemann surface Y(N)*" is a disjoint union of ¢(N) copies of Y := T'(N)\D (see remark 1.14 (b)).
By choosing any point x, on Y as a base point, we can identify I'(N) with the fundamental
group my(Y, xo). The stalk of Sym* =2 R! £, Q at x is isomorphic to Sym*~2 Q? (after choosing
a base), and by monodromy, it carries a I'(N)-action. By lemma 2.1, this action is just the
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canonical one coming from left multiplication. We therefore have a canonical isomorphism
(using corollary 1.1.43)

YWh = (B HLT(N), Sym* 2 @),

where “@” means that we have ¢(N) copies of the right group. Moreover, by lemma 2.1 this
isomorphism respects the action of the abstract standard Hecke algebra H(N). This allows us
to use corollary 1.1.27, which gives us a rather explicit description of Hecke operators. Further
it says in combination with lemma 1.15 and proposition 1.16 that complex conjugation on
]Z(VV is induced by the action of the matrix ».

5.3. The de Rham realisation

A description of the de Rham realisation of NkW is given in [DFGog, §1.2.4]. There is also a
more extensive unpublished version [DFGo1] of [DFGo4] which contains more details. We
briefly recall this construction here; for details, see the above-mentioned articles. We use the
language of log schemes [Kat89].

We use again the notations from section 1.1. The cuspidal divisor C(N) = X(N) \ Y(N)
defines a logarithmic structure on X(N) and its preimage in E(N) defines a logarithmic
structure on E(N). Then there is the notion of a sheaf of logarithmic relative differentials,
see [Kat89, §1.7]. It is denoted w in the reference [DFGo1] and Q in [Kat89], but to avoid any
confusion with the usual differentials or the sheaf w defined in definition 2.4, we will denote
it by O.

We look at the sheaves of logarithmic relative differentials

Urvyxeny 39 Oxanyz = Oxawy:
The latter one is just the sheaf of differentials with logarithmic poles Qi(( N)(log C(N)). There
is the logarithmic de Rham complex, which has nonzero entries only in degree 0 and 1, since
X(N) is a curve, and hence looks like

. _ d 1
OFwxan = (OXTW ) O nyxn)”
0
We put
_ pl . _ k-2 _ _
E=R ﬂUE(N)/X(N)’ Er = SymOX(N) s Ek.c = EK(-C(N)).

On &, there is the logarithmic Gauf3-Manin connection

V:E—— & ® Ul
Oy XA

and this induces flat logarithmic connections on & and & . which we denote by V. and Vj ,
respectively. We denote the complexes of sheaves on X(N) defined by these connections by
&; and &; , respectively.

Theorem 5.8: The de Rham realisation ofA]Z(W is
T Wag = image(H'(X(N), &} ) — H'(X(N), &) © Q.

The isomorphism comes from the Leray spectral sequence for the morphism KS(N, k) — X(N).
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Proof: This is claimed without proof in [DFGo1, §2.2, p. 15]. The analogous statement for
Betti and étale cohomology is proved in [Schg7, Thm. 7.4.1.3], and the technique used there
can be adapted to algebraic Rham cohomology. O
5.4. The Hodge filtration and the Hodge realisation

Proposition 5.9: The Hodge filtration of the de Rham realisation ofJZW is given by

NWar fori <0,
1 NWig = { SL(X(N),Q) for1<i<k-1,
0 fori > k.

Proof: This is [Katog, (11.2.5)]. The middle term in the filtration is denoted Sk (X(N)) there;
to see that it equals our Sg(X(N), Q) see its definition in [Katog, §3.1] and note that Kato
considers X(N) as a curve over Q. O

The de Rham realisation of course also carries a Hecke action, since the Hecke operators are
endomorphisms of the motive IZ(W . The embedding of the cusp forms is Hecke equivariant.

We will now describe explicitly where the embedding of the intermediate filtration step
Sk(X(N), Q) comes from. For this, we continue to use the notations from the preceding
sections.

Over Y(N), wy(n) is isomorphic to f,Q}
and this gives a canonical map

and & is isomorphic to R' £,Q$

E(N)/Y(N) E(N)/Y(N)’

WY(N) — ‘S|Y(N)
just as in (6.1), which is just the Hodge filtration of &|y(n). It can be extended to the cusps to
give a morphism
® QX(N)—>8kC ® UX(N) (5.1)

X(N) Ox Oxn)

The injection
Sk(X(N), Z) — H'(X(N), &; )

is then obtained by considering «* Q! asacomplex concentrated in degree 1,

Y ®oxan W)
which via (5.1) gives us a morphism of complexes

1 °
(wX(N) ® Q xo) =11 — & .

to which we can apply H'. That it is an injection can be proved similarly as [Sch8s5, Thm. 2.7

(D]

We also want to say how the cokernel of the above injection, i.e. gr’ JZ(WdR, looks like.

Proposition 5.10: We have canonically
gr’ X War = H(X(N) . (0% 5)/Q) = Sk(X(N), Q)"

Here (-)" denotes the dual Q-vector space and the last isomorphism comes from Serre duality.
We will prove this proposition later in section 6.1.4. The statement about Serre duality is

obvious since (Q! X( N)) /q is a dualising sheaf on the proper smooth curve X(N),q.
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Corollary 5.11: The Hodge realisation ofIZ(VV is

YWy = H(X(N) q, (wi_(lf\]))/Q) ® Sk(X(N), Q)

with the first summand sitting in degree 0 and the second summand sitting in degree k — 1.

5.5. The p-adic realisation

Fix a prime p, a number field K, a prime p | p of K and a newform f € Sg(Xj(N), K). Write
L = K, and O for its ring of integers.

Theorem 5.12: (a) The p-adic realisation ofIZ‘W is
W, =H] (Y(N) >Z< Q. Sym**R'£.Q,).

It has Hodge-Tate weights k — 1 and 0. The isomorphism comes from the Leray spectral
sequence for the morphism KS(N, k) —— X(N).

(b) The p-adic realisation of M(f) is Deligne’s Galois representation attached to f. More
precisely, it is a two-dimensional odd irreducible L-linear representation of Gq which is
unramified outside Npco and such that for each prime £ we have

Pr(M(f)p, T) = 1 arT + ()5 T2,

where |/ is the Nebentype of f and P¢ is as in definition 1.3.11 (and Y(€) = 0 if { | N).
Note that this includes both the case { = p and { | N, so in particular M(f), is
crystalline at p if and only if p t N. In particular, conjecture 1.3.12 holds for M(f).

(c) The determinant of the representation M(f), is the character i,D*Ké;éc

Proof: For (a) see [Schgo, §1.2.0-1] or [Schg7, Thm. 7.4.1.3]. For the case £ { N (including
¢ = p)in (b) see [Schgo, Thm. 1.2.4], for the case £ | N see [Saig7]. See also [Katog, (14.10.3-4)].
Part (c) follows directly from part (b) using Chebotarev’s density theorem. O

At this point we define the notions of slopes and ordinariness, which are p-adic properties
of modular forms.

Definition 5.13: Let f € Si(X3(N)*", ) be an eigenform and let ap € K be the eigenvalue
of T, on f. The slope of f at p is the p-adic valuation of a,. We call f ordinary at p if it has
slope 0 (i. e. a, € O%), of finite slope at p if its slope is finite (i. e. a, # 0) and of critical slope
at p if its slope is k — 1.

Since Hecke eigenvalues are algebraic integers, slopes of eigenforms are always non-
negative. The name “critical slope” is justified by the following fact.

Proposition 5.14: The slope of an eigenform f of weight k is at most k — 1.
Proof: [Poli4, §3.7] [l

For ordinary newforms the associated Galois representation is ordinary in the sense of
[Pergq], which is the content of theorem 5.15 (a) below.

Theorem 5.15: If f is ordinary at p, then the following statements hold.
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(a) There is a 1-dimensional unramified Gq, -subrepresentation M) of M(f)y.

(b) M(f)QQ) satisfies the strong Dabrowski-Panchishkin condition with

MW" = M ® K1)y

(c) The polynomial
X = apX +y(p)p* (5.2)

has a unique root & € O™ which is a p-adic unit. Ifp | N, then a = a,.

(d) Witha asin (c) and & being the unramified character of Gq,, describing the action on
M(f)3, one has 5(Froby) = a.

Proof: (a) See [HidMFG, Thm. 3.26 (2)]. The representation there has a 1-dimensional
unramified quotient, but since Hida uses arithmetic Frobenii instead of geometric
ones, his representation is dual to ours, and we get a subrepresentation.

(b) Note that it suffices to see that the inclusion M(f )g —— M(f), induces an in-
jection Dan(M(f)2) —— Dar(M(f),)/BI Dan(M(f),). This is because by propo-
sition 5.9 and the fact that cp; respects Hodge filtrations, we know the filtration
on Dgr(M(f)p), so the right side is of dimension 1 and the injection will be an
isomorphism which after tensoring with K(1), gives the isomorphism from the
Dabrowski-Panchishkin condition.

Since the map Dgr(M(f )g) —— Dgr(M(f)p) is a map of filtered vector spaces, it
suffices to see that fil° Dar(M(f)3) = Dar(M(f)y) and fil! Dar(M(f)3) = 0, i.e. that
M(f )g has Hodge-Tate weight 0. This follows from [Perg4, §2.3, Lemme].

(c) For p t N see [Katog, Prop. 17.1]. For p | N this is obvious.
(d) See [HidMFG, Thm. 3.26 (2)]. O

Definition 5.16: The polynomial (5.2) is called the p-th Hecke polynomial of f and if f is
ordinary then the root « from theorem 5.15 (c) is called the unit root.

Theorem 5.17 (Kisin, Colmez): If f is of finite slope (not necessarily ordinary), Dzig(/\/((f)p)
contains a rank 1 sub-(¢,T')-module D:ig(M(f)p)o. M(f)(1) satisfies the weak Dabrowski-
Panchishkin condition with D;rig(/\/((f)(l),o)DP = D;rig(M(f)p)O ®r K(1)p. In particular, M(f),
is trianguline.

Proof: In the ordinary case the statements are clear by theorem 5.15, so assume that f is
non-ordinary.

Colmez has given in [Colo8] a complete classification of 2-dimensional trianguline rep-
resentations and proved some further theorems about them. He also gives a complete
classification of rank 1 (¢,I')-modules, whose isomorphism classes are in bijection with
characters 6: Q; —— L* by [Colo8, Prop. 3.1]. Denote the (¢, I')-module belonging to such
a character 6 by R(5). Two-dimensional trianguline representations are parametrised by
certain triples (&, 82, L), where 81, d, : Q; —— L* are again characters and £ is an element
of either IP°(L) or IP}(L) (which will not be important for us; see [Colo8, §§0.2—4]).
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We will use [Colo8, Thm. 0.8 (ii)],"* which says that if V is a 2-dimensional irreducible
L-linear representation of Gq, with Hodge-Tate weights (0, q) such that there exists an
a € L* with vp() > 0 and

(Bl ®V) 0?0, (+)

cris

then V is trianguline. If further (6;, &, £) is the triple from the classification and v, (a) < g,
then 4y is trivial on Z, and R(6,) is a sub-(¢, I')-module of D; E;(V)'

To be able to use this result, we need to check that the representation M(f), satisfies
() above. The « there will be the p-th Hecke eigenvalue a,. We know already that M(f),
has the other properties needed for Colmez’s result: its Hodge-Tate weights are (0, k — 1)
by theorem 5.12 (a) and the inequality 0 < v,(a,) < k — 1 holds by proposition 5.14. The
property () is equivalent to a result of Kisin, as we now explain.

For the moment, let V be any L-linear Gq,-representation. We begin with the canonical

biduality isomorphism V —=— Homp(Hom(V,L),L). It is easy to check that there is a
canonical isomorphism

cris cris/?

Hom;j(Homy(V,L),L) g) Bf. = Hom;(Hom(V,L),L g) B
P p

+
cris

so tensoring the biduality map with B} . gives an isomorphism of B} . -modules

B+
cris cris

®V -~ Homy(Hom(V,L),B}. ®L). (%)
Qp Qp

We endow both sides with left actions of Gg,. On B/, ®q,V we let it act diagonally, on
Homy (V, L) by the usual contragredient action given by (o f)(v) := f(c7'v) (o € Gq U E V),
on B!, ®q,L we let it act only on the first factor and on Homy (Hom(V, L), B, ®q,L) as

(6®)(f) = o(2(f o 0)). Then one can check that the map (x+) is G, -equivariant and that

(Homy (Hom(V, L), B! g)L)) % = Homyg,, |(Hom(V, L), Bl el).
P P
We now endow both sides with the Frobenius endomorphism induced from ¢,is (which on
each side acts only on B, ). Then it is easy to check that the Frobenius commutes with the
G, -action, the map (+x) respects the Frobenius action and that

cris cris

(Homy (Homy(V, L), B, © 1)) "™ = Homy (Homy(V, 1), (B, @ 1)"**).
P P

Therefore (++) induces an isomorphism

cris cris

(BF é@V)GQp"Pcris:a -, HomL[GQP](HomL(V,L),(B+ qS@L)“’Cris:“),
P P

and we see that (x) is equivalent to the existence of a nonzero L-linear Gq,-equivariant map

V' —— (BZ,;, ®q,L)?™* (V" being the contragredient representation).
The existence of such a map for V.= M(f), and & = a, is proved in [Kiso3, Thm. 6.3].
Note that Kisin uses arithmetic Frobenii (see [Kiso3, §1.4]), so his representation is indeed

the contragredient one.

' Note that for Colmez the Hodge-Tate weight of the cyclotomic character is 1, not —1 as in this work; he writes
this at the end of §o.1. Therefore the Hodge-Tate weights in his paper are the negatives of the ones in our
citation here.
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So by Colmez’s result, M(f), is trianguline and has a rank 1 sub-(¢, I')-module R(6;),
with §; being trivial on Z;. To finish, we need to derive from this that M(f)(1) satisfies the
weak Dabrowski-Panchishkin condition. For this we can use exactly the same arguments
as in the proof of theorem 5.15 (b), which reduces us to showing that R(8;) has Hodge-Tate
weight 0. This follows from the fact that &, is trivial on Z; by [Colo8, §2.2]. O

6. Comparison isomorphisms and Eichler-Shimura
isomorphisms

The classical Eichler-Shimura isomorphism [Shi71, §8.2] relates the space of cusp forms over
C to a certain group cohomology group. From a more abstract point of view, this group
cohomology group is closely related to the Betti realisation of Nk‘W (tensored with C), and by
proposition 5.9 the space of cusp forms is related to the de Rham realisation of JZ’VV (tensored
with C). Between these realisations we also have the complex comparison isomorphism
CP.,, and it turns out that these two maps are essentially the same. This provides a powerful
tool to deal with the comparison isomorphism since the Eichler-Shimura isomorphism has a
rather explicit description.

There is also a p-adic variant of the Eichler-Shimura isomorphism, and it is essentially
equal to the p-adic comparison isomorphism cpy.

In this section we make these well-known statements precise.

6.1. The complex situation
6.1.1. The complex Eichler-Shimura isomorphism

The Eichler-Shimura isomorphism relates the space of cusp forms to the parabolic cohomology
group of the local system Sym* =2 R! f,Z on a modular curve. We explain the construction of
the Eichler-Shimura map following [Conog, §1.7.1]. There is also a variant of the Eichler-
Shimura isomorphism for modular forms instead of cusp forms. In our explanation of how
the Eichler-Shimura map is constructed, we omit this for simplicity, but we state the result
in theorem 6.3. The construction is also explained for both cases in [Katog, §4.10], where it is
called “period map”.

In this whole section we write Y for either Y(N)*" or Y;(N)*", f: E —— Y for the universal
elliptic curve over it and X for the corresponding compactification.

From lemma 2.8, we get an isomorphism

R'£,Q}, =R'.CQOy =R'LR®Oy.

The Hodge filtration of R f. Q% /y 1s given by the injection

Wy — RlﬁQE/Y’ (6.1)

which comes from applying R!f, to the morphism of complexes

Ql

E/Y[—l] —Q°

E/Y"
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We take (k — 2)-th powers and then tensor with Q] over Oy. Using the above isomorphism,
this gives us a map

~? ® Q) — Sym§ (R'f. Q%yy) & ® QY
Oy
- Symoz(leIR(XJOy) ® Q) —Sym le1&®91 (6.2)
Let us write Dk for Syrn “2R!f,R for R = R or R = C in the following.
On the other hand, we have an exact sequence

0 o] Oy -4l 0

which we tensor over R with the (locally free, hence flat) sheaf DI]E{ to obtain

d
o%@(’g%@]’;{%oyéﬂggg;%o. (6.3)

Lemma 6.1: Consider the composition

Sk(X, C) = H(X, a) QL) — H(Y, k2 & Q)

/x

— HO(Y, D ® Q) — HY(Y, D) (6.4)

where the first map is the restriction map, the second map is induced by (6.2) and the third map
is the boundary homomorphism in the long exact cohomology sequence attached to (6.3).
Then its image lies in the parabolic cohomology group H. (Y, Dk o)

Proof: [Conog, §1.7.4] O
Definition 6.2: The Eichler-Shimura map is defined to be the map (6.4)

ES: Si(X, C) — HY(Y,Sym**R'£.C).

Denote by Si(X, C) the complex conjugate vector space of Si(X, C), that is, the complex
vector space consisting of the same underlying set, but with the scalar multiplication twisted
by complex conjugation. We consider Si (X, C) as the space of antiholomorphic cusp forms
and denote both (R-linear, but not C-linear!) maps Si(X, C) — Si(X, C) and Sg(X, C) —
Sk(X, C) which are the identity on the underlying set by ): f —— f. The complex vector
space Hy(Y, Symf2R'£,C) = H)(Y, D} ®g C) has a canonical real structure, that is, an
antilinear involution o, coming from the complex conjugation on the second tensor factor C.
One easily checks that the map

ES = g 0 ESo (-): Sx(X,C) — HL(Y,Sym* ?R'£.0)

is C-linear.
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Theorem 6.3 (Eichler/Shimura): The Eichler-Shimura map induces a Hecke equivariant iso-
morphism of complex vector spaces

ES & ES: S(X, C) @ Si(X, €) —~— H}(Y, Sym* *R'£,0).
There is also the variant for modular forms

ES @ ES: My (X, C) @ Si(X, C) —=— H\(Y, Sym* 2R £, Q).

Proof: For Y = Y{(N), the first statement follows from [Conog, Thm. 1.7.1.1, Lem. 1.7.7.2
and Thm. 2.3.2.1] with T = I}(N). For Y = Y(N), it follows from the same with ' = T'(N),
together with remark 1.14 (b) and the remark after definition 4.1.

For the second statement see [PS13, footnote 5, proof of Lem. 6.6]. O

There is a more classical description of the Eichler-Shimura isomorphism using group
cohomology which has the advantage of being rather explicit. This description is used e. g.
in the classical reference [Shi71, chap. 8], although in a slightly different formulation. We
briefly describe it here, for simplicity only for the I3(N) situation. So for the moment we
specialise to the case X = Xj(N)*, Y = Y;(N)* and put I’ = I3(N). Similarly as in remark 5.7
we get a Hecke-equivariant isomorphism

H(T, Sym*~* C?) =~ H\(Y,Sym* > R'£,C). (6.5)

We refer to the discussion of symmetric powers in appendix A.1 and we view the ele-
ments of Sym*~2 C? as homogeneous polynomials of degree k — 2 in two variables, as in
lemma A.1.2 (a).

Proposition 6.4: (a) The Eichler-Shimura isomorphism followed by the inverse of (6.5)
maps f € Si(X, C) to the cocycle

Y70
Yy — / wf, yerl
7o

with of = (27i)*(zX + Y)*"2 fdz (a Sym*~2 C?-valued 1-form) and 7y € V) being a
lift of xo € Y. In particular, the above cocycle is independent of the choice of 7.

(b) The Eichler-Shimura isomorphism composed with the inverse map of (6.5) maps g €
Sk(X, C) to the cocycle

Y7o
Yy — / wyg, yer
7o
with wg = (=27i)*(zX + Y)k~25dz (a Sym*~? C?-valued 1-form) and 7y € b being

a lift of xo € Y. Here, the g in the definition of wg now literally means the complex
conjugate function of the C-valued function g.
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Proof: The claim in (a) is [Conog, Lem. 1.7.5.1]. In the formula there, the upper integration
bound is y "7y instead of y 7y, but in Conrad’s text the action of SL,(7Z) on | is the right action
dual to the usual one (see [Conog, Thm. 1.5.2.2]).

We now prove (b). By definition of the real structure on H;(Y, Sym* 2 R!£,C) and the

corresponding real structure on Hll)(l“, Sym*~2 C?), the composite map
Sk(X, C) — HY(T, Sym* 2 C?)

of ES and the identification (6.5) then sends a g € Si(X, C) to the cocycle

Y7o
Yy — / Wg, y €T.
70

If we define wg = (=27i)*"(zX + Y)*~?Gdz then this cocycle is equal to the cocycle

Y7o
ug: y —— / g, yeT,
T

0

as one can see by an easy calculation using the definition of the complex curve integral. [J

Now we examine how the complex conjugation on Hll)(Y, Sym*"2R!f,Z) behaves un-
der the Eichler-Shimura isomorphism. This works again in the general setting, so X may
now be X(N)*, Y may be Y(N)* and so on. The action of Gg on Y and the fact that
Sym*~2 R!f,Z is a Gr-sheaf gives an action of G on H%)(Y, Sym*~2 R!£,Z) and hence also
on Hy(Y, Sym*2R!f,C) = H,(Y, Sym 2 R!f,Z) ® C, where we let Gy act trivially on the
second tensor factor C.

Definition 6.5: We define an action of Gg on S(X, C) & Si(X, C) by letting the nontrivial
element Frob, act as .

fegr— —(g & f),
where f* is defined as in definition 4.22.

Lemma 6.6: With the above definition, the Eichler-Shimura isomorphism is Gg-equivariant.

Proof: To simplify notation, we prove this only in the case X = X;(N), so I' = I3(N); the
proof for X = X(N) works similar.
Let

Y7o
Ug: Yy —— / wyg, y €T,
70

with wg = (—271)* (X + Y)*~?gdz be the cocycle from proposition 6.4 (b). We have to show
that complex conjugation on H:,(I‘, Sym*=2 C?) sends ur to —uz

As explained in remark 5.7, the action of complex conjugation is given by the matrix o,
and by corollary 1.1.27, this action maps a cocycle u to the cocycle

y —— o' eu(aya).

In general, if h is any smooth Sym*~2 C?-valued function on b such that for any y € T the

integral
Y7o
/ h(z)dz, 19 €h

7o
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does not depend on the choice of 7, then an easy calculation using the definition of the
complex curve integral shows that for such an h and any y € T, 7y € ) we have

AyaTy Y7o
/ h(z)dz = / h(az)dz.

For h(z) = (271)* " (zX + Y)*~2 f(2) it is easy to check that h(oz) = (271)F 1 (=zX + Y)* 2 f*(2).
To this we then have to apply the action of 3' = (! _;) on Sym* =2 C2. Altogether we see
that uy is sent to the cocycle

y — / Yr(zm)k-l(—zx —Y)* 2 (z)dz

YT
=— / (—27i)* 1 @ZX + V)2 f(2)dz

HF,
as desired. This completes the proof. O

6.1.2. Explicit description of the comparison isomorphism

A description of the complex comparison isomorphism of IZ‘W is given in [DFGo1, §2.2]. We
recall this here and refer to this text for more details.

Write j: Y(N) —— X(N) for the inclusion. Via the analytification map X(N)** —
X(N) xz C, we can pull back all the involved sheaves and connections to the analytic setting.
By abuse of notation, we write j also for the analytic inclusion. In [DFGoz1, §2.2] it is proved
that this does not change the cohomology groups and the de Rham realisation (over C,
of course). So we can work in the analytic category and write for the rest of the section
X =X(N)™ Y =Y(N)*™and E = E(N)*.

In this section, let us write again Dé = Sym’é‘z R'f.C, as we did in section 6.1.1. We
further use some of the notation from section 5.3. Write G} for the restriction of &; or 8,:’C
to Y (both are the same), which is by definition just the complex

(ng - gk (?y Q;), with gk = Sym](c’)_yz Rlﬁ‘Q].i/Y‘
0

Using lemma 2.8 and taking (k — 2)-th symmetric powers, one can construct an exact
sequence

0—— DG — Gk — Gk @ Oy ——0, (6.6)
Y

where the right map is just the restriction of the connection Vi to Y. This means that
the two right entries in this sequence are precisely the complex G, so this gives rise to a
quasi-isomorphism of complexes

Gi — D¢lo]
which after applying H! gives an isomorphism
H'(Y,G}) =~ H'(Y. Dg).

The exact sequence above can be extended to the cusps to

0— D& — e — Epee & Ux—0 (6.7)
X
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where the right map is now V.. This gives in the same way an isomorphism
H'(X, &} ) — Hi(Y, DE).
Finally, the restriction morphism
H'(X,&}) — H(Y.G})

is an isomorphism by [DFGoz, §2.4, p. 21].
We assemble the isomorphisms we have so far in a diagram

HI(X, & )~ HI(X, &) —— H(Y,G})

. . |

HY(Y, DF) H'(Y, D).

(6.8)

The image of the map (1) is A,i“WdR ® C and the image of the map (2) is NkWB ® C. Therefore
this provides us with the desired comparison isomorphism

A]deR@(D — A;(WB ® C.

6.1.3. Relating Eichler-Shimura and the comparison isomorphism

In this section we prove the compatibility of the Eichler-Shimura isomorphism from theo-
rem 6.3 with the canonical map from cusp forms to the de Rham realisation of I}{’(VV from the
Hodge filtration (see proposition 5.9) and the comparison isomorphism from section 6.1.2.
This is also stated without proof in [Katog, §11.3].

Theorem 6.7: The diagram

Sk(X(N), C)
Nk(WdR ®C - Nk(WB ®C

commutes. Here the left map comes from the Hodge filtration of{WdR as in proposition 5.9, the
right map is the Eichler-Shimura map and the bottom map is the comparison isomorphism.

Proof: In this proof, we abbreviate X = X(N)*", Y = Y(N)* and E = E(N)*".
Recall the complex &;  of sheaves on X from section 5.3 and its restriction G} to Y from

section 6.1.2, as well as the sheaf Dé onY.
From lemma 2.8 we have an isomorphism

Gr = D ® Oy (6.9)

and this allows us to identify the exact sequence (6.3) used in the definition of the Eichler-
Shimura map with the exact sequence (6.6) used to define the comparison isomorphism to
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obtain a commutative diagram with exact rows

OHDQIE;)Z)(%@QOY*)D(E@QQ;*)O

| |

0 — D Gi Gk ®0, Q) — 0. (6.10)

Using this and the definition of the map from the Hodge filtration (labelled “Hodge”

below), we extend the diagram (6.8), which is part (1) below, to

H'(Y, Df, ®¢ Q) \

HO(X, wg)z ®oy QL) — H(Y, 05?2 80, QL)
3) ~69) (9 '
/ Hodge l'l
; @) H(Y, Gk ®0, Q) :
H'(X,&; ) H'(X,&}) - H'(Y,G}) ,"
: ~ (1) ~l 6 )

H(Y, DE), «--~

( : C) ¢

\ HYY,Df)
where the two maps labelled “9” are boundary maps in the long exact cohomology sequences

attached to the short exact sequences (6.3) and (6.6), respectively.
We want to prove that the outermost (dashed) arrows coincide, since the composition along

the lower dashed arrow is the composition of the Hodge filtration map with the comparison
isomorphism, while the composition along the upper dashed arrow is the Eichler-Shimura

map. We prove this by showing that each of the partial diagrams (1)—(5) commutes.
We know already that (1) commutes. That (2) commutes is clear since both ways are
basically the same map. Part (3) commutes just by definition of the map a)’;_2 ®oy Q) —

Z)(]é ®¢ Q) in (6.2). Part (4) commutes because (6.10) commutes.
To see that (5) commutes, we are hence left to prove that the boundary map

H(Y, G ® Q1) — H'(Y, D)
Y
for the exact sequence (6.6) is equal to the composition of the map
HO(Y’ gk ® Ql) I Hl(Ye g}:)
Oy
induced by the inclusion of complexes
(Gr ® QN-1]— G;
Oy

with the comparison isomorphism. By the description of the comparison isomorphism in
section 6.1.2, this is precisely the content of lemma 1.2.14, applied to the exact sequence (6.6)
O

for ¥ being the global sections functor.
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Corollary 6.8: The diagram

_ ES _
Sk(Xl(N) G) - HO(XI(N)an X (N)an ®OX1(N)an Q;{ (N)an) Hllg(Yl(N)an9 Symk 2 Rlﬁ@)
(l)l

() "Ws ® C
(zﬁ ~
_ 3)
Sk(X(N), C) == H"(X(N)*™, w X(N)an B0 xnm L) —— YW ® C

commutes. Here (1) and (4) come from the map (2.1), (2) is the comparison isomorphism and (3)
is the map given by the Hodge filtration ofIZ(WdR.

Proof: In the proof, we omit “"” superscripts to simplify the notation.

By lemma 1.11 and the fact that the formation of all sheaves occurring in our situation is
compatible with base change, each square in the diagram

0 1 1
H(Xi(N), 0 X(NJ ®0xm Yygvy) — H(N), 0 Y(NI B0y Ly

0 0 1
HY(X(N), @X(N) ®Ox(n) X(N)) H(Y(N), wY(N) ®Oym) Y(N))

T HO(Yl(N)’ Dé ®OY1(N) ) - Hl(Yl(N) D )

l

T HO(Y(N) D ®Oy(N) Y(N)) — HI(Y(N) D )

Y(N)

commutes (where by abuse of notation we used the same symbol Z)q’; = Sym* 2R, C for
the respective sheaf on the two curves). Thus the claim follows from theorem 6.7. O

6.1.4. Some complements

In this section we give some missing proofs from before which use the previous results.

Proof of lemma 4.25: We explain the proof for t, for T it works exactly the same. We prove
that the second statement (t = t) holds for both possibilities to define t, once using the naive
and once using the arithmetic modular curve. Since t is independent of this choice, this
implies the first statement. Let X be either X;(N)*™" or X;(N)"®"¢, The statements we use
below will be valid for both versions.

Since the formation of the Hecke eigenalgebra ti (N, R) is compatible with base change
by lemma 4.24 and the same holds for t;(N, R) with exactly the same proof, it suffices to
prove this in the case R = Z.

We abbreviate Hllj = Hllj(Yl(N)a“, Sym 2 R!f,Z) and Sy == S(X, Z) and further T(M) =
T%l(N)’rl(N))(M) for a H,(N)-module M, so that T(H%,) = t.(N, Z) and T(Sy) = tx(N, Z).

Since Hj, is free of finite rank by lemma 2.3, it is easy to see that T(H}) = T(H; ®z C). The
same argument shows that T(Sx) = T(Sx(X, C)) (using propositions 4.2 and 4.5). By definition
of the Hecke action on Si(X, C) & Sx(X, C) we have further T(Sx(X, C)) = T(Sx(X,C) &
Sk (X, €)). Finally by the Eichler-Shimura isomorphism we have T(S;(X, C) & Sx(X, C)) =
T(H; ®z C). This completes the proof. O
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Proof of proposition 5.10: Write A for the cokernel of the map
Sk(X(N), Q) — {War.

We first compute the dimension of A. From the Eichler-Shimura isomorphism from theo-
rem 6.3 we can obtain a short exact sequence

0 — SE(X(N), C) — TWh ® C — Sk(X(N),C) — 0.

Now using the comparison isomorphism for Nk(M/, we can extend this to a diagram

0 — SE(X(N), €©) — Ny @ € — Si(X(N),C) — 0
0 — SK(X(N),C) — TWgr e C
in which the square commutes by theorem 6.7. Hence we know
dimg A = dime Sp(X(N), C).

Now by the description of the motive JZ’VV in [DFGoz1] (called M, there) and in particular
its de Rham realisation with its Hodge filtration on p. 15/16 there, we know

A = image(H'(X(N), 0% K, (~C(N)) — H(X(N), 0%%,).

But since H'(X(N), 6‘)?(_(]1(\1)) is isomorphic to Si(X(N), Q)" by Serre duality, as we already

pointed out after proposition 5.10, the result follows. (]

6.2. The p-adic situation

We look at the p-adic Hodge-Tate comparison isomorphism for JZ’VV
. N ~ . N
CPyr: kWP (I? Byr — kWH % Byr.
P

It is an isomorphism of graded vector spaces. Let us take its degree 0 part. From theorem 5.12
and corollary 5.11 we have an explicit description of the vector spaces involved, and we
obtain the following, which can be viewed as a p-adic analogue of the Eichler-Shimura
isomorphism.

Theorem 6.9 (Faltings): There is a canonical Gq, -equivariant and Hecke equivariant isomor-

phism
Hpa(B(N) X Qp Sym* P R'A.Z,) @ €, =
SKOXG(N), €)1 = k) @ H'(X(N), 05x)) € Cp.

Here, ?” is either nothing or “1” and Gq,, acts diagonally on the left side and through C,, on the
right side.
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Chapter II. Modular curves and motives for modular forms

In fact, this theorem was proved by Faltings in two ways. In [Fal88] he proved the
existence of the general Hodge-Tate comparison isomorphism for smooth projective varieties
(which later was interpreted in the context of motives), and in the earlier paper [Fal87] he
proved the above special case, which is essentially Thm. 6 (iii) there.

We indicate how to obtain the above statement from [Fal87, Thm. 6 (iii)]. There an
analogous statement for X(N)*™ is proved. The theorem is derived from abstract results
proved earlier. An investigation of the proof shows that these abstract results can as well be
applied to X(N)™@¥¢ or X;(N)"¥¢, Due to his method of proof, Faltings needs to consider
these curves as curves over a ring O (there called V) which is an integer ring in some
finite extension of Q, large enough such that the curves have stable reduction over 0. All
occurring sheaves are then pulled back to the curves over O. But since all occurring sheaves
are compatible with base change and we tensor with C, in the end anyway, the statement
can also be formulated with that ring O replaced by Z. Finally, we remark that the k there is
what we call k — 2. Using this, we get from [Fal87, Thm. 6 (iii)] a canonical isomorphism

1 m k-2 p1 ~
Hp(Y7(N) é Qp9 SYm R ﬁ‘Zp)(k - 1) 2 (Dp —
—k k—
H!(X>(N), wf((N)) ® Cp(k —1) & H'(X»(N), @X(f\,) ® Q) ® Cp.

Twisting 1 — k times gives the claim in the form above.

Although it seems to be well-known and plausible that the p-adic Eichler-Shimura iso-
morphism from [Fal87, Thm. 6 (iii)] coincides with the map from theorem 6.9 (which can be
viewed as a p-adic analogue of the statement in theorem 6.7), the author does not know of
an explicit proof in the literature and since he is not very familiar with the methods used by
Faltings, he was not able to give a such proof by himself.

7. Level changing and refinements

Let N > 4 be an integer and p be a prime. The construction of p-adic L-functions for modular
forms of level N (which we recall in appendix B) requires N to be divisible by p for technical
reasons. If p 1 N, then there is a process called “refinement” (also called “p-stabilisation”)
that associates to each newform of level f two eigenforms f,, and fg of level Np. In fact, any
eigenform f of any level can be refined, but if p divides the level then one refinement will be
just f itself. If p 1 N, then both refinements are different from f, and if f is ordinary, then
exactly one of its refinements is ordinary. For a non-refined newform f (whose level is hence
not divisible by p) one can define its p-adic L-function to be that of one of its refinements
and then relate it to the L-function of f itself (using proposition 1v.1.4 below). Unless f is
ordinary, this is non-canonical since f has two refinements.

So the natural objects to which one can associate p-adic L-functions are refinements of
newforms, which we introduce in section 7.1. The refinement of a newform of level not
divisible by p is not a newform any more. On the other hand, the natural objects to which
one can associate Galois representations and motives are newforms. Since our aim is to
compare existing constructions of p-adic L-functions to conjectural ones phrased using the
language of motives, we thus ultimately have to compare periods of motives for non-refined
forms to error terms of the corresponding refinements.

For this purpose it seems most convenient to have a theory of refinements also on
the motivic side. What we seek is a morphism of motives JZ(VV — Ni(VV such that the
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7. Level changing and refinements

morphism it induces on the intermediate subspace of the Hodge filtration of the de Rham
realisations, which are cusp forms by proposition 5.9, maps f to a refinement. Such a
morphism of motives will then induce morphisms on all realisations that are compatible
with all comparison isomorphisms. We describe such a motivic theory of refinements in
section 7.2.

7.1. Refinements of classical modular forms

In this section we fix a prime p. Let K be a number field with ring of integers O and choose
an embedding K —— Q. Via our fixed pair of embeddings of Q, this defines a prime p of
K lying over p; let L := K, be the completion. Further this allows us to use the classical
viewpoint since it induces an embedding K —— C. This sections follows closely [Bel1o,
§mr.7.1].

From the classical viewpoint on modular forms as functions on the upper half plane it is
clear that we have an inclusion of O-modules Si(X;(N)2, O) —— S (X;(Np)™, ©). One
has to be careful here because this inclusion does not respect the action of T, (but it does
respect all other Hecke operators), see remark 1.1.58.

Let f € Sp(Xi(N)™* 1/, O) be an eigenform away from the level and denote the eigen-
value of Ty by a¢ (€ 1 N). We look at the polynomial

X% = apX + Y(p)p*! (7.1)

and call its roots o and f3; we assume for simplicity that they both lie in O. Then define two
functions on the upper half plane by

fa(®) = f(r) = Bf(pr),  fp(r) = f(z) —af(pr) (r €D).

They are again cusp forms with special properties. Instead of proving this directly, we
formulate a more general lemma that also applies to other situations.

Lemma 7.1: Fix N € Z and a prime p. Let K be a field of characteristic # p, M a K-linear
representation of (2, 1) (where 3 = My(Z)) N GL2(Q)). Assume there exists | € Z. such that the
matrix (p ») acts on M as multiplication by p'. Fix further a,{ € K, let a,  be the roots of the
polynomial X? — aX + {p"*" and assume they lie in K. Define an endomorphism

Ref,, = id —p~1p [P J

of M (where [-] denotes the action of ¥ on M, viewed as a right action). Then the following hold:
(a) Ref, induces a morphism Refy, : MIN) —— pMLNP),

(b) Identify the restricted abstract standard Hecke algebras H®)(N)x and H'P)(Np)k using
lemma 1.1.55 (b) and proposition 1.1.21. Then the morphism Ref,, : MGN) —— pTi(Np)
is H'P)(N) g -linear.

(c) Denote by Tl()N) resp. TIENP ) the p-th Hecke operators in H(N)k resp. H(Np)k. If
m € MBWN) satisfies TI(,N)m = am and {p)m = {m, then T}SNP)Ref,x(m) = aRef ,(m).
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Chapter II. Modular curves and motives for modular forms

Proof: For (a) it suffices to note that

-1
L(Np) € Ti(N), (p 1) rl(Np>(P 1) C T(N).

We now prove (b). By lemma 1.1.55 (b) and proposition 1.1.32, the “id” part in the def-
inition of Ref,, is H?)(N)g-linear, and we have to check that the action of () is also
HP)(N)g-linear. By proposition 1.1.51 (b), (c) we need to check that it respects the operators
T, for primes g # p, S¢ for primes £ { Np and €. For € this is clear, for S this follows easily
from remark 1.1.53 and for T, this can be proved as in [Miy89, Lem. 4.6.2].

To prove (c) we follow [Belio, Lem. 111.7.2]. We now have to be careful which space
we are acting on. Also we now let Hecke operators act from the right because we use this
convention also for the action of X (i. e. we write m[T}] instead of T, m, and similarly for
diamond operators). Using the description in terms of double coset operators and lemma1.1.54,
we see that [TIEN)] = [TIENP)] +{p) [p 1] and [p 1] [TIENP)] = p!. From this and the polynomial
(7.1) we get

Refo (m)[T,""] = (m ~p'pm [f’ 1] ) (7,""']
= m[TN?] = pm = am — m(p) [p 1] — Bm

- p
—am—gm[ .

= am - afp~"m [P 1] = aRefo(f). O

Corollary 7.2: The functions f, and fg define cusp forms in Sk(Xy(Np)™ith v ©O), where  is
now viewed as a character of (Z,/Np)*. They are eigenforms away from the level with the same
eigenvalues as f and they are moreover eigenvectors of T, with eigenvalues a and f3, respectively.
If f was a normalised eigenform, then so are f, and fg, with the same eigenvalues for all Hecke
operators except Tp.

Proof: This follows from lemma 7.1 with M as in example 1.1.24, [ = k — 2, a = ap, { = Y/(p).
Note that f|? || (z) = p*~'f(p). O

Definition 7.3: The forms f, and fz are called the refinements of f at p. They are also
commonly referred to as the p-stabilisations of f.

Note that if p | N then one of « and 8 equals a, and the other one is 0, so one of f, and
fp is just f itself, and we usually consider it as an element of Sy (X;(N yaith 4 O) (as opposed
to Sk (X (N, 4, 0)).

Remark 7.4: Assume p { N. From the polynomial (7.1) we see immediately that
vp(e) + 0p(B) = vy(@f) = (P (plp" ) =k -1

and
vp(ap) = vp(a + B) = min(vy(a), vp(B)),

with equality if vy(a) # vp(f). This implies in particular that if f is ordinary, then one of
its refinements is ordinary and the other one is of critical slope. By theorem 5.15 (c), if f
is ordinary then exactly one of @ and f is a p-adic unit, and the refinement coming from
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this unit root is the ordinary one. This latter statement also holds if p | N: then one of the
refinements is just f itself, while the other one is in the kernel of T,, so there is still a unique
ordinary refinement.

7.2. Change of level on modular curves and a motivic theory of
refinements

Fix integers M, N > 4 with N | M. Using remark 1.9, we define two morphisms between

modular curves

omN: X(M)— X(N), (E,P,Q)+— (E, %P, %Q) ,

Om,N: X(M)— X(N), (E,P,Q)—— (E/NP.P.Q),

and similarly, denoted by the same symbols,

OM,N: XiM) — Xi(N), (E,P)+— (E, %P) s
Om N : Xa(M) — Xu(N), (E,P)— (E/NP.P),

and call them the change of level morphisms or degeneracy maps. Further using remark 1.8
we define morphisms

Ym.N: E(M)— E(N), (E,P,Q,x)+— (E, %P, %Q,x),

Om.n: E(M) — E(N), (E,P,Q,x)— (E/NP,P,Q.x), (2

— — M
EmN: Ei(M)— E(N), (E,P,x)+— (E, ﬁP,X

Omn: E{(M)— Ey(N), (E,P,x)— (E/NP.P,x)

lying over the ones from before. It is easy to see that the diagrams

E»(M) — E»(N)

|

where “?” is either 1 or nothing, the vertical maps are f and the horizontal ones are either
Em, N and oy, N or Oy N and Opr, N, are cartesian in all cases. The maps opr, v and N are

also introduced in [Schg7, §5.2.2], where they are called py, N resp. GX/EIXIe'

Proposition 7.5: For each k > 2, the maps introduced above induce morphisms of motives
N,
O'M,NyGM,Ni l;Wi) AZ(W

We call them change of level morphisms, too.
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Chapter II. Modular curves and motives for modular forms

Proof: 1t is clear that both X1 5 and ©, 5 induce morphisms preKS(M, k) —— preKS(N, k).
By construction it is easy to see that these are equivariant for the actions of the groups G(M, k)
resp. G(N, k) introduced in section 5.1 (via the natural morphism G(M, k) — G(N, k)).
Hence the graphs of these morphisms in preKS(N, k) Xq preKS(M, k) (see example 1.3.2)
are invariant under G(N, k) X G(M, k). Since the actions extend to the desingularisations,
the same thus holds for the closures of their preimages under the morphism KS(N, k) Xq
KS(M, k) — preKS(N, k) Xq preKS(M, k) from theorem 5.1, and they are still closed sub-
varieties of codimension dim KS(N, k). Hence we get induced morphisms of motives. See
also [Schog7, §7.4.2]. O

The morphisms thus induce maps on all realisations of JZ’W In particular, by looking at the
intermediate step in the Hodge filtration on de Rham realisations and using proposition 5.9,
we get maps

ouins Ot SKX(N), Q) — Sk(X(M), Q). (7.0

Proposition 7.6: After tensoring with C, we have:

(a) The map op. N : Sk(X(N), C) — Si(X (M), C) sends an f, viewed as function on the
upper half plane,** to itself.

(b) The map Oy N : Sp(X(N), C) — Si(X (M), C) sends an f, viewed as function on the
upper half plane, to the function r —— (%) kf(%r)

Proof: Let 7 stand for either oy N or 051, n. Because the diagrams (7.3) are cartesian, we have
a canonical isomorphism 7*wx(n) —— wx(m) by lemma 2.5 (a), so 7 induces a morphism

HY(X(N), 0%k ) — H(X(M), a)?;é‘M)). (%)

®k
X(N)
Since the explicit descriptions of the realisations of JZ(W come from the Leray spectral
sequence for the morphism KS(N, k) —— X(N) (see theorem 5.8), the morphism (7.4) is the
restriction of the morphism (x) (tensored with Q) to Sx(X(N), Q). The morphism (x) can
be constructed analogously with X(N) replaced by X;(N). For simplicity and to avoid the
technical complications mentioned in footnote 12, we prove the claim for this morphism
instead; it should be clear that the actual statement can be proved in the same way.
To prove this, we define maps

SN Cxh——CxD, (z,7)—(z7)

O n: Cxh—Cx, (Z,T)}%(%Z,%T)
O'f\‘,}l’N:b%b, ThH——1T
QﬁN:b%b, T}—>%T

and show that they induce the corresponding maps named in the same way without “**”
the analytifications of the modular curves. To simplify the notation, we henceforth omit the

subscripts “y, . First observe that obviously 2" lies over 0" and ©*" lies over 6" Next

on

12 Strictly speaking, since we use the modular curve X(N) here, f is a ¢(N)-tuple of functions on the upper half
plane, where ¢(N) is the Euler totient function, see remark 1.14 (b). The description of the map given here has
to be applied to each entry in the tuple.
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we check that " and ©®" are compatible with the matrix action introduced in example 1.2.11.
For 2" this is trivial. For ©" we note that it is just the action of the matrix (/N ) and that

-1
(oM™ ) new,
Hence we get induced maps
san @an, n(M)\(C xb) n(N)\(@ X b)

and analogously with 0" and 6*". Finally we need to check that for the “relative lattice”
A C C x b introduced in definition 1.12 (a) we have 22"(A), 8*"(A) C A. But this is clear
from the representation (1.6) and the definitions of 2" and ©*".

To summarise, using theorem 1.13 we now have commuting maps

an @'an
E\(M)™ =5 Ey(N)yn Ey(M)™ 2= Ey(N)™
f| v v s
a.an 931’1
Yi(M)™ 2= vy (N Yi(M)™ 25 vy (N,

In terms of the moduli description from theorem 1.13, by definition the maps are given by

1 _ 1 1 _ 1 M
= (Ee?) = (Eeodz) . 0" (Eoop2) = By B2).
We need to compare this to the definitions in (7.2). For X it is clear that the definitions are
compatible because % . ﬁ = ﬁ For © we note that %[l, ] €[4, %T], so the multiplication-
by-% map C — C induces a surjective homomorphism E; — Em _ with kernel A—A,; Hence
N
as a point in the moduli space E;(N)*" we have

1 M 1
EM » 3T 3R = ET/ s 7%
( NN ' N ) ( M
so the definitions of © are also compatible.

Now statement (a) is clear. For (b) we identify f with the differential form f (271dz)®F as

in the description of how to view modular forms as functions on  at the end of section 4.1.
Then 0 sends f to

x|z

k
(0°™)*(f (27id2)®%) = (f 0 62™)(27id(z 0 ©2))®F = (%) (f 0 ™) (27id2)®*. O

Corollary 7.7: Let N > 4, p be a prime, K be a number field, f € Si(Xy(N)™™ K) be an
eigenform away from the level and let a,  be the roots of the p-th Hecke polynomial (7.1).
Assume that they lie in K and that K contains the Np-th roots of unity. Then there exist two
canonical morphisms of motives

Refq, Refg: YW @ K — "W oK

Q Q

such that the induced morphisms on the intermediate step in the Hodge filtration on de Rham
realisations S (X(N), K) —— Si(X(Np),K) map f to its two refinements f, and fg, respec-
tively.

131



Chapter II. Modular curves and motives for modular forms

Proof: Just define the morphisms as onp N +p_ky9Np,N fory € {a, f} with ¢ and 0 as in
proposition 7.5. The claim then follows from the definition of the refinements and proposi-
tion 7.6. U

8. Poincaré duality for IZ(VV

8.1. The cup product pairing in singular cohomology of modular curves

There are important pairings in the cohomology of modular curves. Their construction is
explained in detail in [DFGo1, §2.4] or [Conoo, §2.3.3], to where we refer for more details.
We do not repeat the precise constructions but only say that using the cup product one can
construct a pairing

() H(Y2(N), Sym* R £.Z) x Hy(Yo(N), Sym* * R'f. ) — Z
inducing perfect pairings

(o) H(Y(N), Sym“ R'£.Q) x Hi(Y2(N), Sym" *R'£.Q) — Q
and

(-.+) s Hy(Yo(N), Sym* R £.Q) x Hi(Y2(N), Sym* * R'£.Q) — Q

for ? being nothing or “1”.

Via the Eichler-Shimura isomorphism, we can interpret the pairing (-, -) on the space
Sk(X, C) ®Sk(X, C). Itis closely related to the classical Petersson scalar product on Si(X, C),
which we denote by (-, -)pet.

Proposition 8.1: We have

(ES(L ©9).ES(f, ©7,)) = €+ ((fig2)ver + (D291}t

with a nonzero constant C € C* depending only on k.

Proof: [Conog, Thm. 2.3.3.1]. O
The exact value of the constant C is also given at the above reference, but it will not be
important for us.

Proposition 8.2: The adjoints of the Hecke operators T, and (d) with respect to the pairing
(,) on Hy(Y2(N), Sym* 2 R!£,Q) are T, and (d)', respectively.

Proof: [Conog, Thm. 2.3.7.3] O

8.2. Motivic interpretation, and some complements

There is a general theory of a Poincaré duality for motives which is explained e. g. in [Levg8].
In this book, Levine constructs a category D M(k) for k a field (he does it even in greater
generality) which should be viewed as a candidate for the derived category of the category
of mixed motives over k. The category of Chow motives over k admits a fully faithful
embedding into D M(k) [Levg8, §v1.2.1.5], and the category D M(k) admits a duality [Levos,
§vi.1] which on realisations recovers the Poincaré duality required in the axioms of a Weil
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cohomology theory. We will not expand further on this theory, it is fully exposed in the
given reference.

In view of this theoretical background, we can reinterpret the pairing from the previous
sections. In fact, we should view the pairing not as a pairing with values in Q, but we should
identify the one-dimensional Q-vector space where it takes its values with Q(1 — k)g, the
Betti realisation of Q(1 — k), so we get pairing

Cops YW x Nwp — b207HQ = Q1 - k). (8.1)

This is then just the incarnation on the Betti realisation (which is why we denote it (-, -)p
from now on) of a perfect pairing of motives

() NW x YW — Q- k) (8.2)

which comes from the above-mentioned Poincaré duality theory for motives. See [DFGoz1,
§2.4—5] for background on this (note that our motive I;CI(W is denoted M; or My there).
On the other realisations of JZ‘VV we therefore also have pairings, and these pairings are
identified by the respective comparison isomorphisms.

For an explicit description of the pairings

¢y Var: YWar x TWr — Q1 - k)ar, (8:3)
Co)pt YWy x NW, — Q1= k)p, (8.4)

in terms of the wedge product of differential forms resp. the cup product in étale cohomology,
we refer to [DFGo1, §2.4], [Del69, (3.20)] and [Conog, §5.2.11].

The compatibility of the pairings with the comparison isomorphisms means the following:
if 71,7, € {B, dR, p} and B is the period ring using to compare the ?;- and ?;-realisations (i. e.
B € {C, Qp,Bar}), then the diagram

(s 2y

(XW, ® B) x ('\W», ® B) Q1-k), ®B
J ] .>‘72
(XWs, ® B) x (YW, ® B) Q1-k), ®B

commutes (where the vertical maps are the comparison isomorphisms). To make this really
explicit, we state the following proposition. It follows from the above diagram and the
explicit description of the comparison isomorphism of the Tate motive in fact 1.3.6.

Proposition 8.3: (a) Let xp,yp € NkWB ®q C and let x4r, yar be their images under the
comparison isomorphism A,fWB ®q C — A]i(WdR ®q C. Let further c € C. Then

Q(-k) 1-k Q(-k)
c- by ) te-bgp

(xB, yB)B = & (Xdr, Ydr)dr = (27ri

(b) Letxp,yp € NkWB ®q Qp and let x,,y, be their images under the comparison isomor-
phism ]Z(VVB ®q Qp — NkWp. Let further c € Qp. Then

¢ b2 c- b H.

(xB,yB)B = = (%, Yp)p =
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(c) Let xp,y, € NkWp ®q, Bar and let xqr, yar be their images under the comparison

isomorphism IZWP ®q, Bk — IZ’VVdR ®q Bdr. Let further ¢ € Bgg. Then

Q(1-k) 1-k Q@1-k)
bp bdR .

(xp,yp>p =c: & (Xdr>Ydr)dr = tgg € "

Proposition 8.4: Via the exact sequence

0— Sk(X(N), Q) — YWar — HI(X(N), 0¥ k) — 0

coming from the Hodge filtration (see propositions 5.9 and 5.10), the pairing (8.3) induces a
perfect pairing
SK(X(N), Q) x H'(X(N), 0¥ K;)) — QU ~ K)ar

and this pairing coincides with the Serre duality pairing under the canonical identification

QA -k = Q.

Proof: For well-definedness, we have to show that the pairing (-, -) 4z from (8.3) restricted to
fil° A]deR = Si(X(N), Q) vanishes. By theorem 6.7, this is equivalent to the vanishing of the
pairing on Si(X(N), C) induced by the pairing (-, -)g via the Eichler-Shimura isomorphism.
This vanishing property follows from proposition 8.1. That it coincides with the Serre duality
pairing (as predicted by the general theory of Poincaré duality for motives) is stated in
[DFGoz1, p. 21]. From this fact follows its perfectness. O

Corollary 8.5: The space gr’® M(f)ar is canonically isomorphic to the dual space of the sub-
space of Sk (X1(N), K) generated by wy; f.

Proof: This follows easily from propositions 5.10, 8.2 and 8.4 and the fact that the comparison
isomorphism respects the pairings. Note that although the Atkin-Lehner involution wxy may
not be defined over K unless K contains all N-th roots of unity, the Fourier coefficients of
wy f lie again in K, see [Li7s, p. 296]. O

By the adjointness relations for the Hecke operators (see proposition 8.2), the pairing
(-, -)p induces a pairing

M(f)p x M(f*)p — K(1 - k).

Since it may be handy to have the Hecke operators self-adjoint, it is common in the literature
modify the pairing in the following way: Let

(g = wN)p

where wy is the Atkin-Lehner involution (we will use this only on the Betti realisation). This
modified version is also called twisted Poincaré duality pairing by some authors. It is clear
that the Hecke operators are self-adjoint with respect to it. We will not use the modified
pairing too much, but some statements are easier to formulate using the modified version.

Lemma 8.6: The pairing (-, -)y restricts to perfect pairings
M(f)g x M(f)g — K1 - k),

while its restriction to M(f)z X M(f)g vanishes.
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Proof: The perfectness of the pairing can be tested after tensoring with C. Put b := ES(f) €
M(f)p ®k C and b* == b + Frob(b) € M(f); ®« C, where Frob, is complex conjugation.
By lemma 6.6, we have b* = ES(f + Frob.(f)) with Frob, acting as in definition 6.5, so
explicitly

b* = ES(f @ (+F7)).

In particular b* # 0, and since M(f); is one-dimensional, b* is a basis. Hence it suffices to
show that (b*, wyb* )y = 0 and (b*, wyb™ )y # 0. Explicitly, this is

(ES(f @ FT7). ES(wn f @ wn (/7)) =0,
(ES(f ® G ES(un f @ wn () # 0.

We transfer this problem to S (X;(N), C)®Sk(X1(N), C) via the Eichler-Shimura isomorphism.
The pairing there that corresponds to (-, -) is, up to a constant, basically the Petersson
scalar product, as shown in proposition 8.1. Using the formula there and the relation
wn(f*) = (=1)*(wn f)* from [Li7s, bottom of p. 296], what we have to show becomes

F(DR(F, (W ) pet F (DL Wi fpet = 0,
(=), (wa ) Vet F (DI, W f)pet # 0.

By proposition 4.21, (wx f)* is a nonzero multiple of f, and thus also wy f is a nonzero
multiple of f* by the same factor. Further the Petersson norm of any modular form and its
image under wy are equal; this is also shown at [Li7s5, middle of p. 296]. Hence the desired
properties follow from the definiteness of the Petersson scalar product. (]

Proposition 8.7: Let n € Z and p be an Artin representation. The motive M(f)(p)(n) is
critical if and only if1 < n < k -1

Proof: From the descriptions of the Tate motive and the motive associated to an Artin
representation in section 1.3.2, we observe that tensoring a motive with M(p) does not
change its Hodge filtration, whereas tensoring with Q(n) moves it by n steps. From the
Hodge filtration of IZ‘W (see proposition 5.9) we therefore see by counting dimensions that
M(f)(p)(n) can only be critical if 1 < n < k — 1. So fix such an n, and without loss of
generality assume that p is trivial. We have M(f)(n); = M(f )gl)n ®k K(n)s.

Let b* € M(f)z®k Cbe as in the proof of lemma 8.6 and let c¥ € M(f)f ®x C be elements
such that (b*, c¥), # 0. Then by theorem 6.7 and the fact that the comparison isomorphism
respects the pairings, the image of ¢* ®k (b]?(l))@” for ¥ = (-1)""in typ)m ®k C =
(gr® M(f)ar ®x K(n)ar) ® C € Homg(Sk(X(N), €), C) is a linear form whose evaluation
at wy f does not vanish. ]
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Chapter IIL.

Modular symbols and p-adic families

Modular symbols are certain cohomology classes on modular curves which are used in
the first place as a technical device to construct p-adic L-functions for modular forms (see
appendix B for this). We first introduce them in a general setting, using the abstract Hecke
theory from section 1.1. After that we introduce the classical modular symbols which were
used to construct p-adic L-functions for a single modular form.

To handle families of modular forms, one needs to put the classical modular symbols
together into families. For Hida families, this is achieved by Kitagawa’s construction of
J -adic modular symbols. After some preliminary discussion of Hida families we introduce
and study these.

The most important ingredient in this whole work is the 7-adic Eichler-Shimura isomor-
phism, which relates J -adic modular symbols and 7 -adic cusp forms. We cite this statement,
proved by Ohta, Kings, Loeffler and Zerbes [Ohtgs; KLZ17], at the end of the chapter. Before
that, we need to include a rather technical section on a different viewpoint on 7 -adic modular
symbols because parts of the literature use that viewpoint.

While in the previous chapter we considered modular forms and modular curves for a
fixed level N, in this chapter the level will be varying (except in sections 1 and 2). More
precisely, the role which was played by N in the previous chapter will now be played by
Np’", where N is a fixed integer prime to p and r > 1is varying. The reader should not be
confused by these different roles.

1. General theory of modular symbols

We first define modular symbols in a rather general setting. To do so, we use the abstract
Hecke theory developed in section I.1.

We consider the group GL,(Q) with the main involution : and put X := GLy(Q) N M3(Z).
Fix a Hecke pair (A, T’) for (£, 1) and a commutative ring R.

The group GL3(Q) acts on P}(Q) = Q U {oo} as explained in example 1.2.10 (b). Let
Div(IP!(Q)) be the free abelian group over the set P'(Q) and let Div’(IP(Q)) be the subgroup
consisting of elements of degree 0. The left action of GL,(Q) on P'(Q) induces a left action
of GL2(Q) on Div(P(Q)) and Div’(P'(Q)). So these groups are a Z-linear representations
of (2, 1) and P!(Q) is a Hecke space.

Definition 1.1: Let M be an R-linear representation of (Z, 1). Then

Homgy(Div’(PY(Q)), M) = Homg(R % Div’(PY(Q)), M)

is again an R-linear representation of (%, 1), as explained in remark 1.1.4. We define the right
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Chapter III. Modular symbols and p-adic families

Hgr(A,T')-module of modular symbols with coefficients in M to be the T'-invariants

MSymb(T, M) := H(T, Homz(Div’(P}(Q)), M)).

This is exactly the definition given in [PS13, §2.1], except that there a concrete choice for
(A,T) is used.

Clearly MSymb defines a left exact functor from R-linear representations of (2, 1) to right
Hr(A,T)-modules.

Proposition 1.2 (Ash/Stevens): Let M be an R-linear representation of (2, 1). Assume that

* 1
andT satisfy condition 1.1.39 and further that b? is compact and L ;Q) is finite. Writerr: h — ]

iy
for the canonical projection.

(a) There is a canonical Hg(A,T')-linear isomorphism
MSymb(T', M) —~— H(Z, 2T M)
which is functorial in M.

(b) There is a canonical commutative diagram of Hg(A, T')-modules

MSymb(T, M) —2— HI(T, M)

Here the right isomorphism is from corollary 1.1.43, the upper horizontal map is a
boundary map (see the proof for details) and the lower map is the tautological one. The
horizontal maps are surjective.

This is again functorial in M.

(c) If M and H(T', M) are finitely generated R-modules, then also MSymb(T, M) is finitely
generated over R.

Proof: We argue similarly as in the proofs of proposition 1.1.42 and corollary 1.1.43. Write «

also for the canonical projection h* — I’T as well as for its restriction to P}(Q). Let A :=

.Sﬁg’ ’)(b*), B := R-Mod 5, and C = Mod -Hg(A,T), all of which are abelian categories. Let
F: A —— B be the functor sending a sheaf # on h* the submodule of H(h*, ) consisting
of sections vanishing in P}(Q)). We denote its right derived functors by H(h*, P}(Q), —), and
it is easy to see that for constant coefficients it coincides with the usual singular relative
cohomology group. Let G: 8 —— C be the functor of I'-invariants.

If 7 € A, then elements of G(F(F)) are global sections of 7L # on I’T that vanish in PlﬁQ).
Using elementary topology arguments, it is easy to see that such sections are in bijection with
sections of 7L 7 on % with compact support.’ Arguing as in the proof of proposition 1.1.42,

! Indeed, if a section on If) has compact support, it has to vanish on a small neighbourhood around each cusp.
Conversely, if a section on bT vanishes at a cusp, then since the support of sections of sheaves is always closed
[Stacks, Tag o1au], it has to vanish on a small neighbourhood of the cusp, so its support is a compact subset of

T
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1. General theory of modular symbols

we thus see
R'(G o F) = Hy(f, 7 ().
Using this, the Grothendieck spectral sequence for the composition of functors G o F

becomes
EST = HP(T,H(p", P(Q), 7)) = (R, 2l 7).

We put ¥ = M there. Since h* and P'(Q) are zero-dimensional, H?()*, P}(Q), M) and
therefore Eg ? vanishes for ¢ > 1 and all p. We thus get an exact sequence

0 — HY(T,H°(b", P(Q), M)) — HA(L, 7l M)
— HYT,H'(b*, PY(Q), M)) — H*(T,H(h", PY(Q), M)) — - -~ .

From the commutative diagram in Z-Mod (5, ,) with exact rows

0 Hi(b*, PY(Q), Z) Hy(PY(Q), Z) Ho(b*, Z) 0
0 Div'(PY(Q)) Div(P}{(Q)) Z 0

where the upper row is the long exact singular homology sequence for the pair (h*, P1(Q))
of Hecke spaces, the lower right map is the degree and the vertical maps are canonical iso-
morphisms, we see that Hy()*, P}(Q), M) = 0. Thus the first and fourth term in the sequence
above vanish, and we get an isomorphism Hé([%, xf M) —~— H(T, H'(y*, PY(Q), M)).

Our next arguments follow [Kitg4, §3.2] closely. We apply the functor Homz(—, M) =
Hompg(- ®z R, M) to the above diagram to obtain a diagram in R-Mod (5, ,)

0 M Homg(Div(PY(Q)), M) — Homg(Div’(P}(Q)), M) — 0

| | |

0 — H(b", M) —— H'PYQ),M) ———— H'(H", P{(Q),M) —— 0

whose rows are still exact since all Z-modules in the previous diagram were free and hence
the sequences there split (non-canonically). This gives us an isomorphism as claimed in
statement (a). By construction it is clear that it is functorial in M.

We now take group cohomology for I' of this diagram, which gives us two long exact
sequences in Mod -Hg(A,T). We add a third exact sequence below, using statement (a) and
corollary 1.1.43 for the spaces h* and P'(Q). This gives us the diagram

H(T, M) H(T', Homg(Div(P}(Q)), M)) —

| |

- — HY(TLH(b", M) H((T,H'(PY(Q), M) ——

) |

- —— H (% 2T M) QM) ———
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— H(T, Homg(Div°(PY(Q)), M) H'(,M) —— - -

I |

—— H(ILH'(9", PY(Q), M) H'(T,H(H", M) — -+

Hi(f. 7} M) H(F. 2 M) —— -
The lower squares commute since all isomorphisms come from the spectral sequence. This
proves the commutativity of the diagram in statement (b). Moreover the surjectivity of the
horizontal maps follows from H! w, ' M) = 0 (which holds since ]PIIEQ) is a finite set of
points) and the above diagram.

Finally we see from the above exact sequences that statement (c) also holds, because we

required that Plng) is finite, so Ho(w, 7 M) is a finite sum of copies of M, which is finitely
generated, and HY(T, M) is finitely generated by assumption. |

Note that the groups I' = I}(N) are torsion free for N > 4, so they fulfil the requirements
in proposition 1.2.

2. Classical modular symbols and complex error terms

We now choose special instances of the data from the previous section to define classical
modular symbols. Let R be a commutative ring. Fix N,k € IN with N > 4 and k > 2. Let
I' =}(N) and A = Ai(N)°. Then Hg(A,T) is the standard Hecke algebra H(N)g of level N
by corollary 1.1.57. For the representation we use the symmetric tensor linear representation
Sym*~2 R? of My(Z) N GL,(Q), which is discussed in appendix A.1.

Definition 2.1: The right H(N)g-module of classical modular symbols of weight k and level
N is defined as
MSk(N, R) := MSymb(I3(N), Sym*~2 R?).

From the definition it is clear that we have

MSk(N.S) = MSi(N.R) ® §

if S is a flat R-algebra.
Proposition 2.2: (a) Write f: E{(N)*™ —— Yi(N)* for the universal analytic elliptic
curve. Then there is a canonical H(N)g-linear isomorphism

MSi(N, R) = H{(Y;(N)™, Symg *R'£.R).

Moreover, this isomorphism respects the Atkin-Lehner endomorphism, which on the left
side is given by the standard Atkin-Lehner element of level N from definition 1.1.60 as
explained in section 1.1.6 and on the right side is given as in section I1.3.4.

(b) The R-module MSi(N, R) is free of finite rank. In particular H.(Y;(N)™", Symg_2 R!£.R)
is free of finite rank over R.
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2. Classical modular symbols and complex error terms

Proof: In this proof we abbreviate I' = I3(N).
We first prove statement (a). By theorem 11.1.13, the right hand side is isomorphic to
Hi(F\b,Symf{z R!'f.R), where f now is the map I'\Er, —— T'\h. Then by lemma 11.2.2,

Sym*~2R!f,R on I'\h is isomorphic to 71 Sym*~2 R?. Thus proposition 1.2 completes the
proof of the isomorphism. The statement about the Atkin-Lehner endomorphism follows
easily from lemma 11.3.7. This completes the proof of statement (a).

We now turn to statement (b). By similar arguments as above (using corollary 1.1.43) we
get isomorphisms

H'(T, Sym*? R?) = H!(2, 2L Sym*~2 R?) = HI(y;(N)™, Symg *R'f.R).

By base change it suffices to prove the claim for R = Z.. With lemma 11.2.3 we conclude that
H'(T', Sym*~2 Z2) is finitely generated. Then by proposition 1.2 (c) we know that MS,(N, R)
is finitely generated. Since it is obviously torsion free as a subset of the Hom set, the claim
follows. O

Remark 2.3: By lemma 11.4.25, we now know the Hecke eigenalgebra of classical modular
symbols: we have canonically

T INIMSL (N, R)) = T (N, R).

The above result allows us to relate modular symbols to the Betti realisation of IZ(VV
Consider the composition

MSK(N, Q) = Hy(Yi(N)™, Sym"* R'.Q) — H,(H(N)™, Sym“ *R'£.Q)

—— H(Y(N)™, Sym* ?R'£.Q) = YWs  (2.1)
where the first map is from proposition 2.2 (a), the second is tautological and the last one
comes from the morphism Y(N) —— Y;(N). This composition is Hecke equivariant and
Gr-equivariant by proposition 1.2 (a) and lemma 11.2.2. Moreover, the second map is by
definition surjective and the last one is injective since it is so after tensoring with C, by

the description of the analytification of Y(N) in remark 11.1.14 (b) and the complex Eichler-
Shimura isomorphism (theorem 11.6.3).

Lemma 2.4: For each newform f € Sp.(X;(N)™™, K) with coefficients in a number field K, the
map (2.1) induces isomorphisms

MSk(N, K)*[f] —=— M(f)§.

Proof: By Hecke- and GRr-equivariance it is clear that we get a map between the spaces in
the statement. If we look at Hecke eigenspaces in (2.1), we get

HL(Y;(N)™, Sym** R' fLK)[ f] — Hy(H(N)™, Sym* R £.K)[ f ]
— Hy(Y(N)™, Sym" R R[]

That this composition is an isomorphism can be checked after tensoring with C, and then
we can use the Eichler-Shimura isomorphisms (theorem 11.6.3). If we do so, we see first that
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Chapter III. Modular symbols and p-adic families

all spaces involved here are two-dimensional (using corollary 11.4.27 (a)) and further that
the first map is surjective. The right map is injective since it is the restriction of an injective
map. Hence the composition is an isomorphism. ]

Definition 2.5: Fix f € Sg(X1(N), K), where K is a subfield of C.

(a) Define a group homomorphism?
& : Div'(PY(Q)) — Sym**C?, (x) - (y) — (27i)* / (zX + V)" 2 f(z)dz.
y

One can check that & is in fact invariant under the action of I3(N), so we have
&r € MSi(N, ©)

and &¢ is called the modular symbol attached to f. Moreover one can check that if f
is a Hecke eigenform, then

&r € MSK(N, O)[f].

(b) We call the endomorphism € € H(N) (defined in (1.1.6)) of MSi (N, C) also complex
conjugation and define in this way an action of Gg on MSi(N, C). Let f}? be the
image of £ in the respective part of the decomposition

MS.(N, C) = MSi(N, C)* ® MS(N, C)".

Note that if f is a Hecke eigenform, then 5; € MSi(N, O)*[f].
Lemma 2.6: Consider the composition

MS(N, €) —— H:(Y;(N)*, Sym 2 R! £,C)
— Hy(K(N)™, Sym*? R'£,€) = Sk(Xy(N), €) & S (X;(N), C)

where the first map is from proposition 2.z (a), the second one is tautological and the last one is
the (inverse) Eichler-Shimura isomorphism. This composition maps ¢ to f = f @ 0 and

+ 1 s
& — 5 (f & ).

Proof: The first assertion is easy to see using the definition of &¢, proposition 1.2 (b) and
proposition 11.6.4. The second assertion follows from the first one using lemma 11.6.6 and the

obvious identity
1

& = 5 (&r % Frobe ()

since the composition is Gr-equivariant by lemmas 11.2.2 and 11.6.6. O

* There are different conventions regarding the definition of ¢ in the literature, differing in the exponent of 27i.
We use an exponent k — 1. For a comparison of these conventions and an explanation why we use this power,
see appendix A.3.
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2. Classical modular symbols and complex error terms

We can now define complex error terms. Fix a number field K and an embedding K —— C,
and let Ok be its ring of integers. Further fix a normalised Hecke eigenform f € S(X;(N), K).

Proposition 2.7: The Og-modules MSi(N, Ox)*[f] are free of rank 1.
Proof: [Kitg4, Prop. 3.3] O

Definition 2.8: Choose Ok-bases 77? of MSi(N, Ok)*[ f]. Because

MS(N, Ok) 2 C = MSk(N, ©),
K

there exist unique Eco(f, 17;—;) € C* such that

& = Exlforpn
in the right hand side. They are called the complex error terms attached to f.

Remark 2.9: These error terms are often called “periods”. We want to reserve the word
“period” for a number defined using some kind of comparison isomorphism coming from the
theory of motives. We will later show that our error term is in fact (more or less) a period in
this sense, but until then we will call it an error term. Also, the error terms are often denoted
by Q, but we want to reserve this symbol for periods.

We finally study refinements of modular symbols. For this we let K be a number field
with ring of integers O, p { N a prime and f € Si(X;(N)™h, ©O) an eigenform away from the
level. Let & and S be the roots of its p-th Hecke polynomial and assume the they lie in O.

Proposition 2.10: There exists a canonical morphism Ref,: MSg(N,K) —— MSi(Np, K)
such that the following hold:

(a) It induces isomorphisms
Ref, : MSK(N, K)*[f] —=— MSr(Np, K)*[f].

If f is ordinary at a primep | p of K and « is the unit root of the p-th Hecke polynomial,
then it induces

Refy : MSk(N, O)*[f] —— MSi(Np, O)*[ fo]-

(b) The diagram
Ref,
MSk(N,K) - Msk(NpaK)

L ]

Np,
IZ(WB ®Q K—— k(WB dq K

commutes. Here the vertical arrows are the maps (2.1) and the bottom map is induced
by the motivic refinement morphism from corollary 11.7.7.

(c) Let fo be the refinement of f at a. Then Refy(&r) = &, .
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Proof: Using the isomorphism from proposition 2.2 (a) we simply define Ref,, in the same
way as the motivic refinement morphism from corollary 11.7.7, i. e. as oy, N T pk By N
where oy, 1, N TESP- Oy N denote the maps induced in cohomology by the morphism on,, N
resp. Onp, N between modular curves from section 11.7.2. Then (b) is trivial and (c) follows
directly from corollary 11.7.7 and lemma 2.6.

Alternatively we could also define the above morphism more directly as
Ref : MSk(N,K) — MSi(Np,K), Ref, =id—pp'* [p J .

That this gives the same map can either be proved directly by a similar reasoning as in the
proof of proposition 11.7.6, or one just uses the Eichler-Shimura isomorphism (theorem 11.6.3)
to see that both maps are equal after tensoring with C. From lemma 11.7.1 it then follows
that we get a map as in (a), and it is an isomorphism since it is so after tensoring with C,
which follows from (c). If f is ordinary and « is the unit root, then v,(f) = k — 1, so in this
case we get a map over Ok. ]

Let f be ordinary at p. If we now choose 77? € MSk(N, O)*[f] as above, we may take
17;*; = Refa(n;) as a basis of MSi(Np, O)*[ f,]. The following is then clear.

Corollary 2.11: If f is ordinary atp and « is the unit root, then Ex(f, ry}%) = Eco(fus r;}fa).

3. Hida families

In this section, we recall the most important facts about Hida families and fix the notation
for the next sections. During this we prove some statements that are well-known but whose
proofs are not easy to find in the literature.

We first fix the notation that should be in place throughout the whole rest of this chapter.
Let O be the ring of integers in a finite extension L of Q, and write ™' := 1+ pZ,, ['' :=
1+p"Z, C TV and A" := O[[T™']. We further fix an integer N prime to p such that Np > 4
and regard '™ as a subgroup as well as a quotient of Z;, N+ On finite levels, we regard
I'™"!/T™ as a subgroup as well as a quotient of (Z/Np")*. The integers Np" for varying r
will now play the role of the level, so the N here is a different N than in the previous chapter.
This N is often called the tame level.

If ¢ is a character of T™', we regard it also as a character of Z;’  Via the projection to ™",
If ¢ is a character of T'™" of finite order, factoring over I'"'/T*!, then note that the notation
Sk(Xi(Np™), TV /T, ¢, O) is well-defined (see definition 11.4.18).

The weight space is defined as X™' := Spec A*'. If K is a finite extension of the fraction
field of A" and 7 is the integral closure of A™" in K, then we write X}'* := Spec 1.

Write Ky, for the canonical embedding

Kyt : TV OX.

For each k € Z and each ®*-valued character ¢ of T'™! of finite order, we let
Pre: NN — O

be the O-algebra morphism induced by

™— 0%,y ep)rmy)
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3. Hida families

and we write Py . for its kernel, which is then an element of X™.
We put

Xt — (p ik > 2, e: TV —— O character of finite order} C X™

and call its elements the arithmetic points in the weight space. If we have fixed I as above, let
X1t be the preimage of X*™ under the natural map X' —— X™. We say that P € X}"
is of type (k,e,r) if P N A" = Py, with k and ¢ as above and ker ¢ = T'". Finally define the

ideals
Wi, r = l—[ Pk,s
&

for each fixed k € Z, r > 0, where ¢ runs through all O*-valued characters of T™'/T".

Lemma 3.1: (a) The map X}' —— X™' is surjective and open.

(b) Any infinite subset U € X3™ is Zariski dense in X",

Proof: (a) The morphism Spec 7 —— Spec A" is obviously finite. Hence it is proper, so
its image is closed, and since the image contains the generic point, the morphism is
surjective. Moreover the morphism is finitely presented and flat, hence open.

(b) By (a) it suffices to prove this for 7 = A*'. It is enough to prove that for any f € A",
f # 0, the basic open set D(f) = {p € Spec A" : f ¢ p} contains some Py . € U,
which is the case precisely when ¢y .(f) # 0.

Fix a topological generator y of I'"*. We use the identification I: O[T] —— A" of
the Iwasawa algebra with the power series ring given by T —— y — 1, see [NSW13,
Prop. 5.3.5]. The composite ¢y . o I is given by

[ flexu(y) = 1)

and since a non-zero power series can have only finitely many zeros by the Weierstrafy
preparation theorem [NSW13, (5.3.4)], the claim follows. O

We will often look at X }rith((’)) or similar objects. The elements are by definition certain
O-algebra morphisms 7 —— O and if we identify them with their kernels, we can view
X }mh((’)) as a subset of X }rith as usual. Sometimes however it is important to distinguish the
morphisms and the kernels. We will typically denote morphisms as ¢ and prime ideals as P,
so for example if we write P € X }rith((’)) we mean the kernel and not the morphism. If we
want to make clear which morphism belongs to which prime ideal, we will use notations
like ¢p and Py.

3.1. Hida’s big Hecke algebra and control theory

Recall lemma 1.1.55 (a), which allows us to identify the abstract standard Hecke algebras
H(Np") for r > 1 with H(Np). In the following we will often use this lemma without further
comment.

Definition 3.2: (a) For a power series f = Z anq" € Olqll, define its norm as
n=0
I £Il = sup [an] .
n
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(b)

(©

(d)

For (at the moment fixed) r,i € IN, we put

MI(Np", 0) = P Mc(Xu(Np" ™™, 0).
k=1

By g-expansions, we can view each Mz (X;(Np" )™, ©) and M¥(Np", ©) as O-sub-
modules of O[[¢q] (see corollary 11.4.17 and note that O is flat over Z). We endow
them with the norm induced thereby. Put

M(Np®, O) := colim M'(Np", O),

ir

where the limit is taken along the natural inclusions. Since these inclusions are
compatiﬁz with the norm, this colimit still carries a norm. Define the O®-Banach
module M(Np™, O) to be the completion of M(Np™, O) with respect to this norm.

For again fixed i, r we write
Ti(Npr, 0) = T%I(Np ) Li(Np ))(Mi(Npr, 0))
for the Hecke eigenalgebra of M!(Np", O) (see definition 1.1.64) and
. A r l.’ r .
Tl(Npr, O)l — ngl(NP )L, L(Np ))(Ml(Npr, O))

for the corresponding adjoint Hecke eigenalgebra. As explained in remark 1.1.58,
the natural inclusions between the M!(Np”, O) are Hecke equivariant, so we have
natural restriction maps between these eigenalgebras and can form the limit

T(Np™, 0) = limT'(Np", 0),

ir

which we call the big Hida Hecke algebra of level Np™ for modular forms. The adjoint
big Hida Hecke algebra of level Np™ for modular forms is defined as

T!(Np*®,0) = yLnTi(Npr, 0).

By continuity, they both act on M(N =, O).

One can make analogous definitions with cusp forms instead of modular forms. We
denote the resulting objects by S(Np*, O), S(Np*, O), t(Np*, O) and t'(Np*, O).

The perfect pairings from theorem 11.4.28 induce a perfect pairing

¢,y : t(NP™, 0) x S(Np™, 0) — O (3.1)

of O-Banach modules, so one can identify t(Np>, O) with the O-Banach dual of §(N >, 0)
and vice versa, see [Hid88, Thm. 1.3]. A similar statement also holds for modular forms
instead of cusp forms, see [Ohtgg, Rem. 2.5.5], but we will not need it.

The O-algebras T(Np*, O) and t(Np>, O) are canonically algebras over O[[Z;’ Nl We
explain this for T(Np™, O), the case t(Np*, O) works analogously. For ¢ € Z coprime to Np,
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3. Hida families

we let £ act on M/(Np", O) as the endomorphism £2S,, which is an element of T!(Np", O) and
is easily seen to be invertible (it is essentially a diamond operator). Since such ¢ are dense in
Z;, - this induces a morphism Z;’ v — TH(Np”, O)*. 1t is clear that these morphisms are
compatible with the transition maps used to form the limit, so this induces further morphisms

Z  — T(Np™, O)* (3.2)
and thus
Ol Z ] — TINp™, O),
which makes T(Np™, O) an algebra over (’)[[Z;’ ~ - In particular, T(Np®, O) and t(Np*, O)
are A"'-algebras.

Remark 3.3: The isomorphism H,(Np) —— H,(Np)' from lemma 1.1.35 (b) induces iso-
morphisms T(Np™, O) —=— T/ (Np*, O) and t(Np*, O) —— t'(Np>°, O). We regard each
of the adjoint Hecke algebras as A*'-algebras via the map from A" to the non-adjoint Hecke
algebra followed by the respective isomorphism, such that these isomorphisms become
isomorphisms of A*'-algebras.

Definition 3.4: The ordinary projection e € t(Np*, O) is defined as e = (e; ,);,» with

ey = lim T} e t/(Np”, 0).
n—oo
The adjoint ordinary projection e* € t'(Np™, ©O), also called anti-ordinary projection, is defined
ase' = (el‘.’r),-,r with
¢}, = lim (T;)" € t/(Np", 0)",
n—oo

Both are well-defined and idempotent by [HidLFE, §7.2, Lem. 1]. If M is a module over
t(Np™, O), we write M = eM. We write t"%(Np™, ©) instead of t(Np*=, 0)°™, and
similarly for other modules. Further, if M is a module over t*'(Np™, O), we write M rrord .— ol pf
and again similarly for other modules.

Note that the isomorphisms from remark 3.3 induce isomorphisms T*"4(Np*, O) —~—
T"(Np™, 0) and t"(Np®, 0) — t"(Np™, O).

An important property of Hida’s ordinary Hecke algebras is that one could also take the
limit only over either just the weight or just the level:

Proposition 3.5 (Hida, Ohta): If we define

Ti(Np®, 0) = limt;(Np", 0), T(Np",0) = %irfntj(Npr, 0),

r J
t(Np™,0) = limty(Np", 0), t(Np",0) =limt/(Np", 0),
r J

then there are canonical isomorphisms

TOUND', 0) = TYUND™, 0) = T (Np™, 0),
tord(Npr’O) ~ tzrd(Npoo, O) ~ tord(Npoo,O)

forallk > 2 andr > 1, with the ordinary idempotents e defined appropriately in each of the
cases, and analogously for the anti-ordinary parts.
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Proof: See [Hid86a, Thm. 1.1] for t and [Ohtgg, Thm. 1.5.7 (i)] for T. O

Proposition 3.6 (Hida, Ohta): The ordinary Hecke algebras T"4(Np®, O) and t"4(Np™, O)
are free N"*-modules of finite rank.

Proof: See [Hid86b, Thm. 3.1] for t and [Ohtgg, Thm. 1.5.7 (ii)] for T. O

The following is Hida’s control theorem, which lies at the heart of the whole theory.

Theorem 3.7 (Hida): Letk > 2 and e: T"* —— O be a character of finite order. Then there
are canonical isomorphisms of O-algebras

IR

UNp™,0) 8 (A by ) = NG T O,

N, 0) 0 ([, )

IR

t4(Np", O).

Analogous statements hold for T instead of t.

Proof: The first statement (for t) is [Hid86a, Thm. 1.2]. There the Hecke algebra
4 (Np”, TV I e, O)

is defined using classical cusp forms for the congruence subgroup @, := I;(Np) N TH(p") C
SL,(7Z.). The quotient @, /T;(Np") is isomorphic to I'*/T'*, the isomorphism being induced
by

@, 3 (j Z) ——d €1+ NpZ C 1+ pZ, =T — FWt/r;Nt.

Therefore classical cusp forms with coefficients in O for the congruence subgroup ®, with
nebentype ¢ are isomorphic to Si(X;(Np”), ™ /T, ¢, O) and the statement in [Hid86a, Thm.
1.2] is equivalent to our statement.

The second statement can easily be derived from the first one, see [Hid86a, p. 553]. For
the analogous statements for T instead of t see [Ohtgg, Thm. 1.5.7 (iii)]. O

3.2. Hida families and coefficient rings of the big Hecke algebra

Let Q be the quotient field of A*', and fix an algebraic closure @ of it.

The meaning of the notion “Hida family” varies in the literature, as depending on what
one wants to do with them certain definitions may be more convenient than others. For us it
will mean the following.

Definition 3.8: A Hida family is a morphism of A"'-algebras

F: t"YNp™, 0) — Q.

It will become clear in a moment why such a morphism is called Hida family. Note that it is
clear that Hida families exist.

First observe that since t"4(Np>, O) is free of finite rank by proposition 3.6, the image of
a Hida family generates a finite field extension of Q, say K, and the image even lies in the
integral closure of A" inside K, which we call 7. Moreover note that since the kernel of F
contains a minimal prime ideal, there are only finitely many 7 that can occur in this way as
long as N and O are fixed. By [Hid88, Lem. 3.1] each such 7 is free of finite rank over A™.
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3. Hida families

Definition 3.9: If F is a Hida family, then we call the ring 7 from above the coefficient ring
of F. We call the finitely many I that can occur the coefficient rings of t"4(Np™, O).

The above definition of coefficient rings and Hida families is not totally standard in the
literature. Note that in our definition a Hida family will in general not surject onto its
coeflicient ring (because the image need not be integrally closed). Sometimes Hida families
are defined as irreducible components of Spec t°"4(Np*, ©), whose underlying rings are then
used as coefficient rings. For us it will be more convenient to work with integrally closed
coeflicient rings, see remark 3.19 below.

Before we continue, we study some ring-theoretic properties of the coefficient rings. First
note that our situation is just the one described in section 1.2.5 (the “algebraic” case there),
so we have all the properties of I stated there, for example we know that 7 is a local ring.

Lemma 3.10: By possibly enlarging L (and thus O), one can assume thath_rith((’)) is Zariski
dense in X}”t(@p) (which we both view as subsets of X' = Spec T ).

Proof: By lemma 3.1 (b) Xj.rith is Zariski dense in X}'", so in particular X}rith(@p) is dense in
X‘I’Vt(ﬁp). It remains to see that already O-valued points in X f}rith are dense (after possibly
enlarging O). For this it suffices to see that the field which is generated over L by the images
ofall f € X }rith(@p) (which are morphisms f: 7 — @p) is finite over L. Then we can
replace L by this field and the claim follows.

So take a morphism f: I — @p which lies over a morphism g: O[T] — O and let
O’ be its image. We look at the pushout

OT] ——— T

/| J

04>(/)®(9[T]I.

By its universal property, the morphism f factors through O ®or) £ and is surjective
from there onto O’. Hence O’ is a quotient of O ®pyr] £ . Since O ®oyr) £ is a finite rank
O-module by base change and its rank is independent of f, the rank of O as an O-module is
bounded independently of f. Since there are only finitely many extensions of L of bounded
degree, we are done. (]

From now on we assume that we have the density from above. For later reference, let us
summarise the notations and assumptions we are now using.

Situation 3.11: We have fixed a finite extension L of Q, with ring of integers O, an integer
N prime to p such that Np > 4 and a coefficient ring I of t"4(Np>, O). We assume L and O
large enough such that ¥ := X }rith((’)) is Zariski dense in X}”t(@p). Further we assume that
L is the maximal subfield inside K which is algebraic over Q,.

Some of the statements that follow are valid without these assumptions, but as we will
need them in the end anyway, we just assume them throughout for simplicity. If we consider
again the situation from section 1.2.5 and use = = X }rith(O) as a set of specialisations, then
all the rings denoted Oy there are equal to O. Therefore we have the following.
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Remark 3.12: Forany P € X jlrith(O) there is a commutative diagram

Awt N Awt/P N Awt

b

I——I/P

with an isomorphism on the right. Hence for any A*'-module M we have canonically

e (Tfr)=wigne(Tfr)=mere(r]p))=me (¥ [pan).

Definition 3.13: Let F: t°"‘(Np®, 0) —— T be a Hida family and let
i (tf) 1
be the character obtained as the composition
(Z/Np) L 7 OlZp N T — ENp, 0 1

We call this ¢ the nebentype of F.

Fix a Hida family F: t"4(Np®,0) — I and P € X}rith((’)) of type (k,¢&,r). If we re-
duce F modulo P we get a morphism tzrd(Np’ , TV T ¢, O) — O by theorem 3.7 and
remark 3.12. By the perfect pairing from theorem 11.4.28, this morphism corresponds uniquely
to a cusp form Fp € Sp(Xi(Np"),IT™'/T, ¢, O). If ¢ is the nebentype of F, then using the
definition of the A"'-algebra structure on t"4(Np*, O) one can even show that in fact
Fp € Sp(Xy(Np"), ey, ©), where w is the Teichmiiller character. Hence F gives rise to a
whole family of cusp forms parametrised by the points in X j.rith(O), which justifies the name
“Hida family”. What’s more, it is clear from theorem 3.7 that any cusp form lives in some
Hida family.

When we view the elements of X}mh(O) as morphisms instead of ideals, we shall also
write Fy instead of Fp for ¢ = ¢p.

Definition 3.14: Let F: t"4(Np®, ) —— Q be a Hida family. Then we call F new if there
does not exist a proper divisor M | N and a Hida family G: t°"4(Mp™, ©) — Q such that
F(T;) = G(Ty) for almost all primes ¢.3

Note the similarity of this definition to the definition of a newform (definition 11.4.31).

Theorem 3.15 (Hida): Let F: t*"Y(Np*®, O) —— I be a Hida family of nebentype . Then
the following are equivalent:

(i) F is new.

ii) For some P € X2t(0), Fp is new.
7

3 Instead of “new”, it is also common to call such forms “primitive”. By [Hid87, Thm. 2.3] there is always a
unique smallest N for each Hida family F such that F is primitive for this N, which is then called the conductor
of F.
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3. Hida families

(iii) For infinitely many P € X}rith((?), Fp is new.
(iv) Fp is new forall P € X}mh(O) of type (k,e,r) withr > 1.

(v) Fp is new for all P € X}rith(O) of type (k,¢,r) such that the p-part of ey is
nontrivial.

Now assume that the above equivalent statements hold and P € Xj.rith((’)) of type (k, e, r)
is such that the p-part of eyw™F is trivial (in particularr = 1). We can then view eyw™* as a
character of (Z./N)*. In this situation Fp € Sp(Xy(Np), ey ") can either be new (in which case
k = 2), or Fp is the unique ordinary refinement of an ordinary newform Fl?, € SK(Xy(N), eprw™)
(see remark 11.7.4).

Proof: Clearly we have implications (v) = (iv) = (iii) = (ii), so it remains to see (ii) = (i)
and (i) = (v). For these implications see [Hid87, Thm. 2.4] and for the final statement see
[Hid88, Thm. 4.1]. O

Definition 3.16: Let I be a coefficient ring of t>(Np®, ©) and fix a Hida family F which
is new. Then by theorem 3.15, for almost all P € X }rith((’)) the form Fp is new, and for the P
such that Fp is not new, there exists a newform Fg such that Fp is a refinement of Ff,. Let us
write F;Y to mean either Fp if Fp itself is new, or Fg if Fp is not new.

If F is a new Hida family, then from theorem 3.15 and the proof of lemma 3.10, it is clear
that by possibly enlarging O we can assume that the points P € X}rith((’)) such that Fp is a
newform are Zariski dense in X7".

Definition 3.17: Let 7 be a coefficient ring of t"4(Np*, O). We define the module of I -adic
cusp forms of level Np™ as

$o(Np™, T) = Hompm (t"(Np™, O), T)

(here we mean morphisms of A*'-modules). Let the Hecke algebra t°™(Np>, ©) act on this
module by duality, i. e. (TF)(X) = F(TX) for F € $*4Np>, 1), T,X € t°4Np™, O).

So Hida families are special 7 -adic cusp forms. Note that from the definition and proposi-
tion 3.6, it is clear that $*4(Np™, ) = $"4(Np™, A") ® y T as T-modules. Observe that
this equality does not say anything meaningful about Hida families since we cannot detect
A¥'-algebra homomorphisms on the right hand side.

By construction there is a perfect J -bilinear pairing

STUND™, I) X (NP, 0) © 1) — 1. (3:3)

For a fixed F € $°"4(Np™, I'), we define F-eigenspace
$YNP™, I)[F] = {G € S Np®, I) : VT € tYNp™,0): TG = F(T)G}.

It is then clear that $°"(Np*, T')[F] is free of rank 1 over 7 (this can be seen similarly as
corollary 11.4.27 (a)).
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3.3. Big Galois representations attached to Hida families

We keep the setting described in situation 3.11.

Theorem 3.18 (Hida): (a) Fix a Hida family F € $®4(Np™, I') which is new. Then there
is a unique (up to isomorphism) free I -module T of rank 2 and a continuous (in the
sense of definition 1.2.32 (b)) odd irreducible Galois representation unramified outside
Npoo

pr: G — Autr(7)

such that for each P € X}rith(O), the reduction of pr modulo P is equivalent to the
Galois representation attached to Fp°¥.

(b) There is a free rank 1 I -direct summand T° of T which is an unramified Gq, -subrep-
resentation.

Proof: Statement (a) is a variation of [Hid86a, Thm. 2.1]. Our statement can easily be obtained
from the form stated there using lemma 1.2.33. Statement (b) follows from [Gougo, Thm. 4].
More precisely: The representation from the theorem there is by uniqueness the same as
ours, and the theorem states that it is ordinary in the sense of [Gougo, Def. 1]. It is easy to
see that this definition of ordinariness implies that we have 77 as claimed. The restriction to
p > 7 there can be removed by [B6co1, p. 991]. O

Remark 3.19: Recall that our ring 7 is integrally closed by definition. This convention is
not standard in the literature. In fact many texts use as coefficient rings such 7 for which
Spec I is an irreducible component of Spec t"4(Np>, O) (which need not be normal). In
this case, the image of pr does in general not lie in GLy(J) but only in GLy(Quot(J)) (after
choosing a basis), and one needs extra assumptions on 7 to have it in GLy(Z'), such as 7 being
a unique factorisation domain or the residual representation pp being absolutely irreducible.
See [Hid1s, §9] for a discussion of these issues. We chose to take 7 always as integrally
closed, which is maybe not so directly related to the geometry of t"(Np™, O), but allows
us to work with representations into GLy(J ), which seems more suitable for our purpose.

Corollary 3.20: Let 7 be as above at let M(F;ew) be the motive attached to the newform
er“’ for¢ € X}rith((’)). Then for each such ¢ there is a map

To:=T @ O—— M(FV
¢ I (¢ )P

and the left side is a Gq-stable O-lattice in the right side. Hence 7 is a p-adic family of motives
in the sense of definition 1.3.35 parametrised by the set of specialisations ¥ = /\’}ﬂth(O). The
family of motives defined by T ®q, Q,(1) satisfies the strong Dabrowski-Panchishkin condition

with (T ®q, Q,(1)PF = 7° ®q, Qp(1).

Proof: The first statement is obvious from the definitions. The last statement follows from
theorem 3.18 (b). The Tate twist is just to make the motives in the family critical. O

Remark 3.21: In remark 11.5.5 we said that when we work with the motives attached to
modular forms it will do no harm to assume that the ring we are working over contains the
roots of unity of order given by the level of the modular forms. It is important to note that
this remains true even when we work with families. The reason for this is that for ¢ € 3 to
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be of type (k, ¢, r) means in particular that ¢ is a primitive character of TV'/T* = Z/p", so
the existence of such a character implies that we have a primitive p”~!-st root of unity in O.
Said differently, the choice of O bounds the possible r’s that may appear.

4. Modular symbols for Hida families

We continue to use the notation introduced at the beginning of section 3 and consider the
setting described in situation 3.11. In this section we introduce modular symbols for Hida
families following [Kitg4] and prove some important properties of them. This will enable us
to define Kitagawa’s p-adic error term.

4.1. 7-adic modular symbols
We introduce 7 -adic modular symbols, which are the modular symbols pendant of 7 -adic
cusp forms. We proceed in several steps, which will be motivated afterwards.
Definition 4.1: We put
) o . r
MS(Np®, O) = colim MS(Np', O),

r

where the maps are induced from the canonical maps Y;(Np*) — Y;(Np") on modular
curves for s > r > 0. We write MSr(Np™, O) for the p-adic completion of MSr(Np™, O).
We can define the same with O replaced by O/p’ for some t > 0. This will be used in
section 4.2.

From the Hecke action on each of the modules MSi(Np", O) and using remark 2.3, we get
a T(Np™, O)-module structure on these modules. So in particular, we get a O[[Z;’ n-module
structure and a A"'-module structure. Moreover, it is also clear that the transition maps
used to form the limit are compatible with the action of 5 € GL,(Z) since 5 describes the
action of complex conjugation on the modular curves. Hence 2 acts on MS;(Np™,O) in a
well-defined way.

Definition 4.2: The module of universal p-adic modular symbols is defined as
UM(Np*, O) = Homp(MS2(Np™, 0), 0).
Here we mean the O-Banach dual, i. e. continuous homomorphisms.

There is then an obvious perfect pairing
MS2(Np™, O) x UM(Np™,0) — O. (4.1)

The Hecke action is the dual Hecke action coming from the action on MS;(N, >, 0),
that is, (Ta)(£) = a(T&) for a € UM(NP®, 0), & € MS,(Np™®, ©) and T € T(Np™, O).
In particular, this makes UM(Np™, O) a A¥*-module.

From this definition of the Hecke action, it is easy to see that

UMONP™, ) = Homo(MS, " (Np™, 0), 0) (4.2)

(this is an easy calculation using the fact that if R is a ring and e € R is idempotent, then
eR = R/(1-e)R).
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Proposition 4.3 (Kitagawa): UM (N p*, O) is free of finite rank over A*".
Proof: [Kitg4, Prop. 5.7] [l

Definition 4.4: The 7-module of 7 -adic ordinary modular symbols is defined as
MS*(Np*, I) = Hom (UM (Np™, 0). ).
The Hecke action is again the dual action of the action on U MY(N, =, 0).

From proposition 4.3 it is clear that IMSord(Np"", I)= IMS‘“d(Np"", A @t 1.
To motivate these definitions, recall that philosophically modular symbols and mod-
ular forms are two incarnations of the same phenomenon, as suggested by the Eichler-

——ord
Shimura isomorphisms (complex or p-adic). The definition of MS™ (Np>, O) parallels
in some way the definition of S(Np™, O). By the perfect pairing (3.1), 7 -adic cusp forms

—ord
are Homywt(Homp (S (Np™, O), O), I), while by the perfect pairing (4.1) 7 -adic modular

symbols are Hom vt (Hom@(mord(N p>°,0),0), I), so these definitions have some analogy.
From this point of view, U M(Np>, O) is “something like a Hecke algebra” (however, it has
no algebra structure and this observation will not be important).

For an T -algebra morphism F: t"4(Np*, O) ® yu I —— I (that is, an I -adic eigenform),
we denote the induced morphism T°™(Np™, O)® yt I —— I still by F, by abuse of notation.
Then IMS®4(Np*, I)*[F] is well-defined. An important condition on this module we will
need to impose later is the following.

Condition 4.5: IMSOrd(Np"", I)*[F] is free of rank 1 over 7.

Remark 4.6: There are several conditions which are known to imply condition 4.5, among
them the condition that 7 be factorial (which is satisfied for example for 7 = A™"). We do
not list the other conditions, see [Kitg4, Lem. 5.11] for this.

4.2. Twists of modular symbols and comparison of different weights

This section contains a technical statement which is only important as an ingredient in a
crucial step in the proof of the main result of the next section. Since its proof is not so
well-documented in the literature, we expose it here in detail.

We use the abstract Hecke theory for the group A¢(Np”)®. This is the only place in this
work where we will need the more general situation where we have a module with an action
of just Ag(Np")° and not of the surrounding i-stable semigroup ¥ = My(Z) N GLy(Q), as
explained in remark 1.1.25.

Fix integers r > t > 0 and put R := O/p". It is easy to see from the definition of Ag(Np")°
that the map

a b ;
(c d) F—— amodp’ € R

defines a character
x: Do(Np™y — R*.

For n € Z let R(xy") denote R seen as a free R-module of rank 1 with a left action of A¢(Np")?
via the character y”. Alternatively, we could of course define it as R with a right action of
(Ao(Np")®)* defined by y" o 1. Any left action of A¢(Np")? occurring in the following can
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also be seen as a right action of (A¢(Np")°)" in the same manner. We formulate everything
using left actions.

On the R-module Sym*~2 R? we also have an action of Ao(Np”)® from the left, by left
multiplication. We look at the R-linear map

SymF 2 R2 — R(x*7?), f+— f@1,0),

where we view f as a homogeneous polynomial in two variables X, Y of degree k — 2, so this
map is the projection onto the coefficient of the monomial X*~2. It is then an easy calculation
to check that this map is Ag(Np”)’-equivariant. In particular it is A{(Np”)*-equivariant.

We apply the functor MSymb(I3(Np”), —) to this map, which is (in this case) a functor
from R-modules with a left action of A;(Np") to right H(Np”)g-modules. Clearly, as an
R-module MSymb(I3(Np"), R(y*~?)) coincides with MS,(Np”, R). We therefore denote it by
MS,(Np”, R){ x*~2}; we use here curly brackets because this is not a usual twist, as we will
study below. Thus we get an H(Np")g-linear map

MSy(Np", R) — MSy(Np", R){x*2}. (4.3)

Note that the action of the operators T, on MS3(Np", R) x*72 is just the same as on
MS,(Np", R), since y vanishes on the coset representatives from lemma 1.1.54. The action of
the S¢ (or the diamond operators) is changed, and we will study the change below.

Similar objects and maps are studied in [Kitg4, §5.2]. Using remark 1.1.25 (b) it is easy to
see that they are essentially the same as introduced here, and we can cite the results proved
there.

Proposition 4.7 (Kitagawa): After restricting to the ordinary part, the above map induces an
isomorphism
MS(Np", R) —=— MSF"(Np", R){x*"*}.

Proof: [Kitg4, Cor. 5.2] O

We now take the colimit for r — oo (while ¢ is still fixed). This gives us an isomorphism
MS{™(Np*, R) = colim MSI(Np", R)
relN

MSFYNP™, R){x*2} := colim MSI(Np”, R){ y*72}.
relN

Now taking the limit for t — oo, we get the following result comparing modular symbols of

different weights, which is [Kitg4, Thm. 5.3]. Here the object on the right side is defined to
TET rd 00 _

be the limit 1(Lnt€]N MSFUNP™, R){ x*2}.

Corollary 4.8: There is a canonical T"(Np*, O)-linear isomorphism

———ord ———ord
MS; (Np™,0) == MS, (Np®, O){x**}

which is compatible with the action of s.
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We now use the canonical morphism Z; N T"4(Np™, ©)* defined by the diamond
operators. More precisely, take z € Z; n and write z mod Np" for its image under the projec-

tion Z;’N — (Z/Np")*. For fixed r and i, we associate to z the element in Endp(M!(Np"))
given by the diamond operator (z mod Np”). Then we know that this element lies in fact
in T{(Np")*. Moreover for varying r and i these elements are compatible with the re-
striction maps between the Hecke algebras, such that we get a well-defined morphism
Z;’ N ToY(Np™, O)%. Beware that this map is not the same as the map (3.2) used to

define the A*'-algebra structure on T"4(Np*, ©)! For reasons that will become clear later,
we want to use just the diamond operator action here.

——ord
In particular, this defines two actions of ' C Z;’ ~ on both modules /\482r (Np*=,0)

and mgrd(Np"o, O)(x*7?): one via the morphism we just constructed and one via the
morphism (3.2). We use here mainly the first action, which we call the action via diamond
operators, while we call the other one the action through the Hecke algebra. By construction
the isomorphism from corollary 4.8 is equivariant for the diamond operator action.

If we denote the diamond operator action by (y, £) —— y¢& and the action of T through
the Hecke algebra by (y, &) —— £&|y, then the two actions are related by

Ely = kb (y)yé (4.4)

fory eI and ¢ € mzrd(Np“’, O)oré e m;rd(Np“’, O)(x*7?). To see this, recall that
on finite level by definition of the action through the Hecke algebra an £ € Z, (£, Np") =1,
acts as (%S, and that S, = €K72(¢) since the matrix ( ¢ (,) acts as £%2.

We will later be interested in eigenspaces for this action. So fix a character ¢: T"' —— O*.
Of course, by equivariance, we get a canonical isomorphism of O-modules

MS, (Np™, O)[e] = MS5  (Np™, O} e].

We want to better understand the right hand side.
We therefore look again at the H(Np")r-module MSymb(I3(Np"), R(x™)) (for r,t,n € Z,
r >t > 0 fixed and R = O/p"), which as an R-module is just MSymb(I3(Np"), R). Let

p: Div’(P'(Q) — R

be a I;(Np")-invariant homomorphism of abelian groups. Then we can view ¢ at the same
time as an element of MSymb(I3(Np”), R) and MSymb(I3(Np"), R(x™)). For £ € Z with
(¢, Np) = 1 the action of the diamond operator (£) is given by any matrix o, € SLy(Z)
satistying o, = ("_1 [,) mod Np”. If we view ¢ as an element in MSymb(I3(Np"), R) we
therefore have

o(0)(q) = ¢(or ® g)[or] (g € DIV’ (P(Q))),
while if we view it as an element in MSymb(I3(Np”"), R(y")) we have
o(0)(q) = x"(ar)p(or » @loe] (g € Div'(PY(Q))).

Since y(o¢) = ¢! this shows that the the diamond operators act on MSymb(I3(Np"), R(x™))
as on MSymb(I3(Np"), R) twisted by the character K;,’;,, where kn,r: (Z/Np")* —— R¥is
the canonical inclusion.

156



4. Modular symbols for Hida families

If we now take the limits and colimits as above and look just at the subgroup I'"* of Z; N’

the limit of the characters kn, becomes Ky : 't —— O*. This shows that as O-modules
with I'-action, we have an isomorphism

———ord ———ord
MS, (Np®, O){x* %} = MS, (Np™, O)(k2*

where the (K?N;k ) now indeed means a twist of the ['*-action, which is why we denote it using
usual brackets. If we now take the e-eigenspace of the right hand side, an easy calculation
shows

——ord ——ord
MS, (Np™, )k F)lel = MS; (Np™, O)lewi )
We therefore have proved the following lemma.

Lemma 4.9: The isomorphism from corollary 4.8 induces an isomorphism of O-modules
——ord ——ord
MS (Np™, O)e] == MS; (Np™, O)lexyi "]

This map commutes with the T, operators and with the action of .

4.3. Control theory for 7-adic modular symbols

We keep the notations from the previous sections. Moreover we fix a ¢ € X}rith((’)) of type
(k, e, ) throughout the section and write P = Py for its kernel.

If M is some O-module with an action of I and ¢ is an O*-valued character of T'!, we
write M|¢] for the submodule where the action of T'%! is given by ¢. When we apply this to a

module like mord(N p%, 0), we will always mean the action of I'" via diamond operators,
not through the Hecke algebra, as in the previous section.

The purpose of this section is to prove the following control theorem for 7 -adic modular
symbols.

Theorem 4.10 (Kitagawa): (a) There is a canonical isomorphism of T4 (Np™, O) @ v I -
modules

MS™(Np, D)@ (£ [ p) = MSZ(Np", O)le]
which is compatible with the action of a.

(b) There is a canonical isomorphism of O-modules

DS™(Np™, A @ (8] oy, ) == Mg, 0).

(c) Fix an T -adic eigenform F € S®4(Np>, I') and write Fp for the member at P of the
Hida family associated to F. Assume further that condition 4.5 is satisfied. Then there is
a canonical isomorphism of O-modules

MS™(Np, 7F] @ (£ [ ) —— MSP(Np", O)F[Fpl.

(d) Let 2 € MS*(Np™, T) = Hompt (UM Np®, 0), 1), u € UM (Np™, 0) =

———ord
Homp(MS, (Np*®,0),0) and let =4 be the image of = in the right hand side in
statement (a). Then

P(EW) = u(Egp).
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The statement in theorem 4.10 (c) is claimed without proof in [Ochos, Prop. 4.3].

The proof of the theorem will be divided into three lemmas, the combination of which
immediately gives the result. More precisely, the results in theorem 4.10 (a), (c) will immedi-
ately follow from lemmas 4.11 to 4.13 below. The claim in theorem 4.10 (b) follows from the
claim in theorem 4.10 (a) by definition of the ideals wy_,. The claim in theorem 4.10 (d) will
be clear by the construction of the maps.

In the following, we regard O as an 7 -algebra via ¢; in particular, we regard O as a
AV'-algebra. Moreover, we consider modules over T*"(Np*®, ©) @ I or similar rings
having an additional action of Gg = G, as T*Y(Np*, O) @ I [Gr]-modules

Lemma 4.11: There are canonical isomorphisms of T""Y(Np®, O)® i I [GR |-modules induced

by ¢
IMSOrd(NPOO,I) ? (I/P) = HomAwt(ﬂMord(Npoo, O), O)

and, if we assume that condition 4.5 is satisfied, also an isomorphism of O-modules

DMS™(Np™, )*[F]© (I / p) >, Hompt(UMND™, 0), O)=[F].

Proof: By remark 3.12 we have
IMSord(Npoo,I)QJZ_) (I/P) ~ ]MS()rd(Npoo,AWt) ®t (AWt/PﬂAWt) ’
AW

so for the first statement we can assume without loss of generality that 7 = A" and hence

¢ = ¢k,£-
We apply the functor Hom ywt (U Mord(N p=, 0), —) to the exact sequence of A*'-modules

0 P AVt ¢ O 0.

Since UM (Np*, O) is free of finite rank over A" by proposition 4.3, this functor is exact
and we obtain an exact sequence of T"4(Np®, O)[Gr ]-modules
0 —— Homuut(UMNp™, 0), P) — MS4(Np™, A
—— Hompt (UM (Np™, 0), 0) — 0.
Since P is a prime ideal of A of height 1, it is a principal ideal by [NSW13, Lem. 5.3.7]. This
implies
Hom et (UM (NP, ©), P) = P - Hom st (UM (NP™, 0), A*)
( — PIMS()rd(NpOO,AWt) )
and proves the first isomorphism.

Now we let 7 and ¢ and P be again as in the general case (because otherwise F may not
exist). Similarly as before we get an exact sequence

0 —— Hompt(UM NP, 0), P) — MS4(Np™, I)
—— Hompt (UM (Np™, 0), 0) — 0
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in which all maps are compatible with the actions of T"(Np™, O) ® y I and » € GLy(Z),
so we can add (—)*[F] to each module in the sequence. Under condition 4.5 we see without
requiring P to be principal that

Hom (UM YNp™®, ©), PY*[F] = P Hompyn (U MP(Np™, ©), T)*[F]
(= PIMS™(Np™, I)*[F]). a

We put
———ord ——ord
MS, (Np™,O)[Fg] = MS, (Np™,0)[¢ o F],

——ord
by which we mean the submodule of MS, (Np™, O) where the action of the Hecke algebra
ToY(Np™, O) @ T is given by the character ¢ o F: T"YNp®, O) @t T — O.

Lemma 4.12: The canonical biduality map

®: MS (Np™, 0) — Homo(UM(Np™, 0),0)
= Homo(Homp(MS,(Np™, 0)), O)
E—f = f(O)]

induces an isomorphism of T"4(Np®, O) ® yt T[GRr]-modules
MS " (Np™, O)[exki?] = Homp(UM™(ND™, 0),0).
We further have an inclusion
MS (N, O)[Fg] € M (Np™, O)ewy?]

and the restriction of the above isomorphism gives an isomorphism of O-modules

MSy (Np™, O)[Fy] —— Hompuu (UM (NP, 0), OY[F).

Proof: @ is injective because the pairing (4.1) is perfect. Further, from the equality (4.2) we
see immediately that the image of @ lies in Homo(UM(Np®, ©0), O).

———ord ——ord
We first show that MS, (Np®, O)[Fs] € MS, (Np®, O)[&‘K‘];;Z]. Takey € T"'and ¢ €
——ord
MS, (Np=,O)[Fy], and let us assume without loss of generality that £ € MS;’rd(N p°,0)
for some s € IN. By (4.4), we have

Y€ = kgt (n)Ely.

Since £ is in the F-eigenspace, the action of the Hecke algebra on ¢ is given by the character
¢ o F corresponding to Fs. Hence the action of A" on £ (through the Hecke algebra) is given
by the character which is the composition

AWt . Tord(Npoo’ O) ® I i} ]- i} O,
AWt
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and since F is AV'-linear this composition is just the restriction of ¢ to A**. The action of '™
on ¢ is hence described by the restriction of ¢ to I'"*, which by definition is just sx@t. Thus
we have &y = s(y)lcfvt(y)gf whence y¢ = sx@;z(y)‘f as claimed.

——ord
Using this, we check that for & € MS, (Np*®, O)[exk 2] the morphism ®(¢) is in fact

——ord
A¥'-linear. So let f € Homo(/\/lSzr (Np®,0),0) and A € A*'. Without loss of generality,
assume that A € ', We now compute

AFNE) = FEID = f(kG(DAE) = KD f (e (D)E)
= ekl DF () = S () = AF(E)

using the definition of the A**-module structure on U M(Np>, O) (by duality and through
the Hecke algebra), (4.4), the fact that £ is in the EK\];,;Z—eigenspace and finally the definition
of the A¥'-module structure on O. This proves the AV*-linearity of ®(¢).

——ord
Now assume that & € /\/(S;r (Np™, O)*[Fg]. Using again that the action of the Hecke
algebra T"Y(Np>, O)® I on € is given by the character ¢ o F, that the 7-module structure
on O is defined via ¢ and how the various Hecke actions are defined, we compute for

£ € Homo(MS, (Np™,0),0) and T € T"(Np®, O) @ T
(TO(E))(f) = (PONTf) = (Tf)E) = f(T&)
= f(P(F(T))&) = p(F(T))f (&) = F(T)f (&) = (F(T)P())(f)s

which shows that ®(£) in fact lies in Hom (UM 4(N =, 0), O)[F].
So now we have well-defined injective maps

&: MS, (Np™, O)ekk?] —— Hompa( UM (N, 0),0),
O: MS; " (Np™, O)[Fy] — Homp (UM (Np™, 0), O)[F],

and it remains to prove their surjectivity. If ¢ € Homo((L(Mord(Np‘x’, 0), 0), by (4.2)

—ord
thereisa & € /\/(S;)r (Np™,0) with ¢ = (£,-) = ®(£). Now by totally analogous argu-
ments and computations as above, one checks that if ¢ is A"'-linear instead of just O-

——ord
linear, then in fact £ e MS, (Np*, O)[é‘K‘]fV;z] and if further ¢ is in the F-eigenspace, then

——ord
EeMS, (Np~,O)[Fg]. We omit the details.

Finally, the compatibility with the actions of T*"(Np®, O) @y I and o € GLy(Z) is
clear. O

Lemma 4.13: There are canonical isomorphisms of T (Np™, O) ® xt I [GRr]-modules
——ord
MSPU(Np". O)[e] == MS, (Np™, O)[exyi’]
and of O-modules

+ ~ oo oo +
MSOY(Np”, O)F[Fs] == MS, (Np™, O)*[Fy].
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Proof: We know that the map MSZrd(N p",.0)— MSZrd(N p™, O) is compatible with the
action of T"(Np™, 0) ® v I[GRr], so in particular with the action of I'*!, and therefore
induces a map

——ord
MS(Np”, O)[e] — MS, (Np™, O)[e].
By [Kitg4, Thm. 5.5 (1)]* this map is in fact an isomorphism. The first isomorphism follows
therefore from lemma 4.9. Now since P is of type (k, ¢, ), we have
MSPM(Np", O)[Fy] € MSY4(Np", O)e],
——ord ——ord
MS;, (Np, O)[Fs] € MS, (Np™, O)[ery”].

The second inclusion comes from lemma 4.12. Since the first isomorphism from the statement
is compatible with the Hecke action as well as with the action of o € GLy(Z), it induces the
second isomorphism. O

4.4. The p-adic error term

We keep the notations from the previous sections. Fix an eigenform F € $"4(Np*, ') and
assume that condition 4.5 is satisfied.

We are now ready to define Kitagawa’s p-adic error term. For this we choose an J -basis
g% of MS°4(Np™, T)*[F] and O-bases ryz of MSi(Np", O)*[F,] for each ¢ € X}rith(O) of
type (k, ¢,7). Let

MS™(Np™, D*F] © (£ [ g) = MSF(Np". O)*[Fy]
be the canonical isomorphism from theorem 4.10 (c). Both sides are free O-modules of rank
1 by proposition 2.7. For ¢ € X}rith((?) write :qiﬁ for the image of Z* € IMS$"4(Np™, I')*[F]
in MSird(N p", O)*[F4] under the above isomorphism.

Definition 4.14: For each ¢ € X f}rith((')), let E,(E*, ’7;) € O be the unique element such
that

[1]

£ = &SN,

This element is called the p-adic error term at ¢.

Proposition 4.15 (Kitagawa): One has always E,(E%, tyqis) # 0.

Proof: [Kitg4, Prop. 5.12] O

4.5. The Galois action on modular symbols

From étale cohomology we get an action of Gg on modular symbols.

Proposition 4.16: (a) There is a canonical isomorphism of O-modules
MSi(Np", 0) = Hj, (Yi(Np") >Z< Q.Sym*?R!£,0)

commuting with the Hecke action. Hence MSi(Np”, O) carries a canonical O-linear
action of G which commutes with the Hecke action.

4 In [Kitg4, §5.3], the character ¢ is assumed to have kernel I}"! instead of TVt (for some s < r). This must be a
typo since in this case the claim “L,(A) = L, (¢, A) as I1(Np")-module” there is not true.
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(b) The refinement morphism (tensored with L)
Ref, : MSk(N,L) —— MSk(Np, L)
from proposition 2.10 is Gg-equivariant. It thus induces a Gg-equivariant isomorphism
MSi(N, L)[f] —— MSk(Np, L) fal-

Both sides are isomorphic to Deligne’s Galois representation attached to f.

Proof: Statement (a) follows from proposition 2.2 (a) and proposition 11.3.4 and the consid-
erations in section 11.3.3. Statement (b) is clear from the proof of proposition 2.10 because
the refinement morphism is induced in étale cohomology by maps between modular curves
which are defined over Q. |

During the proof of the next theorem we will need the following result on elliptic curves,
which we prove here due to lack of a reference. In the statement we identify the scheme
E[p'], which is finite étale over S by proposition 11.1.1, with the étale sheaf it represents.

Proposition 4.17: Let S be a Q-scheme, f: E—— S an elliptic curve and t € IN. Then
R'f.Z/p" and E[p'] are canonically Z./p*-dual to each other as étale sheaves on S.

Proof: Fix a geometric point s: Spec @ —— S on S. We use that the category of locally
constant constructible sheaves on S is equivalent to finite discrete continuous ﬂlét(S, s)-
modules via sending a sheaf to its stalk at s, see [Fu11, Thm. 3.2.12] and [Conog, Thm. 5.1.2.1,
Rem. 5.1.2.2]. The stalk (R'f.Z/p"); is isomorphic to H} (Es, Z/p*) by the proper base change
theorem, while the dual of the sheaf defined by E[p*] has stalk Hom(E;[p'|(Q), Z/p") at s.
We need to find a canonical isomorphism between these abelian groups which is equivariant
for the 7£(S, s)-action.

Let us elaborate on the origin of the ﬂft(S, s)-actions, which are explained in [FK88, §§a
I.4—7]. The action on Es[pt](@) is easy to describe: since E[p’] is a finite étale cover of S,
we have a canonical surjection nlét(S, s) — Auts(E[p']/S), where the subscript “s” should
mean automorphisms respecting the geometric point s. Each such automorphism clearly
induces an automorphism of Eg[p’ 1(Q). On the other hand, if ¥ is any étale sheaf on S,
then the stalk at s is expressed as ¥ = C_O_li_r_)nU F(U), where U runs over étale covers of S
containing s, and without loss of generality we may restrict to such U which are Galois over
S. For each such U we have a surjection ﬂlét(S, s) — Auts(U/S) which induces an action
of m(S, s) on ¥ (U) and thus, by compatibility of these surjections, an action on .

From [Fu11, Prop. 5.7.20] (see also [Conog, Thm. 5.2.2.1]) we have a canonical isomorphism
H(lét(Es, Z[p") = Hom(ﬂ'lét(Es, s), Z./p"). Since this isomo;phism is functorial in the space
under consideration, it is compatible with the action of 7{*(S, s). Obviously we may replace
here ﬂlét(Es, s) by (ﬂlét(Es, 5))?> ®7 Z/pt. Any étale cover of E; is easily seen to be an isogeny
from another elliptic curve (after choosing a lift of the origin). We can precompose any such
isogeny with its dual isogeny and see that in the limit defining 7(E;, s) we may restrict to
covers by multiplication-by-n maps for all n € IN (see [KM85, p. 79-81] or [Sil86, §111.6]).
The automorphisms of such a cover may be identified with E; [n](Q). Since these are non-
canonically isomorphic to (Z/n)?, we see that 7¢'(Es, s) = Z? and that (7(E;, s))*® ®7 Z/p'
are just the automorphisms of the multiplication-by-p’ cover, i. e. Es[p*](Q).

We now see that there is a canonical isomorphism Hlét(ES, Z./p")=Hom(Es[p'|(Q), Z/p").
By our previous description, on both sides the action of (S, s) comes from the natural action

of the quotient Auts(E[p*]/S), so the isomorphism is equivariant for this action. O
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For s > r > 0, the maps MSi(Np", O) —— MSi(Np*, O) are Gg-equivariant since they
are induced from the canonical maps of curves Y;(Np*) —— Y;(Np"), which are defined over
Q. Hence by definition of MSi(N p~, O) we can extend the action of Ggq to this O-module.
Of course it still commutes with the Hecke action. We then endow UM(Np™, O) with
the dual Gg-action and IMS*™(Np™, T) again with the dual Gg-action. It is clear that the
Gq-action on IMSOT4(N- p>°, I') is then I -linear and still commutes with the Hecke action.

By 7 -linearity, we thus get a Gg-action on the reduction of M$°™(Np®™, I') at arithmetic
points. We want to show that the control theory isomorphisms are Gg-equivariant.

Theorem 4.18: FixaP € X}rith((’)) of type (k, e,r). The O-linear isomorphism
MS™(Np™. D)@ (£ [ p) = MSF(Np. O)le]

from theorem 4.10 (a) is Gg-equivariant.

Proof: The isomorphism we study was defined as the composition of three maps: the reduc-
tion map from lemma 4.11, the biduality map from lemma 4.12 and the map which compares
modular symbols of different weights from lemma 4.13. By construction and the definition
of the Galois actions, it is clear that the first two respect the action of Gq. The third one was
defined using the canonical isomorphism

——ord ——ord
MS (Np™, 0)[e] == MS, (Np™, O)lexiy’]
from lemma 4.9, which came from the map
MSk(Np", O/p") — MSo(Np”, O/p")(x*~?)

from (4.3) (with r > t > 0 fixed), and it remains to prove that this map is Gq-equivariant. If
we use the description of modular symbols as in proposition 1.2 (a) we see that the map (4.3)
comes from a map of sheaves on Y;(Np”")*"

Symk—Z le*(?/pt &~ ﬂil(NPr)Symk—Z(O/pt)Z N ﬂfl(Npr)O/pt()(k_z) _ O/Pt

Here the right equality follows easily from lemma 1.1.38, noting that I (Np") acts trivially
on R(y*~?). Further it is easy to see that the map is Sym*~? of a map R £.O/p! — O/p".
With respect to our fixed trivialisation of R'f,Z on b (by choice of a basis, see section 11.2.1),
it comes from projection onto the first coordinate. We note here that by theorem 11.1.13, in
fibres of E1(N)*™ —— Y;(N)*" the point of order N lies in the second coordinate with respect
to this basis. This will be used below.

Since the category of locally constant torsion sheaves with finite fibres on Y;(N)*" is
equivalent to the category of locally constant constructible torsion sheaves étale on Y1(N)xzC
by [SGA4.3, Exp. XI, Thm. 4.4 (i)], the above morphism of sheaves corresponds to a morphism
of such étale sheaves. To see Gq-equivariance, we need to show that this map of étale sheaves
already exists over @), i. e. it comes from a map of étale sheaves defined over Q

R'LO/p" — O/p'

on Yi(Np"),q. We construct such a map which after base change to C gives back the
morphism from before.
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We now work over . Take an étale open U in Yi(Np"),q. Then on Ey(Np")/q Xy, (Npr)q
U =: Ey the level structure gives us a point of exact order p”, i.e. a morphism of group
schemes

a:Zfp"  — Eulp"]-

If we compose a with the map Ey[p"] — Ey[p'] which is multiplication by p” %, then it is
easy to see that it factors through Z/p' and gives a point of exact order p’

b Zlp',, — Eulp']

(here we just applied the change of level morphism o, ,+ from section 11.7.2). Dualising
and using proposition 4.17 we obtain a surjection

RfZIp — Z]p* ()

of étale sheaves on U.
By propositions 11.1.1 and 4.17, R'f.Z/p" is étale locally on Y;(Np"),q isomorphic to the

constant sheaf (Z/p* ). Now assume U is small enough and choose an isomorphism of

sheaves on U

yu: R'AZ/p" = (Z[p")?

such that the composition 7y o i is the map (x) (where 7y, 75 : (Z/pt)2 —— (Z./p") are the
projections on the first and second factor, respectively). We then define a morphism of
sheaves on U

ou: R fZ/p" — Z/p'

as gy = 7y oYy and claim that this globalises to a morphism of sheaves R! f.Z/p' — Z/p’

on Yi(Np"),q. To check this, take two small étale open sets Uj, U, as above. Then ¢1}21| N, ©
Yu,luinu, is an automorphism of the constant sheaf (Z/p* )2 on U; N Uy, so it may be described
by a tuple of matrices in GLy(Z/p"). But since it has to respect the point of order p’ each
matrix has to be upper unitriangular. So the automorphism does not change the projection
onto the second factor, i. e.

euvluinu, = mlunu, © Yulunu, = mlunu, © Yo, lunu, = eulunu,

and we indeed get a morphism of sheaves R' f,Z/p" —— Z/p"' on Y;(Np") q. By construction

and our previous considerations, it is clear that after tensoring with O/p’ and base change

to C we get the morphism R' ,O/p" —— O/p" from before. O

Corollary 4.19: Let F € $*4(Np*™, I) be an I -adic eigenform and assume that condition 4.5
is satisfied. Then the eigenspace MS®™(Np*, I)[F] is as an I -linear representation of Gq
isomorphic to Hida’s big representation pg from theorem 3.18.

Proof: It follows from condition 4.5 that the eigenspace IMS*4(Np™, T)[F] is free of rank 2
over J. Moreover, under our assumptions the map

MS™(Np™, DIF] @ (£ [ p) —— MSP(Np", O)[Fr] = MS(Np". O)[F]
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5. Families of p-adic Eichler-Shimura isomorphisms

from theorem 4.10 (c) is Gg-equivariant by theorem 4.18 and the fact that the Hecke and
Galois actions commute. By proposition 4.16 there is a canonical O-linear Gg-equivariant
isomorphism

MSK(Np", O)[Fpl = Hy (H(Np") X Q. Sym 2R £.O)[Fp].

After tensoring this isomorphism with L (the quotient field of O) we get a two-dimensional
vector space by proposition 2.7. If Fp is a newform, by theorem 11.5.12 and the definition
of M(f) this vector space is isomorphic to Deligne’s Galois representation attached to Fp.
Otherwise Fp is the unique ordinary refinement of a newform F;°¥, and then by proposi-
tion 4.16 (b) the vector space is isomorphic to Deligne’s Galois representation attached to
Fpe¥. Hence IMS°4(Np®™, T)[F] has the same properties as Hida’s big Galois representation
pr from theorem 3.18, and since pr is unique with these properties the claim follows. [J

5. Families of p-adic Eichler-Shimura isomorphisms

We keep the setting described in situation 3.11 and continue to use the notation introduced at
the beginning of section 3. The goal of this section is to explain the fact that Faltings’ p-adic
Eichler-Shimura isomorphisms from theorem 11.6.9 can be interpolated in a Hida family. This
is formulated in terms of a map relating 7 -adic modular symbols and 7 -adic cusp forms.
Before we can cite this result, we need to study trace-compatible systems of cusp forms
and modular symbols, which comprise modules that are isomorphic to 7 -adic cusp forms
resp. J -adic modular symbols. This is because the 7 -adic Eichler-Shimura isomorphism is
formulated in the literature in terms of these trace-compatible systems.

5.1. Trace-compatible projective systems

The techniques in this section are heavily inspired from [Ohtgs, §2.3] and [Wak14].

In [Ohtgs] it is proved that A*'-adic modular forms can be described also as projective
limits of cusp forms. More precisely, $°™(Np™, A") is shown to be isomorphic to the
projective limit of certain spaces of cusp forms along trace maps. The Eichler-Shimura
philosophy suggests that a similar statement should hold for A*'-adic modular symbols. This
is in fact true, as we prove in this section.

The proof works in great parts analogous to the proof given in [Ohtgs, §2.3]. While there
many calculations are omitted, we perform these here in some detail to make sure that they
still work in the modular symbols setting.

5.1.1. Formal properties

Let f‘fw ' be the group of finite order O*-valued characters of I'*' and let ff‘”’: be the subgroup
of characters that factor over T'"!/T .

Let M be a C-linear representation of (2, 1) (with 3 = M,(Z) N GL,(Q)). Throughout the
section we assume that the scalar matrices (7 ;) for all primes q act injectively on M (later
this will be satisfied trivially). We will here use mostly the right representative of the action.
Then for r > 0 we have a well-defined trace map

r+l)

tr, : Mrl(Np MH(NP’)’ mb— Z m[ﬁi],
i
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Chapter III. Modular symbols and p-adic families

where the f; comprise a set of representatives of left cosets of I}(Np"*!) in T3(Np”), i. e.
L(Np") = | |LNp™)B;.
i
An explicit representation of the trace map is the following: if we define maps

MENP™Y Rl BN (e T2 T(NpT)

—_

p-

trram)= Y mia), tr,,z<m>=Zm[N;,j ‘1)}
0

a el /T,

~.

then tr, = tr, ; otr, ;. This is shown in [Ohtgs, (2.3.1)].

Let now M° C M be an O-submodule (not necessarily stable under the action of %) and
for each r > 0 put M? == M° N MENP") and require that M? is stable under the action of
A1(Np"). Then define an O-module

D, (M, M°) := {m € MINP") : mlwy,r] € MO}

and a map
Wrpr: Dr(M,M®) —— M}, m —— m[wn,r]

for each r > 0 (here [wy,r] is the Atkin-Lehner endomorphism). We assume that Wy, is
an isomorphism of O-modules.

The condition that M? be stable under the action of A;(Np") makes D,(M, M°) stable
under the action of A;(Np")". This implies that for any m € D,(M, M°) and any T € H(Np)
there is an m’ € D, (M, M°) such that m[wnpr |[T] = m’[wnpr], so D (M, M) is stable under
the action of H(Np)'. Note that we used lemma 1.1.55 (a) here to identify the H(Np") and
H(Np*) with H(Np). On the other hand, since M? is stable under the action of A;(Np"), it
is a module over H(Np). Let T be the Hecke eigenalgebra of M? and T* the adjoint Hecke
eigenalgebra of D, (M, M°).

Lemma 5.1: The isomorphism H(Np) —— H(Np)"' from lemma 1.1.35 (b) induces an iso-

morphism T —— T'. The isomorphism Wy, is such that the action of a T € H(Np)' on
D, (M, M°) corresponds under Wy~ to the action of its image in H(Np) on M.

Proof: If for ¢ € Endp(M?) and m € D,(M, M°) there is a unique m’ € D, (M, M°) such that
m’[wnpr] = @(m[Np"]), then m —— m’ gives a well-defined element of Endo(D, (M, M?)).
Since Wy, is injective, by our previous observations this gives us a morphism T — T,
which we denote by T —— T*. From the commutative diagram

H(Np) — T

|

H(Np)' —> T

we see that it is in fact surjective. Finally an element T is in the kernel if and only if m[T'] = 0
for all m € D, (M, M°). But then for any x € M we have x[T][wn,r] = x[wn,-][T'] = 0, so
T = 0 by since Wy, is injective. The final statement is clear. U
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5. Families of p-adic Eichler-Shimura isomorphisms

Using the argument in [Ohtgs, Dfn.-Lem. 2.3.4], one can show that the trace map tr, maps
Dy1(M, M®) into D, (M, M°). Denote the composite map
-1

WNpr+1

T, W pr
Dy (M, M) =25 DM, MO) —2 MO

M’ g

r+l1

by tr, and define
M2 =limM?, De(M, M°) = lim D, (M, M°)
— —
r r
with the limits being taken along the respective trace maps tr resp. tr. It is clear that the
Wnpr induces an isomorphism of O-modules

Wiipe : Doo(M, M%) —— MJ,.

Lemma 5.2: The trace map tr, commutes with the action of the Hecke algebra H(Np)'. Hence
Doo(M, M) is a right H(Np)'-module. Consequently, the trace map tr, commutes with the
action of the Hecke algebra H(Np), so MY, is a right H(Np)-module. The isomorphism Wy p»
is such that the action of a T € H(Np)" on Doo(M, M®) corresponds under Wy to the action
of its image in H(Np) on MY,

Proof: The identity

I =j\. 1 _|[P 1 ;
WNprt ( p) Whpr = ( P) (Nprj 1) forall j € Z

shows together with lemma 1.1.54 that we have the relation

trr,z(m) [P p} = m[WNp’“][Tp][WNp’]_l,

which is an analogue of [Ohtgs, (2.3.3), second line]. From this and the relations from
corollary 1.1.63 it can be seen that [? , ] o tr, , is compatible with the action of any T* €
H(Np)', hence tr,, is compatible since we assumed that (? ») acts injectively. For tr, ; this
is clear from the definition, so the claim follows. O

Remark 5.3: In (11.7.2) we defined the change of level morphisms
ZNPr+1’NPr, @Npr+l’Npr : Yl(Npr+1) — Yl(Npr)

If we look at complex points, we see that the map Y;(Np" 1) —— Y;(Np")?" coming from
S npr+1,Npr can be described using the isomorphism Yi(Np™ )2 = [(Np™*)\D from theo-
rem 11.1.13 as the canonical projection Y;(Np" 1) —— Y;(Np")*" coming from the inclusion
L(Np ™) C T(Np") (see the proof of proposition 11.7.6 or [KLZ17, §2.4]). So in particular it
is a finite covering map of topological spaces. Therefore, as explained in remark 1.1.46, we
have a trace (or corestriction) map

HY(Ty(Np" ™), M) — HY(Np"), M), q > 0.

For g = 0 this recovers our map tr,.

One can check that the two morphisms are interchanged by the Atkin-Lehner involutions
on Yi(Np™') and Yi(Np"), i.e. we have Sy r npr © Wyprit = WNpr © Onpra npr. Thus
the trace map in group cohomology coming from ©yr+ n,r recovers the map tr,. This is
discussed in [Wak14, Appendix A].
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Chapter III. Modular symbols and p-adic families

5.1.2. Trace-compatible systems of cusp forms

We now cite the above-mentioned result for cusp forms, which can be found at [Ohtgs,

§2.3-4].
Put®

SLIND", 0) = {£ € Se(Xy(Np" ™™, €,) : E[wnpr] € Sk(Xi(NpT )™, 0)}

and
1 00 s i r

By the abstract properties described before,® the adjoint Hecke eigenalgebra of S, (Np", O)
is t; (Np", O), so we can consider S, (Np*, O) as a module over t'(Np~, O) and via this also
as a A"'-module. This big Hecke algebra contains the adjoint ordinary projection €', so we
can consider the anti-ordinary part Gl‘c'ord(N >, 0).

Recall from remark 3.3 that there is an isomorphism t°"(Np™, O) —— t"°"4(Np*, O).
In the following, if F € $™4(Np®, A™), we write Fy . for its specialisation at Py , € Xith,

Theorem 5.4 (Ohta): For any k > 2 there is a canonical isomorphism of A"*-modules

Sord(Npoo’Awt) - Gltc—ord(Npoo’ O)
1 ., _
Fi (fr)r Withfr = ﬁ( Z Fk,e[Tp ]) [WNp’] !
P el
the unique F such that
Fre= Y e@)frlwnpr Ty )™ (o)

a €TV /T
Under this isomorphism, a Hecke operator from t"4(Np™, O) on the left side corresponds to its
image in t"°"4(Np®™, O) on the right side.

Proof: [Ohtgs, Thm. 2.3.6] O

Using lemma 5.2, we obtain the following corollary.

Corollary 5.5: There is a canonical isomorphism of t™"4(Np*, ©)-modules

Sord(Npoo’Awt) _~ llnszrd(xl(NPr), O),

r

F+—— (f;), with f, = j%( Z Fk,E[Tp_r])[wNPr]_l

eelMt
f,r

where the limit is taken along the maps tr, introduced before.

5 We have to use the arithmetic model of the modular curve here because Ohta defines modular forms with
coefficients in a ring R as the tensor product of the space of classical modular forms with Fourier coefficients
in Z with R; see corollary 11.4.17.

6 This does not directly fit with the abstract setting we described before, but if one chooses an isomorphism
C = C, one can see this as a special case of the abstract setting, so we can apply the statements there.
Anyways, this is not too important since all the statements can be proved directly in the more concrete setting
with exactly the same proofs.
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5. Families of p-adic Eichler-Shimura isomorphisms

5.1.3. Trace-compatible systems of modular symbols

Now we specialise the abstract definitions to modular symbols and prove a theorem analogous
to theorem 5.4.
Fix k > 2. Let

M = Homz(Div’(P'(Q)), Sym*~* C3), M := Homz(Div"(P'(Q)), Sym"~* O%).
Then M? = MSy(Np", O) and
Dy (M, My) = {& € MS(Np",Cp) : é[wnpr] € MSi(Np", O)} = MS; (Np", O)

for r > 0. Put
MS(Np®™, ) = Doo(M, M°) = lim MS} (Np", O).

;
By lemmas 11.4.25 and 5.1, the adjoint Hecke eigenalgebra of MS; (Np", O) is T} (Np", O).

So we can consider MSE(Np™, O) as a module over T(Np™, O) and via this also as a

A"'-module, and we have again an anti-ordinary part ‘JJEGZ"rd(N =, O).

As a preparation to the proof of the main theorem of this section, we need some lemmas.

Lemma 5.6: Fixu € ‘L(M"rd(Np‘”, O) and (x,), € %EG‘Z'Ord(Np‘X‘, O). Then there is a unique
X(u) € A" such that

X@mod Py = > e(aulx[wpr][Ty ) ™)

aerwt /Tt
rwt
foralle € I™.
Proof: For a € T™'/T}*", abbreviate u, = u(x,[wnpr][T; [{@)™"). Define a map
F: ff‘Vt — 0, e+ Z e(a)uy.
a eVt /Tit
Fix ap € T". Then we calculate

Z (o) F(e) Z e(ap) ™! Z e(a)ug

seffwﬁ € effw; a el Tt

= Z Z (g a)ug

a €M™ /I eeft

=p" g, + Z Ug Z e(ay'a).

a*toy £

Since Y, é(ar;'a) = 0 if & # a, it follows that

Z e(ao) 'F(e) € p 0.

seff""’:
Then the claim follows from [Ohtgs, Lem. 2.4.2]. O

In the following, for X € ]MSOrd(Np‘”, A") we denote its image in MS,(Np”, O)[¢] under
the morphism from theorem 4.10 (a) by X; . (with k = 2 there).
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Chapter III. Modular symbols and p-adic families

Lemma 5.7: Fix (x;), € iIR@é"’rd(Np‘x’, 0).
(a) The map
X: UMTYNP®, 0) — A%, u — X(u)
with X(u) as in lemma 5.6 is A"'-linear.

(b) X is the unique element in MS°™(Np™, A**) such that if X,,, is its image mod P,_, in
MS,(Np", O)|e] under the isomorphism from theorem 4.10 (a), then

Xoe= D, e@)xlwnprllTye)™

aelwt /Tt

Proof: (a) First, let u,v € UM YN %, 0). Then X(u) + X(v) has the property that

> el@yuler[wpr [Ty 1) ™)

aelwt /Tt

+ Z e(@)o(xr [wnpr [Ty 1) ™)

aelrvt /Tt

Do el@)u+ o) [wpr [Ty 1) ™)

aelwt /Tt

X(u) + X(v)mod P, .

forall e € ff"v t. Since X(u + v) was defined to be the unique element in A** with this
property, it follows X(u + v) = X(u) + X(v).

Now let u € UM (Np®,0) and A € A". Without loss of generality, assume

A €I Then
IX(w)mod Py e = ex?y(A) > el@uler[wnpr] [Ty ) ™)
a €TVt /T
=12 > eyl lwnyr [Ty (@) ™),
a €Tt/
while

X(AwymodPye = ' elcule [wnpr 1T 1) ™ (M) (1)

aelwt /Tt

=12 Y e@ulrwapr T ed™) ™).

aelwt /Tt

Replacing « in the second calculation by Aa, which then also travels through all
elements in ' /T, shows that the two expressions are equal.

(b) Since by (4.2) and the perfectness of the pairing (4.1) the element X, , is determined
by its images under u for all u € LM (Np>, ©), it suffices to prove that

w0 =u( D s liyle)

a et /Tt

forallu € (LIMord(Np“, O). But by theorem 4.10 (d) u(X3, ) = X(u) mod P, _, so the
claim follows from lemma 5.6. [l
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Now we can prove the main theorem of this section, which is an analogue of theorem 5.4.
Recall from remark 3.3 that there is an isomorphism T"4(Np>, O) —~— T"*"4(Np*, O)

Theorem 5.8: There is a canonical isomorphism of A**-modules

MS;(Np*, )

Z Xo, [T, ) WNpr]_1

EEFWt

IMSord(Npoo’ Awt)

X ———— (x;), withx, =

X as in lemma 5.7 1 (x)r

Under this isomorphism, a Hecke operator from T"YNp>, O) on the left side corresponds to its
image in T""Y(Np®, O) on the right side.

Proof: First, that (x,), as in the statement forms a compatible system for the trace maps
can be shown exactly in the same manner as in the proof given in [Ohtgs, §2.4]. Hence we

know that both maps are well-defined. They are obviously O-linear, and that they are in fact
A"-linear follows by definition of the A*'-module structure from the final statement about

Hecke operators.
We sketch the calculations that show that the two maps are inverse to each other. First,

for X € MS$Y(Np>®, A™), let Y be the image of X under the composition of the two maps.
Then for & € I}*!

Vo= . eow)pH(szf )[wNp 1w Ty 1) ™

a erwt/rWt P e1—~wt

- > o) Y Yol =

eo(a) Z e(a” 1)X2 £

P
- ,1_1 Z o(@)eo(a ™)X 0, + 3 : Z fo(@) Y ela™)Xa,e
p o4 P EF&
=X t+ % Z (Z 808_1(0()))(2,5.
P E£E) [e4

Since Y, 0e 7 (a) = 0 for ¢ # ¢, it follows Y, ,, = Xz ¢, By the Zariski density of arithmetic
points in Spec A (see lemma 3.1 (b)) this shows X =Y.
On the other hand, for (x,), € ED?S;’O“I(N 0>, 0), let (y,), be the image of (x,), under the

composition of the two maps. Then

= =S @ fwn T @) T iy

£ eFWt o4 el“Wt/l“Wt

= S0 e

P erwt a erwt/rwt

_ prl_l D ( > g(a))x,(a).

ael"“’t/l"}“ ge[’?’vt
.r
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Since Y, e(a) is p" " if @ = 1 and 0 otherwise, it follows y, = x;.
The last claim about the Hecke operators follows with an easy calculation from the
relations in corollary 1.1.63. O

Again using lemma 5.2, we obtain the following corollary.

Corollary 5.9: For each k there is a canonical isomorphism of T (Np™, O)-modules

MS(Np™, A™) = lim MSZ(Np"., O),

r

1
X —— (xy)r withx, = pr_l( Z XZ,E[Tp_r])’

where the limit is taken along the maps tr, introduced before.

To end this section we study how this isomorphism behaves with respect to Galois actions.

In section 4.5 we introduced an O-linear action of Gg on MSi(Np”, O) and a A*'-linear action

on M$(Np™, A*"). We endow the limit {21 Mszrd(N p", O) with the limit of the actions of
r

Gq on each term.

Proposition 5.10: The isomorphism from corollary 5.9 is Gg-equivariant.

Proof: This follows directly from theorem 4.18 and the formula in corollary 5.9. O

5.2. The J-adic Eichler-Shimura isomorphism

The next theorem states a consequence of what is called the 7 -adic Eichler-Shimura isomor-
phism, where I is a coefficient ring of t°™(Np™, ©) which we fix.

In the statement we view $°™(Np™, A") as a T“(Np™, O)-module via the natural map
Tord(l\]poo7 O) . tord(Npoo7 O)

Theorem 5.11 (Ohta, Kato, Loeffler/Kings/Zerbes): There is a canonical T*"(Np*, O) @
I -linear surjection (called the I -adic Eichler-Shimura map)

MSord(Npoo’J) Sord(Npoo,I)
such that the following hold.
(a) If we reduce it modulo the ideal wy ,, the resulting Tird(Np’, O)-linear surjection”
MSY4NP', 0) — SYU(Xu(Np"), 0)

fits into a commutative diagram

Hl

ét,c

(Yi(Np") Xz Q,, SymF 2RI £,0)°rd — Sed(X(Np™), 0)

J |

HY, (Yi(Np") Xz Q, Sym* *R'£.C,) — Sk(Xi(Np"), Cp),

7 Here we use theorem 4.10 (b) and theorem 3.7.
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5. Families of p-adic Eichler-Shimura isomorphisms

where the bottom row is the p-adic Eichler-Shimura isomorphism from theorem I11.6.9
composed with the projection onto the first factor and the vertical maps are the natural
ones.®

(b) The kernel is the submodule MS*"Y(Np>, I')l» fixed under the inertia group, using the
Galois action on modular symbols introduced in section 4.5.

Proof: Since 7 is flat over A*' and the formation of both IMS°4(N p™, —) and $"(Np*™, ) is
compatible with base change from A" to 7, we can assume that 7 = A*'. Similarly we can
assume that O = Z,,,.

The claim in (a) is obviously equivalent to the existence of a commutative diagram

MSord(Npoo’ Awt) Sord(pr, Awt)

J |

H, , (5(Np") Xz Q. Sym* 2 RILE,) — SLCG(NP'). Cp). o
where the top map is the 7 -adic Eichler-Shimura map, the bottom one is the p-adic comparison
isomorphism and the vertical ones are the reduction maps. The existence of this diagram is
essentially [KLZ17, Thm. 9.5.2], but there some different notations and normalisations are
used. We explain these differences.

A useful discussion of these differences can also be found in [Wak14, Appendix A]. There
are the following four possible conventions to describe the situation:

(1) Use the modular curve Y;(Np”)"3¥¢ and look at ordinary parts,
(2) use the modular curve Y;(Np")*™" and look at ordinary parts,
(3) use the modular curve Y;(Np")™ and look at anti-ordinary parts,
(4) use the modular curve Y;(Np")"¥¢ and look at anti-ordinary parts.

Our reference [KLZ17] uses the same conventions as [FK12], which is case 4, while we want
to use case 1. Other important works on this topic are [Ohtgs; Ohtoo], which use case 3. In
[Wak14, Appendix A] it is described how to transform these cases into each other, and we
apply this to the result from [KLZ17].

First, the modules involved in our reference also carry a Galois action, but since this
action commutes with the Hecke action in all cases and we do not need it (we are just
interested in the Hecke action), we ignore it throughout. Therefore we omit in our citations
everything that only changes Galois actions, such as Tate twists. Also, in the texts the functor
D is used, which is defined for a Z,-module T with a continuous unramified Gq,-action
as D(T) = (T®Zp W(]F_p))FmbP:l, see [FK12, §1.7.4]. But as a Z,-module, each such T is
canonically isomorphic to its D(T), more precisely: D is an equivalence of categories from
Zp-modules with continuous unramified Gq,,-action to just Z,-modules with the forgetful
functor as a quasi-inverse: see [FK12, Prop. 1.7.6]. Since we are not interested in the Galois
actions, we omit also every D in our citations.

8 Here we use proposition 4.16, and we omitted the Tate twist from theorem 11.6.9 since we are not interested in
the Galois action at this point.
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B Following the definition in [KLZ17, Prop._7.2.1 (1)], let H}er = e yLnr Hét(Yl(Np’) Xz,

Q.Zp) and H! , p = e 1(Ln H}, p(Yl(Np’) Xz, Q,Zy). The limit is taken here over the trace
3 r >

maps along the change of level morphism >y ,r+1 - from (11.7.2) (see [SGA4.3, exp. XVII,

§6.2] for the trace map in étale cohomology). Then the combination of the diagrams in
[KLZ17, Thm. 9.5.2] and [KLZ17, Thm. 7.2.3] yields a diagram

H! (Np™) ¢'MY(N, Zy)

l

e'HL (Yi(Np") X7 Q,, TSym* 2RI £.Z ) —> M (Np", Zy), "

which commutes modulo the Eisenstein subspace of M; (Np",Z,) and in which the bottom
map is the comparison isomorphism (see appendix A.1 for a discussion of TSym). Here the
notation in the right column is taken from there. The module M; (Np", Z,) there is defined
in [KLZ17, §7.4] (see also [KLZ17, §2.6]); in our notation it would be

ML (NP, Zp) = {f € Mk(G(N)™™, Qp) : wifpr (f) € M(G(N)™™, Z)}.

Further M)(N, Z,) is defined in [KLZ17, §7.4] as M;(N, Z,) = yLnr M} (Np",Z,) (the limit
again taken over the trace along pr ).

The map in the first row in (x*) (which is the A*'-adic Eichler-Shimura map) was orig-
inally constructed by Ohta in [Ohtoo]; it is just cited in this version in [KLZ17] (using
the transformation between the cases (1)—(4) mentioned above). There is also a version
for cusp forms instead of modular forms which was constructed by Ohta in the previous
paper [Ohtgs]. Therefore by restriction we have a map H' , —— e'S)(N,Z,) if we define

ord,p
S;(N, Z,) analogously. Therefore by restriction of the diagram (++) we get a diagram

Hz,rd’p(Npoo) e'S;(N, Zy)

e'Hy, (i(Np") Xz Q) TSym* *R'£.Z,) — S(Np", Zy), )
which now really commutes.
We now apply the inverse Atkin-Lehner endomorphism to the whole diagram (+). This

interchanges the ordinary projections e and e' and we obtain

liLnr H! (Y1(Npr) X7, @p’ Zp)ord N {iLn, Sgrd(Xl(Npr)arith, Zp)

et,p l

Hy, ,(L(Np") Xz Q,, TSym* R £.Z,)™ —— S (Xu(Np" )™, Zy).

Further we have to take the limit now along the morphisms © y,r+1 n,- (Which we denoted
also tr,, see remark 5.3).

Now in the bottom line, we can replace Z, by C,; this allows us also to replace TSym
by Sym (see appendix A.1). Of course the diagram as above still exists if we replace Hét’p
by H}, _ in the left column. Then the upper left object is isomorphic to IMSH(Np™, A™) by
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corollary 5.9 and proposition 4.16 and the upper right object is isomorphic to $"4(Np™, A"
by corollary 5.5. We arrive at the diagram (x), which completes the proof of statement (a).
For statement (b), we cite that the claim is true if we use case 3 above, which is the original
statement proved by Ohta, see [Ohtgs, Thm., p. 50]. Using [Wak14, §a.2.3, Thm. A.2] we
transform this to case 1 and see that it remains true; we use here proposition 5.10 to see that
the Galois action defined in [Wak14] coincides with the one we defined in section 4.5. [

175






Chapter IV.
Periods and p-adic L-functions

In this chapter we can finally put everything together. The close study of modular curves
and motives for modular forms on the one hand and modular symbols on the other hand
allows us to compute the periods for these motives and to express them in terms of the error
terms. It turns out that the complex period and the complex error term essentially match,
while the p-adic versions differ by a constant which is a unit.

We can then modify Kitagawa’s p-adic L-function by this unit and some other elements
that deal with the remaining terms in the interpolation formula to get the p-adic L-function
we want.

1. Complex L-functions of modular forms and their twists

So far we have not yet considered L-functions of modular forms. In this section we give the
necessary background on these, both from a classical and a motivic point of view. Throughout
the section we fix N > 4 and k > 2.

1.1. Classical complex L-functions, twists and refinements

Definition 1.1: The complex L-function of a cusp form f € Sg(Xi(N), C) having Fourier
expansion ¢(f) = X7 anq" is defined as

L(f,s) = i anpn”>.
n=1

More generally, for a Dirichlet character y: (Z/c)* —— C* one defines the twisted L-
function as

L(f, x,$) = Z x(n)ap,n™>.
n=1

The Dirichlet series introduced above converge for Re(s) > % + 1 and the holomorphic
function they define admits a holomorphic continuation to the whole of C and satisfy a
functional equation [Shi71, Thm. 3.66]. Moreover, if (and only if) f is a normalised eigenform,
there is an Euler product expansion

L(fox9) = [ | 0= x@arp™ +yx*O)c72)7,

¢ prime

see [DSos, Thm. 5.9.2]. Note that due to the convention that the values of y at integers not
coprime to c is 0, the Euler factors in the above product are 1 for primes ¢ | c.
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Chapter IV. Periods and p-adic L-functions

Proposition 1.2: Let f € Si(X1(N), C) have Fourier expansion q(f) = X, anq" and let
x: (Z]c)* — C* is a primitive Dirichlet character, then the function f,, defined by

fr(0) = x(Wang" (r €b)
n=1

is a modular form in Sg.(X1(M), C) for some multiple M of N. If f has nebentype i of conductor
d, then M = lem(N, ¢?, cd) and f, has nebentype y x*. One has

0
,_.

fr(0) = )((])f(f"‘]) (r €D).

G(x

I
—_

J

Moreover, f, is a normalised eigenform if and only if f is a normalised eigenform.

Proof: See [Shi71, Prop. 3.64] and its proof for everything except the last statement. We thus
know L(f, x,s) = L(fy,s). The last claim then follows from the fact that f is a normalised
eigenform if and only if L(f, s) admits an Euler product, together with the observation that
L(f, s) admits an Euler product if and only if L(f, y, s) does. O

A very useful fact is that the L-function can be expressed in terms of the Mellin transform
of f as follows.

Proposition 1.3: We have foralls € C

(—2mi)*
I'(s)

L(f,s) = / f(2)z° 'dz.

In particular, for each n € IN we have

fco !
/0 f(z)z"dz = (-1)" (ZﬂranL( fon+1).

Proof: In general, if (a,)nen is any sequence of complex numbers and we define functions

F(z) = Z anz", L(s)= Z ann® (zresp.s € C such that the series converge),

n=1 n=1

then the relation

1 . AT il
L(s)=ﬁ/0 F(e H)ts7ldt

holds whenever the convergence is such that this makes sense, see [Zag81, §3, (17)]. The
claim follows from this by an easy substitution. ]

Now fix a prime p and let f € Si(X1(N), ¢/, C) be a normalised eigenform (whose Fourier
coeflicients then lie in a number field). We study how L-functions behave under refinements.
For thislet @ € C be aroot of the p-th Hecke polynomial and f,, the corresponding refinement,
as in section 11.7.1. Then the L-functions of f and f, are connected in the following way.
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1. Complex L-functions of modular forms and their twists

Proposition 1.4: Assume that f is a normalised eigenform and that a # 0. We have for all
s € C and all Dirichlet characters y

L(fas x-8) = (1= yyp(p)p* > L(S, X 5)

(where yy is the product of the Dirichlet characters y and {/ in the naive sense, i.e. y/(p) =

x@)y(p))

Proof: In the untwisted situation, an easy calculation (see [Belio, p. 131]) using the def-
initions of f,, and the complex L-function, the observation L(f [p 1] ,s) = pFI7SL(f, s) and
the relation a8 = /(p)p*~" shows that

L(fass) = A= a Y@ DL, ). ()

We now use proposition 1.2 to reduce the twisted case to this formula. Let f, be as in
proposition 1.2, note that f, is again a normalised eigenform and recall that L(f, y,s) =
L(fy,s). The p-th Hecke polynomial of f, is

X? —apx(P)X + Y (p)p* 7, (%)

and since « is a root of X? — a,X + Y(p)p*~', it is immediate that y(p)a is a root of (x).
Inserting this into (x), we get (1 — ™ x¥(p)p* > )L(fy» s) = L((fy) y(p)a> $) and it remains to
see that (fy) y(p)a = (fa)y- This follows directly from corollary 11.7.2 since both forms have
the same Hecke eigenvalues. (]

1.2. Complex L-functions and twists from the motivic point of view

We now v turn to motives, so for the rest of the section fix a number field K, an embedding
K — @, anewform f € Si(X;(N),K) and a Dirichlet character y.

Definition 1.5: The modular form f, from proposition 1.2 will in general not be new, but
by theorem 11.4.33 there exists a unique newform of some level dividing M almost all of
whose Fourier coefficients are the same as the ones of f,,. We call this newform the twist of

f by y and denote it by f ® y.

Although f, will not be new in general, it can be. See [AL78, Cor. 3.1] for a characterisation
of when this happens.

Proposition 1.6: We have an equality of complex L-functions

LIM(f).s) =L(f.s) (s€©)

of the motivic L-function as defined in section 1.3.3 and the classical L-function attached to f.
More generally, if y is a Dirichlet character, then

LM (x")»s) =L(f @ x.5) (s € C).
In particular, conjecture 1.3.15 holds for M(f).

Proof: The first statement follows from theorem 11.5.12 (b). From theorem 1.2.26, Chebotarev’s
density theorem and the definition of f ® y it follows easily that for each place p of K the
Gq-representations M(f), ® y and M(f ® y), have isomorphic semisimplifications (see
also example 1.3.16 (c)). The second claim then follows from remark 1.3.14. O
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Chapter IV. Periods and p-adic L-functions

Now fix a primitive Dirichlet character y of conductor C € IN. As the above result shows,
the L-functions LIM(f)(x*), s) and L(f, y, s) will differ in general. More precisely:

Proposition 1.7: We have fors € C

LM(F)(),8) = L x9) | [PeMPI), ), 677

L|(N,C)

Proof: Obviously the function L(f, y, s) has trivial Euler factors at the primes dividing C. It
is further easy to see that if £ is a prime dividing at most one of N and C, then the polynomial
Pe M) x*)p,T) = Pe(M(f)p ® x*,T) (for any prime p 1 ¢) is just the Euler factor of
L(f, x,s) at €. O

If f is ordinary at the place A | ¢ (for a prime ¢ | N) defined by our fixed embeddings
K—Q— C, then we can explicitly compute the Euler factor of f ® y at £. To be
consistent with other sections in this work, we slightly change our notation and denote the
primes now by p and p instead of £ and A.

So assume that f is ordinary at p, p | N, and write Dp™ (p t D, m > 0) for the conductor
of y. Let M(f)g and 6 be as in theorem 11.5.15 and recall that 5(Frob,) = a, since p | N.
Further, if 7 is any Dirichlet character we write 7 for the associated primitive character.

Lemma 1.8: With the above notation, we have

P,(M(F)(x).T) = 1-a " xih(p)p*'T.

Proof: We choose a basis of M(f), with respect to which the representation has the form

(2 *) with a character ¢ of Gg. Looking at the determinant and using theorem 11.5.12 (c), we

— 1=k
get 8¢ = Y Ky - We have an exact sequence

0— 8" — M) h——ex"—0
and we claim that the sequence
0— Dcris(é)(*) - Dcris(M(f)(X*)p) I Dcris(g)(*) —0 (*)

is exact. It is clear that this sequence is left exact.
We tensor the first sequence with ye* and obtain

0—— 8" — M(f)(e")y— L—0,

where L stands for the trivial representation. This is an extension of d¢* by the trivial
representation, thus it defines a class x € HI(QP, d¢e*). Since all representations in the
sequence are de Rham, the sequence

0 —— Dar(8¢") — Dar(M(f)(e")p) — Dar(L) — 0

is still exact. By lemma 1.2.46 (d) we therefore have x € Hé(Qp, d¢*) and by lemma 1.2.45 we
have Hé(Qp, 0c*) = H;(Qp, d¢€*) in this situation, whence by lemma 1.2.46 (c) the sequence

0— Dcris(55*) — Dcris(M(f)(E*)p) — Deris(L) —— 0
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is exact. We now tensor this sequence with Ds(¢y*) and obtain a morphism of exact
sequences

0— Dcris(ag*) ® Dcris(EX*) I Dcris(M(f)(g*)p) ® Dcris(g)(*) I Dcris(g)(*) —0

l l |

0 Dcris(5X*> Dcris(M(f)(X*)D) Dcris(g)(*)

where the vertical arrows come from remark 1.2.16 (they are even injective, but we do not
need this). From this diagram we see that the lower right map is surjective, hence the
sequence (*) is exact.

Since § is unramified and y is ramified, we have D¢,5(8 y*) = 0. From the sequence (x) we
get then Deis(M(f)(x*)p) = Deris(ex™) and we need to determine when the character ¢ y*
is crystalline, which depends only on its restriction to the inertia group I,. Decompose the
characters y and ¢ into p-power and prime-to-p conductor parts y = xp xnr and ¢ = ¥/,

We have ef;, = (¢)l1, = (i,D*Ki;f)hp because § is unramified, so (¢ x*)|r, = ((lﬁ){)*Kgck)hp and
we see that the character is crystalline if and only if ¢, = x,. In this case, by lemma 1.2.20

@cris acts on Deyis(8e x*) = Deis((Ynr )(m)*rcé;f ) bY Ve xar(p)p¥ 1, hence it acts on Degs(e x*)

as 6(Frob,) i, Xar@)P* ™' = @ W xur(p)p* ! as claimed. Otherwise we get Des(M,) = 0
and the Euler factor is 1. O

Even without assuming ordinariness these Euler factors can be written down explicitly
using the theory of automorphic forms, which we summarise briefly in theorem 5.4 below.
This is not difficult, but since we will not need their precise value in the general case we omit
this.

2. Some intermediate observations

In this section we compute some expressions that appear in the conjectural interpolation
formula (apart from the periods) and prove some related lemmas.

In this whole section, fix a number field K C Q integers N > 4 and k > 2, a newform
f € Sp(Xy(N)*ith K), an integer n with 1 < n < k—1, a prime p > 3 and a Dirichlet character
x of conductor Dp™ with p t D. Further assume that f is ordinary at p, where p is the place
of K lying above p which is fixed by our embedding K € Q C @p. Write o for the unit root
of the p-th Hecke polynomial (see definition 11.5.16). Observe that a = a, if p | N, where a,
is the p-th Hecke eigenvalue of f.

We look at the motive M := M(f)(x*)(n). It is critical by proposition 11.8.7 and satisfies
the strong Dabrowski-Panchishkin condition by theorem 11.5.15 (b) and lemma 1.3.30 (a).

Propositipn 2.1: Let‘V = M,. Ifk iseven, n = é and y is nontrivial, assume that L(f, y,n) #
0. Then H}(Q V)= H;(Q, V*(1)) =0 fori=0,1.

Proof: Using lemma 1.2.48 it is clear that we have HY(Q, V) = HY(Q, V*(1)) = 0 because V
and V*(1) are irreducible by theorem 11.5.12 (b). Since we know already that M is critical, we
have

dim; ( Dar(Vlcq, ) / 1 Dar(Vlog, ) ) = dimz HY(R, V) (= 1),
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and the dimension formula from lemma 1.2.51 tells us that H}(Q, V) vanishes if and only if
H{(Q, V*(1)) does so. By proposition 1.2.50, H(Q, V) = 0 if H(Q, V/T) is finite, where T is
an O-lattice in V. This finiteness result is proved in [Katoq, Thm. 14.2] under the hypothesis
as in the statement. (Il

We compute the local correction factor which was introduced in definition 1.3.39.

Lemma 2.2: Let  be the nebentype of f. Then the local correction factor at p is
LEp(M) = (1 - &'y (p)p" (1 - & i (p)p* "),
Here ),(17 denotes again the primitive character associated to y.

Proof: Let M(f)g,  and a be as in theorem 11.5.15. Then the action of Gq, on M,IJ)P is given
by the character § ® y* ® xZ .. Recall from theorem 11.5.12 (b) that

cyc*

Po(M(f)p. T) = 1—apT + y(p)p* ' T (%)

and note that the roots of this polynomial are the inverses of the roots of the Hecke polynomial,
in particular a~! is a root.
We distinguish two cases.

(1) We first assume that m = 0, i. e. y is unramified at p. As a first step we compute the

expression
P, (M, T)

Pp (MDP’ T)
occurring in the definition of the local factor. For this we distinguish again two cases.

(i) Firstletp t N. From (x) we see that M(f), is crystalline in this case since
Y(p) # 0, and hence also M, is crystalline. We have then D;s(M,) =
Deris(M(f)p) ®Q, Deris(X™) ®q, Deris(Qp(1)), and from lemma 1.2.20 we get

Pp(Mp, T) =1- ap)((p)p_”]" + ¢X2(P)Pk_2n_1T2.

On the other hand, by the above description of MEP and again lemma 1.2.20
we know that
P,(MPF,T) =1—ay(p)p "T.

We claim that the quotient of these polynomials is

Pp(My, T) 4 k—n-1
PP g i,
b (MDY, T) a yx(pp

Indeed, multiplying we get

(1= a Y x(pp* "' T)A - ax(p)p™"T) =
1— x(P)p (@ + a " Y(p)p* T + ¢ x*(p)p* " 'T*

and since a " is a zero of P,(M(f)p, T), it follows that o + aY(p)p* = ap.
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(if) Now weletp | N. Then ¢/(p) = 0 and (*) tells us that M(f), is not crystalline,

so M, is not crystalline either (since y and kg, are crystalline). But M(f )

is crystalline by theorem 11.5.15 (b) and lemma 1.2.19 (b), hence so is MEP and
we get Deyis(My) = Dcris(Mé)P) for dimension reasons. Thus the expression

Pp (MD9 T)
Pp (MDP9 T)

appearing in the definition of LF,, is equal to 1 in this case.
It remains to compute Pp((MEP)*(l), T), still assuming that y is unramified at p. We
have (MPP)*(1) = (6 ® x* ® Kle) (1) =071 ® x ® kg, s0

cyc >

Pp(M") (), T) = 1= )" (p)p"'T
by lemma 1.2.20.

(2) Now we let m > 0. Since y is then ramified at p, the one-dimensional representations
MEP and (MEP)*(I) are both not crystalline, so Pp(MEP,T) = p((M?P)*(l), T) =1
The value of the remaining expression P,(M,, 1) was computed in lemma 1.8. (]

Remark 2.3: In [MTT86, §14], Mazur, Tate and Teitelbaum introduce an expression they
call the “p-adic multiplier”. They consider the same situation as we do here, and their p-adic
multiplier is (up to a power of @ which we ignore here) defined as

ep(M) = (1—a” y" (p)p" )1 =& yy(p)p* "), (2.1)

so by our above calculation it essentially equals the local correction factor, except that it
contains yy¥(p) = x(p)¥(p) instead of the value at p of the associated primitive character.
We will later need to know when the two expressions differ. Recall that we always assumed
X to be primitive (while / may be imprimitive). Write y, and ¢, for the p-parts of y and
i/, respectively. Then we have e,(M) # LF,(M) if and only if y,¥,(p) # )/(;l,b/p@), and it is
elementary to check that this happens precisely when , and ,, are nontrivial and inverse
to each other. In these cases, we have

ep(M) = (1= o )" (p)p" ™),
LE(M) = (1= ™" (p)p" (1 = &~y (p)p" ™).
Next we calculate the s-factor introduced in definition 1.3.23.

Lemma 2.4: Write the Dirichlet character y as a product y = xurxp With yn: of conductor D
and x, of conductor p™. Then the e-factor is

g(M;?P) = a” ()P G(xp)-

Proof: Since the action of G, on MEP is given by the character §® y* ®xgy, and 5(Frob,) = a,

this follows directly from proposition 1.3.25. (]

Finally we calculate the Hodge invariant.
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Lemma 2.5: The Hodge invariant is tH(MEP) = -n.

Proof: Since dimy, DdR(M?P) = dimy fil® Dgr(M,) = 1 and
Dar(Mp*) —— Dar(M;) / A1° Dag (M) »

we must have DdR(MEP) N fil’ Dgr(M,) = 0. Further the functor Dgg is exact on de Rham
representations by [FOo8, Thm. 5.28] and DdR(M,?P) is a subobject of Dgr(M,) as a filtered
vector space. It follows that tH(MEP) must be the unique i € Z such that fil' Dgg(M,) =
Dgr(M,) and fil'* Dgr(M,) # Dgr(M,). It is easy to see that this means tH(M,?P) =-n. O

Corollary 2.6: The pairs (y*, n), where y is any Dirichlet character and1 < n < k —1 are an
appropriate pair for M(f) in the sense of definition 1.3.40, except possibly in the following cases:

(1) k iseven, n = % and L(f, y,n) = 0, in which we may have H%(Q,Mp) # 0;

(2) k=2,n=1p| N,m=0and y*(p) = ap, in which case we have LF,(M) = 0.

Proof: The motive M(f)(x*)(n) is then critical, and by proposition 2.1 the necessary Galois
cohomology groups vanish. It remains to see that the local correction factor, which we
computed in lemma 2.2, does not vanish. Since « is a p-adic unit, one sees immediately that
it can only possibly vanish if n = 1or n = k — 1 and « is a root of unity. To sort this out, we
use an argumentation inspired from [MTT86, §15, p. 22]. We distinguish two cases:

(1) Assume p | N (so that a = a;,). Then [Miy89, Thm. 4.6.17] shows that there are two
possible cases that can occur (since a, # 0): either the archimedean absolute value
of a, is p /2 or we have af, = l;(p)pk_z, p || N and the p-part of ¢ is trivial. The
first case is impossible because in order for a,, to be a root of unity we would need
k = 1, which we excluded. In the other case we would need k = 2 for the same reason,
and the local factor then vanishes if and only if a, = y*(p) or a;, = )}Tﬁ@) Since y
is primitive and the p-part of ¢ is trivial, we have )?l}(p) = )((p)%(p), and inserting
af, = l;(p) we see that a, = )?1/7(1)) is in fact equivalent to a, = y*(p). Hence we are in
the situation (2) above.

(2) Assume p 1 N. Then by the generalised Ramanujan conjecture proved by Deligne
([Del6g, Thm. 5.1]; see also [Conog, Lem. 0.0.0.3 and §5.4]), all archimedean absolute
values of « are p* /2, 50 as in the previous case we would need k = 1 for « to be a
root of unity, which we excluded. |

3. A problem with interpolation formulas in the literature

Before we continue, we insert a section where we observe that there are contradicting
interpolation formulas for p-adic L-functions for modular forms, both in conjectures and
in actual constructions. To exhibit this, we look at the construction by Mazur, Tate and
Teitelbaum on the one hand and of Kitagawa on the other hand.

Since this paragraph only aims to point out this contradiction, we work in a simplified
setting. Fix p > 2, k > 2, N > 4, a number field K, an embedding K —— Q fixing a prime
p | p, and let L be the completion of K at p, O the ring of integers of L and put AV := O Geye]l-
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Let f € Sp(Xy(N)™™, K) be a p-ordinary newform and a, € O* its p-th Hecke eigenvalue.
We assume that p | N, so that a, is the unit root of the p-th Hecke polynomial of f (see
theorem 11.5.15 (c)).

We make some further simplifying assumptions. In the following, both L-functions
L(f, x,s) and LLM(f)(x"),s) (where y is a Dirichlet character) will appear, and by proposi-
tion 1.7 these differ by finitely many Euler factors for the primes dividing both the level N of
f and the conductor of y. To minimise this discrepancy, we will only consider nontrivial
Dirichlet characters of p-power conductor, so that the only such prime is p. We will further
assume that f has trivial nebentype. By lemma 1.8, the Euler factor of LIM(f)(x*),s) is
then also trivial, which ensures that in this case have do have an equality of L-functions

LM (X, s) = L(f, x-9)-

3.1. Contradicting interpolation formulas

We cite the aforementioned interpolation formulas, in which n € IN should satisfy 0 < n <
k — 2 and y is a Dirichlet character of conductor p™ which we assume to be nontrivial for
simplicity.

Mazur, Tate and Teitelbaum [MTT86, §14] construct a measure uyrr € AV such that for
all such y and n

pm(n+1)n!

‘/G X KcycdyMTT = a;)”(—ZEi)nG(X)SDO(f)

cyc

L(f, x,n+1).

On the other hand, Kitagawa [Kitg4, Thm. 1.1, Thm. 4.8] constructs a measure pgj € AV°
such that for all such y and n
. =D"p""G(x")n!
X Ky dpkit = . L(f, x,n+1).
/cyc e a]’)n(Z”l)naoo(f)
Here E(f) is a the complex error term similar as in definition 111.2.8 which depends of
course on a choice of 77;—; as there, but since this will not be important in what follows, we

suppress it in the notation.*
If we divide the two expressions above we obtain

MTT’s value pm

= — -1 )
Kitagawa’s value  G(y)G(x*) x(=1) (3.1)

by the classical Gau3 sum relation G(y)G(x*) = y(-1)p™ (see [Miy89, Lem. 3.1.1 (2)]).
The following lemma shows that only one of the two functions pyrr € AV and pgge € A€
can exist (recall that we assumed k > 2), so one of the two articles must contain an error.

Lemma 3.1: Let Q = Quot AV be the total ring of fractions. Fix a subset A C Z. containing
at least one even and one odd number. There cannot exist an element y € Q such that for each
finite order character y of Geyc and each n € A we have

/ X*K?ycd.u = X(_l)

cyc

! To be precise, Mazur, Tate and Teitelbaum do not use any error terms, but rather they identify C with Cp,
but dividing their function by the error terms yields yytT as above. On the other hand one should remark
that Kitagawa constructs a two-variable p-adic L-function for a Hida family; the element uxjt above is the
specialisation of this function to one form in the family.
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(whenever this integral is defined).

Proof: For y afinite order character of Geyc andn € A, let @, : AV —— @p be the morphism
induced by "k, and put Py, = ker @, , € Spec A¥¢. By [NSW13, Prop. 5.3.5] the ring
A€ is isomorphic to a direct sum of p — 1 copies of the power series ring O[[T], and since
@p is a domain, each ®, , will factor over one of these copies. Decomposing Gy, =
I, % (1 + pZ,), each character X K&y determines a character of If %, which is a power
'™ X) of the Teichmiiller character e for some exponent i(n, y) € {1,...,p — 1} depending
on nand y. This exponent determines the copy of O[[T]] over which ®,, , factors, or phrasing
it more geometrically, the connected component of Spec A¥¢ that P, , lies on. It follows from
lemma 111.3.1 (b) that on each connected component of Spec O[T], any infinite set of P,, ,
contained in it is Zariski dense. But for each fixed i € {1,...,p — 1} one can find infinitely
many pairs (n, y) such that i(n, y) = i and y(—1) = 1 and also infinitely many pairs (n, y)
such that i(n, y) = i and y(—1) = —1. Therefore such a u cannot exist in A°C.

By the Weierstrafy preparation theorem [NSW13, (5.3.4)] any element of AY¢ can have
only finitely many zeros in Spec AY¢. Therefore if we had such a p in Q, then the integral
in the statement would be defined for all but finitely many pairs (y, n). Since excluding
finitely many pairs obviously does not destroy the argument from before, such an element

also cannot exist in Q. O

The problem also occurs with other texts. For each of the texts listed below, one can
check that its interpolation formula may be transformed by some easy steps into either
Mazur-Tate-Teitelbaum’s one or Kitagawa’s one. The following table gives an overview of
which text contains which version. Probably one can find more examples for each version.

same as Mazur-Tate-Teitelbaum ‘ same as Kitagawa
Vishik [Vis76] Amice-Velu [AV75]
Pollack-Stevens [PS11], [PS13] Kato [Katogq]
Bellaiche [Bel11] Hida [HidLFE]

Delbourgo [Delo8]

In appendix B we reproduce Kitagawa’s construction. The final result we obtain (theo-
rem B.1.11) differs from our citation of Kitagawa’s result above, in fact it coincides with the
result by Mazur, Tate and Teitelbaum. This suggests that the latter construction is the correct
one, and indeed there seems to be a mistake in Kitagawa’s paper.

To point out this error, note that the formula in [Kitgq, Prop. 4.7] (or alternatively, [Kitgg,
Thm. 6.2]) contains a factor (—A)", where A is the non-p part of the conductor of y, so it
is 1 in our special case (the v there is what we called n). The same formula contains an
expression A(&, y, v + 1). The meaning of this latter expression is defined in [Kitg4, §4.1],
where the defining formula also contains a factor (—1)". Hence if one inserts the definition
of A(¢, y,v + 1) into the formula in [Kitg4, Prop. 4.7] (or alternatively, [Kitg4, Thm. 6.2]), the
two factors (—1)" should disappear. However, in the final formula in [Kitg4, Thm. 1.1], the
factor (—A)" is still present, while (—1)" is not. It is this formula which we cited above, and
by our explanations it seems to be wrong. Apparently the corresponding statements in the
texts in the right column of the above table are then also wrong.
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3. A problem with interpolation formulas in the literature

3.2. Comparison with the general conjectures

We want to compare the interpolation formulas from the previous section to general con-
jectures about p-adic L-functions for motives. One such conjecture is of course the one
by Fukaya and Kato, which we cited in conjecture 1.3.41. On the other hand there are also
older conjectures due to Coates, Perrin-Riou [CP89; Coa89]. In the following we show that
one conjecture predicts the Mazur-Tate-Teitelbaum function, while the other one predicts
Kitagawa’s function, so these conjectures also seem to contradict each other.

3.2.1. The conjecture of Coates and Perrin-Riou

We follow the text [Coa89].> The conjecture there assumes that one has a critical motive M
which is good ordinary at p. Let p be one of +i € C. Then there should be a p-adic L-function
Lcp such that for all Dirichlet characters y of p-power order and all n € Z such that M(y*)(n)
is still critical and such that y(-1) = (-1)", we have3

AL (M(m)(x"))
/ x Kkl dpcp = — ,
where for a motive N
(p) (p)
(p, ) (p) (p) ’
LLNL(N)

and
QM) = Qu(M)(27p)"™M;

see below for the remaining unexplained expressions. Here Q. (M) is the complex period of
M (see definition 1.3.18; we ignore here the dependence on a choice of a basis) and A(N,s) is
the completed complex L-function of N.

We now apply this to M = M(f)(1). Fix a character y of conductor p™ andn € {0, ..., k-
2}. To simplify the notation we set r = n + 1, such that M(f)(1)(n) = M(f)(r). Again for
simplicity we assume y to be non-trivial, i.e. m > 0. Following [Coa89, p. 109], we define
the Gaufl sum

Go(x) = D, x(x)e™ ™,

x mod p™

such that G_;(y) is the usual Gauf} sum.

We will not repeat here the definitions of the remaining expressions from above. Rather
we give a table (on page 188) that lists their values in our particular situation, together with
a brief explanation how to obtain them. The references in the table to pages, statements or
objects we did not define here refer to [Coa89].

% Note that the earlier version of the conjecture from [CP89] seemed to contain an error, as explained by Coates
at the beginning of the article [Coa89], whose purpose is mainly to correct this error. We follow here the later,
corrected version.

3 In comparison to [Coa89], we have replaced y by y*. The reason for this lies in the normalisation of class field
theory: in [Coa8¢], the reciprocity map sends primes to arithmetic Frobenii, while L-functions are defined by
taking characteristic polynomials of geometric Frobenii (just as in this work). Since we want to consider the
L-function L(f, y,s) = LLM(f)(x™), s), we therefore have to twist by y* instead of y.
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Chapter IV. Periods and p-adic L-functions

expression definition in | value
[Coa89]
h(j, k) (for the mo- | bottom of p. 103 h(j,k) =1ifj=-rorj=k—-1-rand
tive M(f)(x*)(r)) h(j, k) = 0 otherwise, by proposition 11.5.9
fMP()P) | eqn. (12), p. 106 -r
(P) 5
L(O,:) MG p. 103/104 In the definition, we have a product over
Lo (M(f)(x*)(r)) certain U, but in our case there is only one
such U, and we are in the situation of (a)
at the bottom of p. 103. Then the j there
is —r, the k there is kK — 1 — r (the latter
k being the weight of f) and h(j, k) = 1,
such that the expression is equal to p™".
P(M(f)(r)) middle of p. 108 The polynomial det(1 — Frob, X, M(f)¢)
is equal to 1 - a,X by theorem 11.5.12 (b).
Thus det(1 — Frob, X, M(f)(r)¢) = 1 -
app~"X. The set P(M(f)(r)) is the set of
inverse roots of the latter polynomial, thus
it contains one element a,p™".
hy(M(f)(r)) p. 109, before Lemma | By the above description of PI(M(f)(r)),
3 this is equal to 1.
(p) *
Ly M)
([;) Nx eqn. (18), p. 109 We use [Coa89, Lem. 3 (ii)] with the
L, (M(f)(x*)(r)) M there being M(f)(r). By our
above descriptions of h,(M(f)(r)) and
P(M(f)(r)) we get G,(x) " (app™) ™™
Lo(M(f)(x*)(r)) | bottom of p. 103 and | In the definition, we have a product over
bottom of p. 104 certain U, but in our case there is only
one such U, and j, k and h(j, k) there are
as before. Hence the expression equals
Te(r) =227)7"T(r) = 2(27)~"(r = D
AM ) By definition, this is
LM (X)) - LM =
22x)"(r = DIL(f, x, 7).
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3. A problem with interpolation formulas in the literature

Using the calculations from the table, we obtain the following conjectural interpolation
formula: If y(—1) = (—1)" we should have (recall that r = n + 1)

/ v g B pm(n+1)2(n _ 1)!
G ¥ O T a2 )G, () QM)

L(f, x,n+1).

It can be shown that the Deligne period Qo (M(f)(1)) is equal, under suitable normalisations,
to the appropriate error term Eu(f) from before (this follows from theorem 4.1 below; see
also appendix A.3). Hence if we choose p = —i, then up to a factor 2 this is precisely the
value of the function of Mazur-Tate-Teitelbaum.

3.2.2. The conjecture of Fukaya and Kato

We now look at the conjecture by Fukaya and Kato, here we use the formulation from [FKo6,
Thm. 4.2.26]. We choose M there to be M(f)(1) and p there to be a non-trivial Dirichlet
character y of conductor p™. Further we fix again n (there called j) with 0 < n < k -2
and assume y(—1) = (-1)" for simplicity. We point out that in [FKo6], just as in [Coa89],
the normalisation of class field theory is via the arithmetic convention and Euler factors
are defined using characteristic polynomials of geometric Frobenii. The table on page 190
contains the values of the relevant expressions in the interpolation formula. (We later study
this in greater detail.)

Putting all this together, we see that the conjecture predicts a gk such that*

*_ N _ pm("+1)(n _ 1)'
/chc 1 rosine S ap' Qoo (M(f)DW))(271)" G( X)L(f Xt 1).

This equals the value from Mazur-Tate-Teitelbaum’s interpolation formula up to a factor
(—1)", so by (3.1) it equals the value from Kitagawa’s interpolation formula up to a factor
(=1)" y(—1), which is 1 in our case. If we choose instead y and n such that y(-1) = —(-1)",
then the calculation still works, so that in both cases Fukaya-Kato’s conjectural value equals
Kitagawa’s value up to a factor y(—1)(—1)" (we omit the details). Of course there is an element
in A€ whose integrals are this factor (namely the complex conjugation in Geyc).

3.3. Conclusion

We have seen that the conjectures of Coates and Perrin-Riou on the one hand and of Fukaya
and Kato on the other hand seem to contradict each other, and that the former seems to be the
correct one (at least in the setting of modular forms) and the latter yields a p-adic L-function
whose construction contains an error. Therefore we cannot hope to prove Fukaya’s and
Kato’s conjecture in our situation, i. e. to construct a p-adic L-function having exactly their
predicted interpolation behaviour, but only up to a factor of y(—1). At least this can be
achieved, as we show in the following sections.

A solution to this problem that was suggested by Y. Zaehringer [Zae17, Ex. 9.2.14] is
to replace the character i/ in the table on page 190 by its inverse. This indeed makes the
unwanted factor y(—1) disappear. This is equivalent to changing a convention we made at
the very beginning: on page xix we required C and C, to be “oriented compatibly” (see

4 Actually the integral there is over yxcy, but the involution on AV induced by inversion on Gey. transforms
this one into the integral here.
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Chapter IV. Periods and p-adic L-functions

expression definition in [FKo6] | value

d(y,n, +) in Thm. 4.2.26 We have d(y,n,+) =1and d(y,n,—) =0
because y(—1) = (-1)".

Qy*,9) in Thm. 4.2.26 This is by definition the Deligne period of
M(f)(1), which we called Qo (M(f)(1)).

T §4.2.13, p. 62 %2}

fr(p) in Thm. 4.2.26 m

h(l) forl € Z

p- 58, in Thm. 4.1.12 (2)

Thisis1ifl = —norl =k—-1-nand0
otherwise, by proposition 11.5.9.

Pr,(--+) §4.2.19, p. 66 This is 1 by lemma 2.2.
M) §4.2.3, comes from | This is M(f))(1), where M(f)) is
the Dabrowski- | the 1-dimensional unramified Gq,-
Panchishkin  condi- | subrepresentation M(f)? of M(f), from
tion theorem 11.5.15 on which the geometric
Frobenius at p acts as a,.

v in Thm. 4.2.26 This is the eigenvalue of the crystalline
Frobenius on Dcris(Mg). By the above de-
scription, this is equal to a,p~.

14 p. 52, beginning of | ¥: Q, — @: is the character with ker-

chapter 4 nel Z, such that y(p~!) = 2™ for
all I > 0 under the chosen embeddings
Q—CandQ —Q,

e(Qp, X", ¥) §3.2.2, p. 40 By property (7) in §3.2.2 on p. 41 (or alter-
natively lemma 2.4), this equals the usual
Gauf3 sum G(y).

d in Thm. 4.2.26 This is dimg tp(p)) = 1.
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4. Comparing periods and error terms

footnote 1 there), i. e. the system & of p-power roots of unity in C,, should be identified with
(€#77™"),, by our pair of embeddings. If we reverse this (thus using (¢e~27?™"),, instead),
the effect is the same and the factor y(—1) disappears. The same choice is also made by
Perrin-Riou, see [Peroo, top of p. 91]. In [FKo6, beginning of §4] it is written explicitly that
the system (e?”#™"),, should be used, but this could be wrong. In order to figure out whether
this can be a satisfactory solution, one should check which consequences this has for other
motives, such as e. g. the motives attached to Dirichlet characters.

It is thus a very important task to figure out how Fukaya’s and Kato’s conjecture should
be changed in order to predict the correct interpolation formulas. It might seem a good idea
to look for a version that gives back the formulas of Coates and Perrin-Riou in their situation.
At least this would produce the correct result for modular forms. But this issue lies outside
the scope of this work.

4. Comparing periods and error terms

4.1. Choosing good bases

In this section we fix a number field K C @ integers N > 4 and k > 2 and a newform
f € Sp(X1(N),K), and we assume that K contains the N-th roots of unity (so that we may
identify the modular curves X;(N)™V¢ and X;(N)**"). We choose bases of the tangent space
and the Gr-invariant subspace of the Betti realisation of the critical twists of M(f). With
respect to these bases we will later compute periods.

Fix an integer n with 1 < n < k — 1 and a Dirichlet character y of arbitrary conductor.
Then M(f)(x*)(n) is critical by proposition 11.8.7. Further we know from lemma 1.3.10 (b)
that

MG = MEOET" © K(n)g @ M(x*)y
and
EAMP ) = 8 M(Far ® K(n)gg @ M(x*)gg-

We use the notation from section 1.3.2 for the canonical bases of the realisations of the Tate
resp. Dirichlet motives.

By corollary 11.8.5 we can choose any 8§, € Sg(X(N), K)" such that §o(wn f) = 1 (where
wy is the Atkin-Lehner endomorphism) and use its image in gr® M(f)4r (which we denote
again by &) as a basis of this space. Note that J, is then unique with this property, since
gr® M(f)qr is one-dimensional. So

§ = 8y ® (b ™)®" @ b, € tarsyeym

is a basis for the tangent space.
We now turn to the Betti side and recall lemma 111.2.4, which gives us isomorphisms

MSi(N. K)*[f] == M(f)g
Further we use the modified pairing (-, -); from section 11.8.1 and the fact that it induces

a perfect pairing between M(f); and M(f)f by lemma 11.8.6. Fix a basis n* := r]}r €
MS(N, Ok)*[f] as in definition 111.2.8, and by abuse of notation denote its image in M(f)g
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Chapter IV. Periods and p-adic L-functions

under the above map still by n*. By the pairing there exists a unique = = Ny € M)
coming from an n~ € MSg(N, Ok)~[f], such that

+ _F\! -k
() = by
We choose then
y = OV @ (528" @ b € (M(F)(x ()

as a basis of the Betti side.’

As a side remark, note that the choice of n* is the only non-canonical choice we ever
made in this whole process.

We stress that both y and § of course depend on n and y, but we omit this from their
notation. This dependence should be always clear from the context. Also every element
introduced in this section of course depends on f, and we will also often omit this from the
notation. Though, later we will consider families of motives of modular forms parametrised
by some set of specialisations %, and we will then put a subscript “¢” to all of the elements
introduced here to indicate their dependence on ¢ € X.

4.2. Complex periods

We now compute Deligne’s complex period of the critical twists of M(f) with respect to our
chosen bases, as defined in section 1.3.3. We use the elements and notations introduced in
section 4.1.

We remark that a similar idea for calculating the complex periods appears in [Ocho6, §6.1,
§6.3], although there many details are omitted.

Theorem 4.1: We have for the complex period

(27Ti)n+1_k

Y.6 * _
Q" M(fH)(x)n) = )

Eoo(fsn*)

with s = — y(-1)(-1)".

Proof: Recall that we identified n* with their images under the map (111.2.1). By our choices of
n* we have (n~°, wyn®)p = b]?(l_k), and since the pairing -, -);, vanishes on M(f)z x M(f)g,
we have further (n™°, wyn®)s = (175, wn(n® + x))p for any x € M(f);°. Therefore (by the
definition of the complex error term)

Elfo1®) - b2 = (75 wn B (o )T )B = (1S N ES)B = (75, wNE)p,  (¥)

where & and £* are as in definition 111.2.5 (Which we again identify with their images under
the map (111.2.1)).

By the compatibility of the comparison isomorphism with the Eichler-Shimura map (see
corollary 11.6.8) and lemma 111.2.6, we have that the image of ¢ under the map

MS(N, C) — YW © € = YWy @ C

5 We could also start with a choice of bases 5* = 17;*; € MSE(N,K)*[f] as in definition 111.2.8 and then
use the unique yg~ € M(f)g such that (y5",n™) = bg(lfk) to define y := yé((fl)(fl)n ® (bg(l))g’" ® bé( €

(M(f)()(*)(n))g as a basis of the Betti side. It is thus not necessary to take the n* dual to each other, but this
will later simplify our notation, so we use this choice.
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is the image of f under the inclusion S (X(N),K) — ]ZWdR ® K coming from the Hodge
filtration, so we denote this image by f. Now let p € A,deR ® C be the image of 7° € M(f)s
under the comparison isomorphism. Since the comparison isomorphism identifies the
pairings (-, -)4r and (-, -)g (see proposition 11.8.3), (*) is equivalent to

P, WNSf)ar = (Zﬂi)l_kaoo(f’ n°) - bgl_k).

This means that the image of p in gr® M(f)ar is (271) ¥ Ew(f, 7°)%.
Altogether, we see that the isomorphism

MEPI NS ==t m
mapsy =n°® (bl?(l))@g” ® by to
(27 Eaal(f, 1°)80) ® (271 b V)" @ (G(x*) b))

This completes the proof. (]

4.3. p-adic periods

We now use again the setup for Hida families as described in situation 111.3.11 and the
notations introduced at the beginning of section 111.3. For our fixed finite extension L of Q,,
we let K be the number field Q N L and p the place of K such that L = K,,. Further we fix a
Hida family F € $°"4(Np®™, I') which is new.

Throughout this section, we assume that condition 111.4.5 is satisfied.

Let pr: Gq —— Autz(7) be the big Galois representation attached to F from theo-
rem 111.3.18. By corollary 111.3.20, it is a family of motives satisfying the strong Dabrowski-
Panchishkin condition. Hence conjecture 1.3.42 should apply to it.° To look closer at this
conjecture, we need an isomorphism f as in section 1.3.7.1. We can say something meaningful
about p-adic periods only if we can choose this ff in a “more or less canonical” way, for which
we will need an extra condition which we now explain. Let 7° be as in theorem 111.3.18.

Lemma 4.2: Consider the following conditions.
(i) For some choice of an I -basis of T the image of pr contains SLy(T).
(ii) For any choice of an I -basis of T the image of pr contains SLy(T).
(iii) There exists o € im pp C Autz(7) such that o(T+) = 7°.
Then (i) and (ii) are equivalent and they imply (iii).

Proof: That (i) and (ii) are equivalent is obvious. To see that they imply (iii), we choose a sub-
module 77 C 7 complementary to 7 ° and isomorphisms b;: 7+ =~ 7%and by: 7~ ——

77, which gives us an automorphism by ® by of T =T+ @7~ =7 °@® 7. Write u € I* for
the determinant of b; ® b, and change one of b; or b, by ™. Then the determinant using the
new choices will be 1 and the resulting automorphism ¢ lies in the image of pr. (]

The above conditions allow us to perform the following trick, which is inspired from
[Hidge, §3.3]-

6 More precisely, the family should be Tate-twisted once so that its motives become critical.
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Chapter IV. Periods and p-adic L-functions

Proposition 4.3: If the condition from lemma 4.2 (iii) holds, then after possibly changing the
complex embedding 1o,, we can assume that T+ = 7.

Proof: Let @ := b; @ by € Autz(7) be as in lemma 4.2 (iii). Then the elements of 7° remain
fixed under @' pp(Frobe,)®. Take a 7 € Gq such that pp(r) = . Then if we replace i by

leo 0T, the complex conjugation with respect to the new pair of embeddings is ® ! pr(Frobe,)®,
so that then 7+ = 779, O

From now on we assume that the following holds, which can be achieved under any of
the conditions from lemma 4.2.
Condition 4.4: The embeddings (i, 1,) are chosen such that 7+ = 7°.

Remark 4.5: Condition 4.4 seems to be a moderate condition. As explained in proposi-
tion 4.3 and lemma 4.2, we are safe if the image of pr contains SL,. There are results on
when this happens: in [MW86, §10] Mazur and Wiles show that if O = Z,,, I = A" and
the image of the residual representation contains SL;, then so does the image of pr. There
is work by J. Lang [Lan16] that can be used to extend this to more general 7 and to relax
the condition on the residual representation. Hence there are quite some cases in which we
know that the validity of condition 4.4 can be achieved.

Note that by reducing modulo ¢ € X this implies that M(F;;ew); = M(F;ew)g for any ¢,
where M(F;ew)g is the G, -stable subspace in /\/((F;ew))D from theorem 11.5.15 (a).

Now fix D € IN with p { D and let Fo, := Q(ppp~), which is then a Galois extension of Q
satisfying the requirements in section 1.3.7.1. We assume that O contains the D-th roots of
unity. Let further G := Gal(F/Q), A := T[[G]. Define T := A®; 7 and T° = A®7 7°,
similarly as we did in section 1.3.7.1, and let T(1) := T ®q, Q,(1), T(1) == T° ®q, Qp(1) =
T(1)P*. We have to choose an isomorphisms of A-modules

B: T(1)" —— T(1)°".
Since we have
T =(A® T ® Q,(1)*
I Q
=(ATeT” & Q1) ® (A" e7" e Q1)
and
T = T°(1) = (A T° ® Qy(1))
I Q
= (A*cj@‘i’og; Q,(1) & (A~ §>T° g; Qp(1)),
we see that any choice of an isomorphism of 7-modules
Po: TH—"5T"

gives us an isomorphism f as above (recall that 7+ = 7).

We now replace the abstract family of motives 7 by the 7-module IMS$°"(Np*, I )[F].
By corollary 111.4.19 it is isomorphic to 7" as a Gq-representation, so we can assume without
loss of generality that 7 is of this concrete form.
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Situation 4.6: Here we choose some elements that should be fixed for the following. We
have already fixed D € IN with p { N and defined G = Gal(Q(pp,~/Q). We choose T -
bases Z* of ]MS(’rd(Np‘x’, TI)*[F] as in section 111.4.4. Having done so, we define f, as the
isomorphism

MS4(Np™, T) [F] —— MS™(Np™, I)7[F]

that sends 2 to =~ and write
B: T(1)* —— T()"*

for the isomorphism induced by it. For each ¢ € X of type (k,¢,r) we fix bases 17; €
MSi(Np", Og)*[Fg] and nz’new € MSk(Npr,OK)i[FgeW]. We assume that ry;—; = nz,new
whenever Fy = F;‘ew and that t];—; and ;7; new aT€ connected via refinement as at the end of
section 4.2 — more precisely that Ref, (17(}*S new) = quﬁ’ where « is the unique unit root of the
p-th Hecke polynomial of F;ew (see definition 11.5.16) and Ref, is as in proposition 111.2.10 ().

Moreover we assume that they are dual to each other under the pairing (-, -)5, as in section 4.1.
Finally we choose &y, 4 € Sk(X(Np”),K)" such that 50,¢(wNer£ew) = las in section 4.1 to

obtain bases of gr’ M(F;ew)dR.

Definition 4.7: (a) Let ¢ € X be of type (k, ,7) and let P = Py. Reducing fy modulo P
gives an isomorphism

Bug: M3 © L= MER™)] = T3 == 77 = M)y = M5 @ L.

The elements ’7; Hew A€ bases of M(F;ew)§, respectively. Define

-1
Clog)=( . det  fog) el
nqﬁ, new’ ’7¢, new

(b) Let ¥=* be the images of Z* under the I -adic Eichler-Shimura map
IM:Sord(Npoo’I) Sord(Npoo,I)

from theorem 111.5.11. Since this map is Hecke equivariant, we have in fact ¥* €
$ord(Np™, T)[F]. Since the latter space is free of rank 1 over 7 and F is a basis, there
are unique U* € 7 such that

¥* = U*F. (4.1)

For ¢ € %, write U; € O for the reduction of U* modulo P.

Lemma 4.8: Under our choices, we have

Ex(E".15) = ClPo.)E(E . 1).
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Chapter IV. Periods and p-adic L-functions

Proof: Recall that 8, was defined as
MS4(Np*™, I)*[F] == MS"(Np™,I)7[F], B — = .
By theorem 111.4.10 (c) the reduction of this map modulo P
MSY(Np", O)F[Fy] —— MSYU(Np", O)[Fy]

sends E;; to Eg, where E; denotes the images of Z* in MSZ‘d(Npr, O)*[Fg]. By defini-

tion 111.4.14 we have E;—'S = &Ep(EY, ry;—;)q;. Thus by definition of C(f,,4) it follows

NG
RAXERT)

(in the case where Fy # F;ew we have to take the refinement maps into account, but by our

choices of 77; ey, and ry(}i5 the relation still holds). O

Before we compute the p-adic period, we prove the following important result about the
constants U™*.

Theorem 4.9: We have U™ = 0, while U~ € I*. In particular, Uy, € O* foreach ¢ € 3.

Proof: By theorem 111.3.18 (b) the representation 7 is an unramified direct summand of 7,
and since the whole representation 7~ is ramified at p, we must have 7° = 7% for dimension
reasons. Since we further assumed that 7° = 7+ and 7" = IMS*4(Np™, ), we conclude
that M$™4(Np®, T)» = MS4(Np*™, I)*.

By theorem 111.5.11 (b) the kernel of the 7 -adic Eichler-Shimura map is IMS"(Np®™, 1),
so it follows immediately from the definition of U* that U* = 0.

On the other hand, fix ¢ € X. By a similar reasoning as above, it follows from theo-
rem 11.5.15 (a) that MSg(Np”, O)*[Fy4] = MS(Np", O)[F¢]IP. We now use that the morphism
MS°4(Np™, T)*[F] — Mszrd(Npr, O)*[F4] is Gg-equivariant by theorem 111.4.18. This
tells us that Eq; is not fixed under the inertia group I, (note that we have E; # 0 by
proposition 111.4.15). Further it implies that the kernel of the map MSZ‘d(N p", O)[Fy] —
Szrd(Xl(Np’), O)[Fg] contains MSi(Np", (9)[F¢]IP, hence it equals MSg(Np, (9)[F¢]IP, again
for dimension reasons. Therefore we get ‘I’(; # 0 (with ¥* as in definition 4.7 (b) and ‘I’; the
reduction modulo Py) and thus U; # 0.

So U™ € I defines a global section on Spec I that does not vanish at any point Py € 3.
Since ¥ is Zariski dense in Spec Z (since it is Zariski dense in Spec I (@p) and Spec 7 is
2-dimensional) and supports of sections are closed by [Stacks, Tag o1auU], U~ is a nowhere
vanishing section, hence U~ is a unit. ]

We can now compute the p-adic period.

Theorem 4.10: Assume that conditions I11.4.5 and 4.4 are satisfied. Fix ¢ € % of type (k, €,1),
an integer n with1 < n < k and a Dirichlet character y of conductor Dp™ which we write as a
product Y = Ynr xp With ynr of conductor D and y,, of conductor p™. The choices ofry;—; and 8,4

determine bases y4 and & ofM(F;eW)()(*)(n)g resp. tM(Ff/;eW)(X*)(n) as in section 4.1. Let a;, ¢
be the unit root of the p-th Hecke eigenvalue ongeW ands = —y(-1)(-D)".
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Then we have for the p-adic period

e )
qu)(nr(P)mG(Xp)G(X*)

Qu P MR ) m) = -

Proof: We first assume that ¢ is such that Fy is a newform, i.e. Fy = F;e“’. Consider the
commutative diagram

Np" CP¢st Np” Nop" ~
Bgr® Pk(WB+ —— BRr® pk(W; —— Bgr® pk(Wj? E—

Np” CPgt Np” Np” ~
BiRr® pkWB —— BRr® ”k"Wp —— BRr® pk(Wp E—

(42)
N r
Bgr ® gr’ P War

~ , N Np”
. BdR ®DdR (Npk(ng)) BN BdR ® ( DdR( kWp) ) CPdr

fil'Dge (VW) | T

CPdj

— . Bgr ® Dar (NPIZ(WP) —— By ® Dagr (NP,:WP) . BdR®NP,:WdR.

On the spaces in the lower row, we have the pairings (-, -), with ? being “B”, “dR” and “p”,
see equations (11.8.1), (11.8.3) and (11.8.4), and all the maps in the lower row respect these
pairings. Recall from proposition 11.8.3 the concrete meaning of the latter statement.

We denote the images of elements of Bgr ®q Np ;(WB in Bgr ®q, Np ;"Wp by the same
symbol, by abuse of notation. If we reduce (4.1) modulo ¢ we get U;F¢ = ‘I’;, where ‘I’;
denotes the reduction of ¥* modulo ¢. Using theorem 111.5.11 and the definition of the
p-adic error term (definition 111.4.14), this means that the p-adic comparison isomorphism
(see theorem 11.6.9)

NP, & Cp= Hy(Y(Np') X Q- Sym* 2 R'£.Z,) ®Cp
P P
SKX(NP'). €)1~ K) & HX(Np). 0% §,) 8 €y

—— SE(X(ND"), Cp)(1 — k) = gr* NP Wi ® Cp(1-k)

maps Ep(E*, iyz)ry;—; ——Fy ® U;téik, where we identify C,(1 - k) with C,, - té;{k C Bgr.?
Let p* € Br®q Np;"WdR be the images of ry;—; € Bgr ®KM(F;eW)B C Bqr ®q NPIZWB

under the map in the lower row in diagram (4.2). We know by definition of 17;—'S that

—F ¥\ k-1_F —F ¥\ k- 1-k
<’7;’WNp’gn(E 9’7¢)t§R1’7¢>P = &p(E ”7¢)t§Rl'b1?( .

7 Recall that we ignored the Galois actions on the various modules in theorem 111.5.11. We use tgg as a basis of

Cp(1) to identify Cp(1 - k) with Cp. This is where the factor t(liik comes from.
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Hence since the comparison isomorphism respects the pairings (see proposition 11.8.3) and

maps E,(EF, U;)tgilryz — U;F¢ it follows

Ep(ET, 1Y)
(p*  wNprFg)ar = %
¢

This means that the map in the upper row in diagram (4.2) maps

Sp(E‘,n;g)(S
Ny —— U—i 0.9

note that although this latter map is defined over Bgr, our calculations over C, suffice for
seeing this, as explained in remark 1.3.34.
We now look at the following variant of diagram (4.2), which differs only by the extra

map ﬂ(;lqﬁz

-1
Nop” _ CPet No” _ ﬁO,qS Np” Np” ~
Bir ® pkWB % Bgr ® pk(VVp —— BRr® pk(Wp+ —— BRr® pk(WpO _—
-1
Np” CPst Np” 0,¢ Np” Nop" ~
Bgr® pk(WB — BRr® pk(Wp — BR® pk(Wp —— Bgr® pk(Wp e

(4.3)
Y A

~ N r ~
= B (W) B el
k

de r
) TR> Bgr® gro NpdeR

~ Nop”™ Nop" CPdr Np”
— Bgr ® Dgr ( pk(Wp) —— B4gr ® Dar ( pk(Wp) — BRr® pdeR.

Here the maps in the lower row are no longer compatible with the pairings because we
introduced the map 1¢ Anyway, by definition of C(f, ) and our previous calculations, we
know that the map in the upper row in diagram (4.3) maps

CPog)E(E ) &)

Mg ! = 0,6 = — 30,45
Uy Us

where the equality above comes from lemma 4.8.
Now let s = — y(=1)(-=1)". We know

M(Fp)(x "))y = M(Fy)p” ® M(x")p ® K(n)s,
M = 8 MFp)gg ® M(x"ar © K(n)ar,

M(Fg)(x" )y = M(Fy)y* ® M(x")y ® K(n)y,
MES(mT = M(Fy)y ® M(x")y ® K(n)y.
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We have to look at the determinant of the composition

Bax @ M(Fg)(x )(n)j — Bar @M(F)(x )(n);

)B(ﬁ()(*’ n) «
L B oMU,

L By ® Dar(M(Fg)(x ) (n)y")

. B (D OMED N | 600D ME )

CPdr
— Bar OUM(F) () (m)-

~

From our definition of : T(1)* —~ T(1)P? and the proofs of lemmas 1.3.37 and 1.3.38, one
can see that the map

By(x*.n): Bar <§M(F¢); @ M(x"), ® K(n), — Bar §M(F¢)2 ® M(x"), ® K(n),

is the identity if s = —1 and is [30_ 1¢ (tensored with the identity) if s = +1. We omit the details
of the verification of this. Hence the above composition is the tensor product of the upper
row of the diagram (4.2) or (4.3) with the comparison isomorphisms for the motives M(y*)
and Q(n), according to s = —1 or s = +1. Therefore (see facts 1.3.6 and 1.3.8) this composition
maps

8}) ES’ U;)
Us

Yo = ’7;(—1)(—1) ® (b]?(l))®n ® b]}g{ |

m) o (1t2?) " & (a8,

The claim now follows from proposition 1.3.33 and lemmas 2.4 and 2.5, which completes the
proof in the case where Fy is a newform.
In the case where Fj is not a newform (then automatically of level Np), we replace diagram

(4.2) by

CPét

Bar ® YW Bar ® YW Bar ® W) ———
/
i B o iy ———— B My
| |
Bar ® Y Wh —— B ® YW, —— Bp oMW, ——
/
Bar ® " PWs De Bar ® " FW, B ® P W,
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Bgr ® Dgr(Y W) Bar ® gr’ \War

Dar(YWp) CPar
Br ® (ﬁl1 Dar(NW,)

N
Bar ® Dgr(" ¢ W) ———— B ®

|

——|—— Bar ® Dar(YW)) Bgr ® Dar(YW,) —— | —— Bar ® Y War

> s

N, N, N,
Bar ® Dar(" W) === Bar ® Dar(" W) Bir® Wir

NpW
( Dar("  Wp) ) BdR®gr0 Ni(WdR

fil' Dgr (VW)

where the maps from the back layer to the front layer are induced from the motivic refinement
morphism Ref g : JZ‘VV ®qg K — N‘Z‘W ®q K from corollary 11.7.7, and similarly also for
diagram (4.3) (we omit drawing this). Here the front and back faces are just the diagrams
from before, which clearly commute, and the top and bottom faces as well as the vertical
ones commute since they come from a morphism of motives. By our choices of ryz and ry(}i5

, NEW
and the commutativity, it does not matter if we take the determinant in the front or back
layer, and by a similar reasoning as before we obtain the result also in this case. ]

5. p-adic L-functions with motivic periods for Hida families

In this final section we put everything together. We keep situation m1.3.11, so let L, O =
O and I be as before, let K be the number field @ N L and p the place of K such that
L = K,, and fix a new Hida family F € $°"%(Np™, I'). Further let any choices of any basis
elements and so on be as before in section 4.3, especially situation 4.6. We continue to
assume that conditions 111.4.5 and 4.4 are satisfied. Further fix D € IN prime to p and let

G = Gal(Q(upy~)/Q).

Before we begin we prove an easy lemma.

Lemma 5.1: Let R be a profinite ring and A C Z. any subset. For each finite order character y
of G and anyn € A let a, , € R be given. Then the following are equivalent:

(i) There exists an element u € R[[G] such that for any y and n as above
*. .n _
/ X Kcycd/l = ap, y-
G
(ii) For eachl € Z there exists an element y; € R[G]| such that for any y andn as above
/ X*Kgy-;ldﬂl =dn,x-
G
(iii) For eachl € Z there exists an element pj € R[G]| such that for any y and n as above
/ )(Ki;,cndp; =Gy, y.
G

If any of the above elements p, yi; or p; is a unit, then the other ones are also units.
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5. p-adic L-functions with motivic periods for Hida families

Proof: Assume that (i) holds. Let ®;: R[G]] — R[G] be the endomorphism induced by
G— (R[G])*, g +—— Kcyc(g)g Then the diagram

R[G] —— RIG]]

\ /* n+l
cyc cyc

commutes and therefore y; := ®;(u) satisfies the required property from (ii). This shows the
equivalence of (i) and (ii) since the other implication is trivial.

The equivalence of (ii) and (iii) can be shown by a similar argument using the endomor-
phism of R[G]| induced by the inversion endomorphism g —— ¢! of G and the equivalence
of (i) and (ii).

The final statement about units is clear. O

5.1. The explicit form of the conjectural interpolation formula

We have now computed all the expressions that occur in the conjectural interpolation
formula by Fukaya and Kato. The general formula was given in conjecture 1.3.42. We use our
computations of the periods in theorems 4.1 and 4.10 and the local factor in lemma 2.2 as
well as corollary 111.2.11. Inserting all this into the general formula, the conjectural value of

the p-adic L-function evaluated at (¢, yxy¢) becomes

= (n =D = oz ()" )1 = oy ey~ *(p)p* ")
Db G (ETy)
7)™ KU e (P)G(p)Eo (Fi 75

L(Fgew ® y,n). (5.1)

Here ¢ € X is of type (k, ¢,7), y is a primitive Dirichlet character of conductor Dp™ with
m>0andptD,1<n<k-1lands=—y(-1)(-1)"

We want to express this using the naively twisted L-function L(F;"W, X, n) instead of
L(F2*V ® y,n). In proposition 1.7 we described the relation between these two twisted
L-functions, which is given by

LFS™ @ yom) = LIES™, yom) - [ | PeMEF™) (), €7,
C\(Np”',Dp™)

where r’ below the product sign should mean either r or 0, depending on whether Fy = Fgew

or not (so that Np” is the level of F;ew). In the product, the prime ¢ can be our fixed prime p
if and only if ¥’ > 0 and m > 0, and by lemma 1.8 the corresponding factor then equals

Py MR (). p ™) = (1 - a5 xeya k(p)pt 7).

This factor is nontrivial if and only if the p-parts of y and ei/w™* are inverse to each other
(and nontrivial, since m > 0 and y is primitive).® By remark 2.3, the cases in which we have

—~

8 The case that n = k — 1 and ag = xeyw*(p) cannot occur, see corollary 2.6 (2) (and its proof).
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Chapter IV. Periods and p-adic L-functions

a nontrivial Euler factor at p are therefore precisely the cases in which

(1 - a5 yepo k(PP % (1 a yeyo K (p)pt ),

and in these cases the first expression (coming from the local correction factor in the in-
terpolation formula) just cancels the Euler factor at p and the second expression is 1. This
discussion shows that

(1= ay' yeyo ™ (PP " HLFS™ ® xon) =

(1= oz ey I LR o) [ ] PeMEF)(x), €

C\(Np”',Dp™)
t#p

in each case. To simplify the formulas below, we set

EER(FS™, yon) = | | PeMEF) (), €
(|(N,D)

(where “EEF” stands for “extra Euler factors”). In conclusion, the value of the conjectural

p-adic L-function at (¢, ykye) from (5.1) becomes

= (n = DI = ay " ()" )1 = &y yeyo  (p)p* ") EEF(EL™, x, n)
. %" E(E 1)
(@7 ™ kU xor ()G xp) Eco(Fiso 1)

L(F;ew, X, n).

We now take Kitagawa’s p-adic L-function for F, whose construction is recalled in ap-
pendix B. In the appendix, we worked with measures on Z7 |, but we can identify Z;, I
with G via class field theory. Then the map which was denoted x in appendix B becomes
Keye- SO we can copy the interpolation formula from corollary B.2.2. However we change
the evaluation point to make it the same as Fukaya-Kato’s one, which we can do thanks to
lemma 5.1.

Therefore we have an element ,uft € I [G] whose interpolation behaviour is

¢(/Z

p.D

xx‘"duF) = (- D1 - &gy (" )1 - a3 xeyo ™ (p)p )

Dn_lpm(n_l)G()(*)Sp(Ei, ’7;)
0(;”(27Ti)"+1_k800(F¢, I]Zs)

L(F;ew, X, 1),

with ¢, y, n and s as above.
Let us calculate the quotient of these two interpolation formulas to see what the difference
is. In the calculation below, we use two classical relations for Gaufl sums:

@) G(xp)G(xp) = xp(=1)p™, see [Miy89, Lem. 3.1.1 (2)],

(b) G(x™) = xp(D)xne(P™)G(x;)G(Xny): see [Miy89, Lem. 3.1.2].
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5. p-adic L-functions with motivic periods for Hida families

So if we divide Kitagawa’s value by Fukaya-Kato’s value (at (¢, yxcy¢), respectively), we get
Kitagawa’s value U, D "IpTMGO)GO) Xar ()™
Fukaya-Kato’s value EEF(F;eW, X, n)

Uy D" p™" xp (D) xae(0)™ GOt )Gt ) Gt X ()™

= EEF(F;eW, ) (5.2)

Xp(=DU; D"y (D)G( )
T EEF(F3, X, n)

We discuss now how to interpolate (most of) the expressions in this quotient.

5.2. Interpolation of the Euler factors away from p

We explain how to interpolate the Euler factors occurring in EEF(F;‘eW, x»n). Fix a prime
¢ | D (so in particular ¢ # p) and write D = ¢”D’ with € 1 D’. We assume that O is large
enough to contain the values of all characters (Z/¢")* — @; If H is a profinite group,

we write [-] for the canonical map H — I [[H[*.
We use the map

¥ @ TNZ ol — T1Z5 1l = TIZ 2/ )],
7 Char. of
(Z/evy*

Ay — >, D m(@hylal,

ae(Z/evy 1

where 7 runs over all characters (Z/¢")* —— O*.

Lemma 5.2: Let 7: Z;D —— I be a character which we write as a product t = 7,7’ of

characters of (Z./€")* and Z;’D,, respectively. Then for all A = (4,), € EBU I[Z;’D,]] we have

/ 7 d¥() = (L") / ' dy,,
ZXD ZP’D;

P,
where ¢ is Euler’s totient function, i.e. p(£¥) = €V71(€ - 1).
Proof: We have

./Z;’DT d¥(2) = /Z ;’DT d (Za: Zq: (a) ﬂn[a])
= Za: an n ' (a)e(a) /ZX ' dh,

p.D’

= ; (; ”—l(a)rg(a)) ‘/Z;,D,Tl dA,,.

Therefore the claim follows from the orthogonality relation for characters

-1 _ e(t") ifn=r1e,
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Chapter IV. Periods and p-adic L-functions

For a character ny: (Z/")* —— O* we define
8y, = ¥(0,...,0,[£],0,...,0) € I[[Zlf’D]], (5.3)

with (0,...,0,[¢],0,...,0) € EB;; I[[Z;’D,]] having its non-zero entry in the ny-component.
The following then follows immediately from the above lemma.

Corollary 5.3: With the above notation, we have

/ a5 _{fpm)rm if 7o = o,

o if te # no.

We now use this to interpolate Euler factors of Hida families away from p. We identify
G = Gal(Q(upp=)/Q) with Z;, p to make the notation clearer. Note that then 7*(Frob,) =
7(€) if 7 is a character of G of conductor prime to £.

We insert at this point a brief summary of some facts from the theory of automorphic
representations, which we will need to formulate the next theorem.

Theorem 5.4: Let A denote the ring of adeles of Q.

(a) For each newform f € Si(X1(N), C) there is a canonical attached automorphic repre-
sentation y of GLy(A\). (The property by which this representation is characterised is
given in part (d) below.)

(b) Each automorphic representation = of GL,(A) is in a unique way a restricted tensor
product = = X)!, 7., of irreducible admissible representations of GL2(Qy) for all places

v of Q.

(c) The isomorphism types of irreducible admissible representations of GL,(Q¢) for a prime
¢ can be described by the following disjoint classes:

PRINCIPLE SERIES REPRESENTATIONS These are parametrised as follows: For each pair
of characters i, n2: QF —— C* such that nin," # ||, || ™" there is a representa-
tion B(n1,n2) and B(m1,n2) = B(ny,m3) if and only if {m. n2} = {1y, 15}

SPECIAL REPRESENTATIONS These are parametrised as follows: For each character n:

Qj —— C* there is a representation n St, and two of these are isomorphic if and
only if the characters are the same.

SUPERCUSPIDAL REPRESENTATIONS These can also be classified, but this will not be

important here.

(d) For an automorphic representation i with local components r,,, define Euler factors for
each prime € as follows:

(1) L(re,s) = (1 — oyp™>) Y1 — app™®)7Y, if m¢ = B(n1,12) is a principle series

representation, where a; == n;(p) if 17i|Z; is trivial and a; = 0 otherwise;?

(2) L(mg,s) == (1= pp=s*V2) "V if mp = ySt, is special, where f = n(p) if nlz is

trivial and = 0 otherwise;

9 The character n; of Q}f is called unramified if it is trivial on Z?. In fact, @; is defined as the value of ; at a
uniformis, and one needs unramifiedness in order for this to be well-defined.
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5. p-adic L-functions with motivic periods for Hida families

(3) L(me,s) = 1if me is supercuspidal.
Define the L-function of 7 as

L(x,s) = l_[L(ng,s) (s € Q).
4

Then L(f',s) = L(r,s — %)for each newform f € Si(X1(N), C).

(e) For each automorphic representation w of GL,(A) and each Dirichlet character y, one
can twist & by y to obtain another automorphic representation = ® y of GLy(A). We
have

TR Y = Nfgy-
The local automorphic types are stable under twisting, i. e. if wp is a principle series

representation (resp. a special representation, resp. supercuspidal), then so is (1 ® x)e¢,
for any prime £.

Proof: All this is well-known, so we only briefly indicate references. To be precise, the term
“automorphic representation of GLy(A\)” here means an irreducible admissible representation
of GLy(A) that is a subquotient of the space of [?-automorphic forms, see [Bumg?, p. 300].

For (a), a description of how to obtain the automorphic representation 7y from f is given
in [Bumg7, beg. of §3.6, esp. Thm. 3.6.1]. Statement (b) is the tensor product theorem from
the theory of automorphic representations, see [Bumg7, Thm. 3.3.3]. For the definition of the
local Euler factors as in (d) see [Bumg7, p. 516/517], [Gel7s, Table on p. 113]. The equality of
the L-functions is proved in [Gel7s, Prop. 6.21].

We are left to prove (c) and (e). The principal series representations B(, 12) are introduced
in [Bumg7, p. 470/471]; see also [Gel7s, §4.2]. They are (in a suitable sense) induced from the

representation of the subgroup of upper triangular matrices given by (¢ %) —— mi(a)na(d).
If mmyt # ||, || ™! they are irreducible; this and the characterisation of when two of them

are isomorphic are shown in [Bumg7, Thm. 4.5.1-3].

Let us explain at this point how to twist an irreducible admissible representation 7 of
GLy(Q¢) by a character y: Qj —— C*: the resulting representation 7 ® y is given by
(x odet) - 7, i.e g€ GLy(Qc) acts as y(det(g))r(g). Using the decomposition Q} = Z x Z7
we can view any Dirichlet character of {-power order as a character of Q7 (trivial on Z) and
thereby also twist by Dirichlet characters.

If ;n,' = || we may write ; = 7 |-|/? and n2 = nl with a unique character
n: Q7 —— C*. The special representation 1 St is then a subspace of B(#y, 2) (which is no
longer irreducible); if 7 is the trivial character then the representation is denoted St, and is
called the Steinberg representation, and in general it equals n ® Sty with the twist as introduced

above (this explains the notation). If myin," = || 7%, then B(#y, 1) is also not irreducible, it
1/2

-1/2

then has a quotient which is again isomorphic to n Sty for n; = |-|_1/ >and 1, = n|-|"/*. For
more details see [Bumg7, p. 482] and [Gelys, §4.2].

For a definition of supercuspidal representations see [Gel7s, Def. 4.20]. That these three
types make up all irreducible admissible representations of GL,(Q¢) and that they are disjoint
is shown in [Gel75, Thm. 4.21]. This completes the proof of (c).

We now explain (e). We can write any Dirichlet character y as a product of characters
xe for all primes ¢ (almost all of which are trivial). Using the decomposition as a restricted

tensor product from (b) and the local twist explained above, we can then define the twist of
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an automorphic representation 7 = (X)), 7, of GL,(A) as the restricted tensor product of
7e ® ye for all primes €, and with the archimedean part unchanged.

From the definitions of principal series and special representations and the twist, it is easy
to see that B(n1,72) ® y = B(m1x, n2)x) and Sty ® y = ny Ste. This shows that the classes of
principal series and special representations are stable under twisting, respectively. It follows
from the classification that the class of supercuspidal representations must therefore also be
stable under twisting.

We are left to show that 7y ® y = 77g, for a newform f € Sp(Xi(N),C). By the
Multiplicity One Theorem for automorphic representations [Bumg7, Thm. 3.3.6] it suffices
to show that 77, ® y¢ = 7rg,,¢ for all primes £ { N cond y. For automorphic forms there
is a notion of a conductor, which in our case is an ideal in Z, and the conductor of 7r is N.
From the explicit description of the conductors of the local components in [Gel7s, (4.20), p.
73] we see that 7y , must be a principal series representations for these primes ¢, and the
characters 7y, 7, are trivial on Z7. Hence they are uniquely determined by their values at
p, whence by their Euler factor L(zf, ¢, s). It therefore suffices to show the equality of Euler
factors L(n7, ¢ ® x¢,s) = L(nrgy, ¢, 5). But this is clear from the definition of the twist and
part (d). O

The Euler factors we want to interpolate are described by the following theorem. Here

the character [ky]: Gg, —— I means the composition

. Keye 7 7. =W ['] wtyX X
[Keyel: Gg, — , —>1+p p =" — (A" — I".

Theorem 5.5: Let F be a new Hida family as before.

(a) The automorphic types of F are rigid in the following sense: For any prime q, if Fp, for
somePy € X jlrith is of a certain automorphic type (principal series, special, supercuspidal)
at q, then Fp is of that automorphic type at q for any P € X}rith. We then say that F is
of that automorphic type at q.

(b) Let € | N be a prime. Then the restriction to Gq, of the big Galois representation pr
attached to F can be described as follows:

(i) IfF is in the principal series at £, then

1/2 — — 1/2 —
prog, = afictilkeye] ™ © a7 Epke[Keye 2

witha: Gq, — I unramified and &, &: Gg, —— O of finite order.
(ii) If F is special at £, then

~ §Kcyc [Kcyc]_l/2 *
price, = £l

witha: Gq, —— I unramified and & : Gg, —— O of finite order.
(iii) If F is supercuspidal at £, then
pFlGQ[ =po® [Kcyc]_l/z

with po: Gg, — GL2(O) an irreducible Artin representation.

206



5. p-adic L-functions with motivic periods for Hida families

Proof: See [Hsi17, §3.2] and the references given there. O

We now fix an unramified character a: Gg, — 7%, a character ¢£: Gg, — O™ of
finite order and further i, j € %Z. As & is of finite order, it factors through Gal(Q,(pa)/Qp)
for some M € IN and we can write it as a product ¢ = &,£’ as before. Assume that M is
chosen minimally (i.e. M = cond ¢) and let y := ord,M. If v > p we can and do view £ as a
character of Z7 .

Attached to this data we define

o 7 al [Keye (Frobe)ds, € T2 ] ifv > p,
‘u(of, g, l,]) = {0 y & p.D

otherwise

(where &, is as in (5.3)).

Lemma 5.6: For each finite order character y: Z; p— O* which we write as a product
x = xex' and each n € Z. we have

[ 0csdu(a i) = o€ e Frobo)

p.D

Proof: Observe that S?)?*(Frobg) =¢ )(’*(Frobg)év)(;(Frobg) and

1 if & = e,

¢ (Froby) =
&ex;(Froby) {0 2 # 1.

The first case can never occur if v < g = ordy cond &, so the statement is trivial in this
case and we may assume v > . Then the claim follows directly from corollary 5.3 and the
definition of u(«, &, i, j). O

We can now define the measures interpolating the Euler factors of F away from p.

Proposition 5.7: Let { | N be a prime. Define

(p(£") — (o, &, %, —%))((p(f") — (oL, &, %, —%)) if F in the principal series at ¢,
pe(F) = (@(€") = p(1L, €1, =) @(€") = p(1, €,0,-3)) if F special at {,
P(€")? if F supercuspidal at ¢,

where a, &, &, & are as in theorem 5.5 (b). Then for each ¢ € X}mh, each finite order character
X: Z;D —— O* and each n € Z. we have

4Aﬂ@MWﬂ=WWMM@%WWW)

p.D
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Proof: The supercuspidal case is clear by theorem 5.4 (d) and (e) and theorem 5.5 (a). In the
other cases we have
det(1 — Froby, (pFngf Q)" ® KC”YC)If) =

(1- g_n_l/Za[Kcyc]_l/zﬁ((FrObf))(l - f_n_l/za_l[Kcyc]_l/zﬁ*(FrObf))
if F is of principal series type at ¢,

(1= € [ieeye] ™ Ex* (Frobe))(1 = [keye] ™/*Ex* (Frobe))
if F is of special type at ¢

by theorem 5.5 (b). Then lemma 5.6 says that

p(¢")? det(1 ~ Frob, (prlg, ® 1 @ KIL)¥) = / XK dpio(F)
ZX

».D

by definition of the y¢(F). The claim then follows by applying ¢ to both sides, using that

¢(det(1 — Frobe, (prleg, ® X" ® Ké’yc)lf’)) = det(1 — Froby, (pF;ew log, ® X" ® Kfyc)lf)
= PoOMEE™) (")), 0). O

5.3. Finish

To interpolate the remaining factors from the quotient (5.2) we show the following.

Lemma 5.8: Let R be a profinite ring such that D € R* and R contains the D-th roots of unity.
Then there is a unit up € (R[G])* such that for each n € Z and Dirichlet character y of
conductor Dp™ for some m € Ny, which we write as a product y = yn:)p of characters of
conductors D and p™, we have

/ XKegedpip = D" 2 (D)G(xmy)-
G

Proof: Identify G with Z; p- We first define an element of the ring R[(Z /D)*]. For a €
(Z,/|D)* write again [a] for the corresponding element in R[(Z/D)*]. Fix a primitive D-th
root of unity { € R*, set

W= Y [a e € RIZ/DY]

ae(Z/D)*

and define y; as the image of i’ under the canonical map R[(Z/D)*] — RIIZ;’ pll- We claim
that g is a unit. If we define

W= ) lal* € RUZ/DY ]

ae(Z/D)*

then one can show that y’ - u”” = [-1]D, which is a unit in R[(Z/D)*]. This can be seen by a
calculation similar to the one that proves the Gaufy sum relation (a) above, see the proof of
[Shi71, Lem. 3.63]. Hence p is also a unit.

208
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We now define an element y”’ € R[Z;] as p” := [D7']. Obviously p” is a unit, hence so is
its image under the canonical map R[Z;] — R[[Z;’ pll, which we call y;.

We now put pip = pypp. By construction it is then clear that the integrals of yp are as
claimed up to a shift in n, but this can be fixed by applying lemma 5.1. O

We now have all ingredients ready to arrive at our main result. To state it more clearly,
we introduce the following notations for the technical conditions we need.

Condition 5.9: We consider the following conditions on F and primes ¢ | (N, C):

pii-1 (ndy)
F is in the principal series at ¢ and ord, cond ¢; < ord¢D fori = 1,2, or
F is special at ¢ and ord, cond ¢ < ordy D, or (trivy)

F is supercuspidal at ¢

Here, ¢, &, &, are as in theorem 5.5 (b).

If (nd¢) holds for £, then ¢(£¥) is a unit in O. If (triv,) holds for ¢, then uy(F) = @(£V)?.
This follows directly from the definition of yi,(F).

Theorem 5.10: Fix coefficient rings as in situation 111.3.11, a Hida family F which is new and
basis elements as in situation 4.6. Assume that conditions II1.4.5 and 4.4 hold.

(a) There exists a p-adic L-function yl;K € A[%] = Qp ®z, I[[G] such that for each ¢ € 3
of type (k, e, 1), each primitive Dirichlet character y of conductor Dp™ for some m > 0
and each1 < n < k — 1 the evaluation

¢ ( / XKEy'éduEK)
G

is the value predicted by conjecture 1.3.42 up to a factor y,(-1).

(b) If we assume in addition that for each prime { | (N, D) at least one of (ndy) and
(trive) holds, then ,ugK € A. In this case the ideals generated by ,uf,K and ,uEit differ by

[Ty, ) pe(F).

(c) Assume that for each prime € | (N, D) both (ndy) and (trive) hold. Then ,uf,K and ,u?t
generate the same ideal in I [G]).

Proof: We just define
HE pe(F)
U™ pp (L

HE ==
¢|(N,C
where up is as in lemma 5.8, pip(F) are as in proposition 5.7 and vy = ordy D. This is an
element of A if (nd¢) or (trive) holds for each ¢ | (N, D) and of Q) ®z, A otherwise. The
claims follow from our calculation (5.2) of the quotient of the two values, proposition 5.7
about the Euler factors at the primes ¢, lemma 5.8 about the remaining expressions and the

fact that Uq; comes by definition from an element U~ € 7™ which is a unit by theorem 4.9.[]

We close with some remarks about our result.
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Remark 5.11: (a) The conditions in theorem 5.10 that (nd¢) or (trivy) or even both of
them hold for all £ | (N, D) are the most general ones we could get for these results
to hold, but of course they are bit ugly. Each of the following conditions implies
them:

(1) F is supercuspidal at all primes dividing (N, D),
(2) F is supercuspidal at all primes dividing N,
(3) (N,D) =1,
(4) N
(5) D

(b) Note that by corollary 2.6 the evaluation points we use are appropriate pairs, apart
from two exceptional cases; but even in these cases the statement in theorem 5.10 (a)
is true (although not predicted by conjecture 1.3.42) — it then holds trivially since
both values vanish.

(c) In theorem 5.10 (a) we need the Dirichlet character y to be primitive, i.e. its “D-
part” away from p must be primitive. This is because the interpolation formula
in Kitagawa’s construction is known to hold only in this case. Of course we can
perform the construction for each D, but there does not seem to be an easy relation
between the measures obtained for different D, see [MTT86, “Warning” on p. 19].
Conjecture 1.3.42 predicts a similar interpolation behaviour also for imprimitive
characters, but we do not know how to prove this. Of course this problem disappears
ifwesetD = 1.

Remark 5.12: At a first glance, the fact that ,uKlt and ,u X do not always generate the same

ideal looks problematic with regard to the Main Conjecture, but in fact this is consistent.
Since this work focuses on the analytic side of Iwasawa Theory, we do not go into detail
here, but let us sketch the reason.

Let X be a finite set of places of @ not containing p. Then one can consider X-primitive
p-adic L-functions, which should satisfy similar interpolation properties as above but with
the Euler factors of the complex L-function for the primes in ¥ omitted. In our case, since
we can interpolate the Euler factors away from p by proposition 5.7, we know that such
>-primitive p-adic L-functions exist for any >. For example, Kitagawa’s p-adic L-function is
such a Y-primitive one for ¥ being the set of primes dividing (N, D).

On the algebraic side, the Iwasawa modules one considers are (duals of) Selmer groups.
We omit defining these in detail, we just state that they are subgroups of an H! in continuous
Galois cohomology whose elements satisfy certain local conditions, similar as H;(Q, -)in
section 1.2.7. As on the analytic side, there is also a notion of -primitivity here: we can form
X-primitive Selmer groups by omitting the local conditions for the places in .

Obviously, the usual Selmer group (the one with ¥ = @) is then contained in the X-
primitive one for any nonempty X, and the cokernel can be described in terms of the local
conditions at the primes in 2. In accordance with the analytic side, the characteristic ideal of
this cokernel is generated by a product of elements interpolating the Euler factors at primes
in 3. See [GVoo, §2, esp. Prop. 2.4, Cor. 2.3] for these facts and for a treatment of Z-primitive
Selmer groups.



6. Outlook: Overconvergent families and further generalisations

In their proof of the Iwasawa Main Conjecture for (certain) modular forms and families,
Skinner and Urban a priori use those 2-primitive objects on both the algebraic and analytic
side for ¥ containing all primes dividing N (among others); using the techniques mentioned
above they deduce from this the Main Conjecture for any set X. See [SU14, §3, esp. §3.6 and
the proof of Thm. 3.29].

In Fukaya’s and Kato’s work, the Selmer group (or rather Selmer complex) which is related
to the p-adic L-function from conjecture 1.3.42 via the Main Conjecture is the usual one
(i.e. 2 = @), as it should be, since the p-adic L-function from conjecture 1.3.42 has all Euler
factors away from p, i. e. it is @-primitive. Hence our result and the fact that ,u?t and ,uI;K
may generate different ideals in A is consistent with the Main Conjecture proved by Skinner
and Urban.

Let us finally remark that Fukaya and Kato also formulate a version of their conjecture
involving ¥-primitive objects. They formulate this in terms of an open subset U of Spec Z
which plays the role of the complement of X. See [FKo6, §4.1.2 resp. §4.2.11] for the def-
initions of the X-primitive resp. @-primitive Selmer complexes and [FKo6, Thm. 4.2.22, case
with “(resp. ...)"] for the conjectural interpolation formula and the Main Conjecture in the
>-primitive case. Since we can interpolate all Euler factors away from p, we can show with
our methods that also these p-adic L-functions exist for any U (of course up to the factor
Xp(=1)), and this is still consistent with the Main Conjecture.

6. Outlook: Overconvergent families and further
generalisations

It should be possible to obtain similar results also for overconvergent families instead of Hida
families. In this final section, we briefly describe this idea.

An important object in the context of overconvergent families is the Coleman-Mazur-
Buzzard eigencurve. The eigencurve of tame level N, where N is an integer prime to p, is
a separated rigid analytic space Cy over Q, which is equidimensional of dimension 1 and
has a canonical flat and locally finite map x: Cy —— ‘Wi to the weight space Wy, which is
the unique rigid analytic space Wy over Q, such that Wx(L) = Hom(Z; x (Z/N)*,L%)
for each complete Q-algebra L. Its points can be interpreted as overconvergent modular
eigenforms, and a dense set of points (the classical points) correspond to classical modular
eigenforms.

The eigencurve was originally introduced by Coleman and Mazur in [CMg8] (there only
of tame level 1). The construction was axiomatised and generalised by Buzzard in [Buzo7],
where he introduced his “eigenvariety machine”. In the original construction, this machine
is fed with spaces of overconvergent modular forms. It was Stevens who realised that these
spaces can be replaced by spaces of overconvergent modular symbols, which are easier to
handle - this is another incarnation of the Eichler-Shimura philosophy. This approach of
defining the eigencurve using Buzzard’s eigenvariety machine and Stevens’s overconvergent
modular symbols was worked out in detail by Bellaiche in [Bel1o]; see [Bel1o, §111.5.1, §1v.1.4,
§1v.3] for proofs of the above statements.

The use of modular symbols instead of modular forms in the construction has several
advantages, one of which is that it gives in a natural way a family of Galois representations.
Let us sketch the idea.

The eigencurve is built out of affinoid pieces which are glued together. These affinoid



Chapter IV. Periods and p-adic L-functions

pieces live over affinoid pieces of the weight space. If Sp A € Wy is an affinoid piece (of
a certain kind), then one builds the affinoid piece of the eigencurve lying over Sp A using
overconvergent modular symbols with coefficients in A, denoted by MSymb(I3(N)NIy(p), Da).
Here D4 is a certain A-linear representation of an appropriate Hecke pair, so this is an
A-module of modular symbols in the sense of definition 111.1.1, and we thus have Hecke
operators. This allows one to cut out the submodule where T}, acts by eigenvalues of valuation
< k - 1, which is denoted MSymb(I3(N) N Ty(p), Da)<*~" (and similarly on other modules).
This submodule has a Hecke eigenalgebra, which we denote by T;k_l, and the affinoid
piece of the eigencurve over Sp A is then Sp Tf‘k—l. We do not define the module D4 here;
in fact there are several different definitions in the literature. The only thing we want
to remark is that if A is a finite extension of Qp, then there is a canonical isomorphism
MSymb(I3(N) N Ty(p), Da)<*"' = MS(N,A)<¥"': this is Stevens’s control theorem. For
proofs and details see [Bel1o, §111.6, Thm. 111.6.36]; see also [Bel11, §3], [AIS15, §3], [Steo4;
Polig; PS13; PS11].%°

Now the modules MSymb(I3(N) N Ty(p), D4)<*~! carry a canonical action of Gq. This
allows us to interpret them (or the coherent sheaf they define on the eigencurve) as an analytic
family of Galois representations in the sense of definition 1.2.27. If we specialise the family to
some point x € Cy corresponding to a classical eigenform f defined over a finite extension
L of Qp, then the stalk at this point is the base change of MSymb(I3(N) N Iy(p), D )k Tto L,
and by Stevens’s control theorem and proposition 111.4.16, it is canonically isomorphic to the
Galois representation attached to fy, i. e. to the p-adic realisation of the motive M(fy). Hence
we get a family of motives in the sense of definition 1.3.35, where ¥ is the set of classical
points on Cy lying over Sp A.

By theorem 11.5.17, each motive in this family satisfies the weak Dabrowski-Panchishkin
condition. It seems therefore reasonable to expect that the whole family satisfies the weak
Dabrowski-Panchishkin condition (see condition 1.3.36 (b)). A result in this direction was
proved by Kedlaya, Pottharst and Xiao [KPX14]: they show that the family is globally
trianguline (after going to a desingularisation of the eigenvariety); the weak Dabrowski-
Panchishkin condition should follow from this similarly as in theorem 11.5.17. Moreover it
seems reasonable to conjecture the existence of a p-adic L-function for the whole family
similar to conjecture 1.3.42. Some evidence for this is provided by [Zae17], which generalises
the work of Fukaya and Kato to the case of a single motive satisfying only the weak Dabrowski-
Panchishkin condition.

There is a construction of a candidate for such a p-adic L-function by Bellaiche. His result
[Bel11, Thm. 3] is cited below. It uses the concept of a decent newform, whose definition we
do not repeat here, see [Bel11, Def. 1]. As explained there, this condition is rather mild. Let
us remark that the eigencurve is smooth at all points corresponding to such forms by [Bel11,
Thm. 4], so locally around such points the Galois representation is trianguline by the above
result of Kedlaya, Pottharst and Xiao.

Theorem 6.1 (Bellaiche): Let x € Cy be a point on the eigencurve corresponding to a decent
refined newform. Then there is an affinoid neighbourhood V. C Cn of x and a two-variable
p-adic L-function L,, defined on V X Hom(Gey., C}) interpolating the one-variable p-adic L-
functions in the following sense: for each y € V corresponding to a refined newform f there
exists a constant ¢, # 0 such thatL,(y,-) = cyL,(f,-), where L,(f, ) is the one-variable p-adic

10 Note that in these texts the symmetric tensor representation used to define modular symbols is introduced in
terms of inhomogeneous polynomials as in lemma A.1.2 (b).



6. Outlook: Overconvergent families and further generalisations

L-function for f. The constant c, depends on y, but not on the second variable.

The constant ¢, from the above theorem is of a non-canonical nature and may thus
be called an error term. In this aspect Bellaiche’s result is very similar to Kitagawa’s: his
function does interpolate the one-variable functions, but there is an error term depending on
a non-canonical choice. In fact, the whole construction is somewhat similar to Kitagawa’s,
it replaces Kitagawa’s 7 -adic modular symbols by overconvergent ones. In particular the
definition of Bellaiche’s error term (see [Bel11, Prop. 4.14, Def. 4.15]) is similar to Kitagawa’s
definition. Therefore our methods should apply to this case as well.

In order to apply our method and to define a constant U~ similarly as in definition 4.7 (b),
we need to compare overconvergent modular forms and overconvergent modular sym-
bols. We thus need an overconvergent version of the 7 -adic Eichler-Shimura map from
section 111.5.2, which we used to define U™ in the Hida family setting. Such a map was
constructed by Andreatta, Iovita and Stevens in [AIS15]. They proved an overconvergent ana-
logue of theorem 111.5.11 which says in particular that their overconvergent Eichler-Shimura
map does indeed interpolate Faltings’s comparison isomorphisms, see [AIS15, Thm. 1.3].

It should therefore be possible to apply the same methods to define a constant U~ and to
divide Bellaiche’s function by this constant to find a p-adic L-function having an interpolation
behaviour with motivic periods (under an assumption similar to condition 4.4). The details
of this construction remain to be checked.

As further generalisations, it should be possible to apply the same methods to more
general automorphic representations, such as Hilbert modular forms over totally real fields.
For these Carayol [Car86] constructed associated Galois representations and Blasius and
Rogawski [BR93] showed that there is an underlying Grothendieck motive. In the set-
ting of Hida families Dimitrov [Dim13] constructed a two-variable p-adic L-function. For
overconvergent families of Hilbert modular forms Bellaiche’s construction of a two-variable
p-adic L-function was generalised very recently by J. Bergdall and D. Hansen. It is expected
that the construction of the p-adic Eichler-Shimura isomorphism in families extends to this
situation, see e. g. [CHJ17] and unpublished work in progress by A. Betina. There are even
overconvergent Eichler-Shimura isomorphisms in more general settings: The case of Shimura
curves over Q is recent work by D. Barrera and S. Gao [BG17], the case of Shimura curves
over totally real fields was done by the same authors building on Gao’s thesis [Gao16] and the
case of certain unitary Shimura varieties is a work in progress by D. Barrera and R. Brasca.
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Appendix A.

Comparison of conventions in the literature

For many objects introduced in this work there are different conventions to define them in
the literature. In this appendix we list and compare some of them.

1. Symmetric powers and symmetric tensors

As a preliminary for the next section, we collect some facts on symmetric powers and
symmetric tensors. Let n € IN; be fixed for this section.

Definition 1.1: Let R be a commutative ring and M be an R-module. Then the symmetric
group &, acts on the n-th tensor power M®" by permuting the factors. We write TSym} M
for the invariants under this action and Symj, M for the coinvariants. This is clearly functorial
in M. If R is clear from the context, we may omit the subscript “R”.

The functor Sym is compatible with base change in the following sense: If S is an R-algebra,
then we have

(Symp M) % S = Symg(M (}%) S).

For the functor TSym this is wrong in general, but if M is a free R-module the analogous
equality for TSym is true.

There is a canonical map TSymj M —— Symj} M which is obviously injective. If n! is
invertible in R this map is an isomorphism of R-modules (this is well-known; it will also
follow from the proof of lemma 1.3).

We will use this mainly just for the R-module M = R%. The semigroup M;(R) acts on R?
by multiplication from the left, and this induces a (diagonal) action on (R?)®" and thus on
TSym" R* and Sym" R?. The canonical map TSym} M — Sym} M is equivariant for this
action.

The representation Sym” Z? plays a central role in this work. Over Q it is isomorphic to
TSym”" Q?, and some texts in the literature use TSym" Z? instead. The importance of this
representation is explained by the fact that over @, any irreducible Q-linear representation
of GL(Z) is isomorphic to Sym” Q? for some n > 0 up to twists by the determinant; we do
not use this fact.

There are various ways to describe this more explicitly. In the following we write e; =
(3).e2=(9) for the standard basis of Z?*.

Lemma 1.2: (a) Sym" Z? is canonically isomorphic to the group of homogeneous polyno-

mials of degree n in two variables X, Y with integer coefficients, Z[X, Y |deg=n. A matrix
(‘C‘ Z) € ¥ acts by sending X toaX +cY and Y tobX +dY.
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(b) Sym" Z2 is canonically isomorphic to the group of polynomials in one variable Z of

degree < n, Z[Z]geg<n. The action of a matrixy = (¢ Z) on such a polynomial P is

given by

(yP)(z) = (a+cz)"P (b i dz) .

a+cz

Proof: (a) We can take the equivalence classes of

1R Re®ey ®---Qey, foriZO,...,n

i times n—i times

as a basis of Sym™ Z?2. We may thus identify Sym" Z? with Z[X, Y]deg=r by identify-
ing the i-th basis vector from above with the monomial X'Y""". It is a straightforward
calculation to check that the action is as claimed.
(b) Define a map
ZIX, Y)deg=k — Z[Z]aeg<k» X H——1,YH——Z.

It is obviously an isomorphism of abelian groups, and it follows again from an easy
calculation that this transforms the action of ¥ to what is claimed above. |

Lemma 1.3: The representation TSym" Z? can be described as follows. Let L,(Z) = Z"*! and
define a map

Then there is a natural action of ¥ on L,(Z) satisfying

Tl o e o

and L,(Z.) with this action is canonically isomorphic to TSym”™ 7.

Proof: There is a canonical Z-equivariant injection ¥: TSym" Z? —— Sym”" Z?. We view
Sym" Z? as homogeneous polynomials via lemma 1.2 (a). Define an injection

aop n
®: L,(Z) — Sym" Z?, D Z (r.l)a,-xiy""'.
1
i=0

an

We will prove that the images of ¥ and ® inside Sym” Z? coincide. This implies in particular
that the image of ® is stable under the action of ¥, so this induces an action of ¥ on L,(7Z).
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The canonical map Z? —— Sym" Z? mapping w € Z? to the equivalence class of w®- - -®@w
is described in terms of homogeneous polynomials by

n
(Z) — ; (:l) WX) ()" = (uX + 0Y)" for (Z) € 7*
and is therefore equal to the composition ® o [-]". From this follows that the action of X on
L,(Z) satisfies (1.1) (using again lemma 1.2 (a)).

We can choose as a basis of (Z?)®" the elements

e, 1€ 1,

e;r=b®---®b,, ICA{l...,n}, WithbiI{
€9, i ¢ 1.

If some linear combination

2. ae

Ic{l,...n}

of these lies in TSym” Z?, we must have a; = aq () for all o € S,,. Since the orbit of an
I € {1,...,n} under &, are all subsets of {1,...,n} with the same cardinality as I, the
coefficient a; depends only on this cardinality, so we put a; =: a4;. We can then write each
element of TSym” Z? uniquely as

s=0 I1c{,...,n}
#I=s
so the elements
E = Z er, s$=0, ,n
Ic{y,...,n}
#I=s

form a basis of TSym” Z?2. For these basis elements we have obviously
n _
Y(E,) = ( )XSY” s
s

Therefore the image of ¥ coincides with the image of . O

Definition 1.4: Let
Sym(Z) = Homgz(Sym" Z?, Z.)

be the dual representation in the sense of remark 1.1.4, and SymY (R) = Sym)(Z) ®z R.

Of course, SymY(Z) is isomorphic to Sym" Z? as a representation of GLy(Z), but the
isomorphism is not canonical. We can see this explicitly as follows. Using the canonical
isomorphism of abelian groups Hom(Z?, Z) = Z? coming from the standard basis ej, e, of
7?2, we can identify SymY(Z) with Sym" Z? where a matrix now acts as its transpose. If
we compose this with the automorphism of Sym” Z? induced by conjugation with (; 7!),
this action is transformed into the original action on Sym” Z?. We can therefore imagine
Sym)(Z) as a group isomorphic to Sym” Z? but with a different action. Concretely, we
view elements of Sym) (Z) also as homogeneous polynomials in two variables XV, Y" which
correspond to the dual basis of the standard basis of Z?, and a matrix ( ¢ Z) € Y then acts as
XV ——dXY -bYV, YV — —cXV +aY".
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Appendix A. Comparison of conventions in the literature

2. Conventions regarding symmetric powers and symmetric
tensors

In our definition of classical modular symbols (definition 111.2.1) We used the representation
Sym™ Z*. This is also relevant in the context of the Eichler-Shimura isomorphism if it is
described in terms of group cohomology of this representation, as in proposition 11.6.4. Some
other texts also use this representation, sometimes defined in terms of homogeneous or
inhomogeneous polynomials as in lemma 1.2. It is also common to use TSym" Z? (often in the
form L,,(Z) as described in lemma 1.3) or Sym, (Z) instead. Since over a field of characteristic
zero all of them are isomorphic, for most purposes this gives equivalent theories of modular
symbols. Further some texts use a right action which arises from the left action via the main
involution 1. By the abstract Hecke theory in section 1.1, it is clear that this also does not
change the theory of modular symbols.

We list some texts for each convention. Using the concrete descriptions given above, one
can see that the definitions of modular symbols in each of this text is equivalent to ours.

TEXTS THAT USE Sym” Z?: [Poli4], [PS11], [Steg4], [Delo8], [Conog], [Katoq]

TexTS THAT USE TSym" Z?: [KLZ17], [Hid81], [Hid86b], [Hid86a],[Ohtgs], [Ohtgg],
[Ohtoo], [Kitg4], [Shi71]

TEXTS THAT USE Sym,, (Z): [HidLFE], [Bel11], [PS13], [AIS15]

The text [Bel1o] uses yet another representation (but it is also isomorphic to Sym™ Z?).

Now look again at the description of the Eichler-Shimura isomorphism in terms of group
cohomology in proposition 11.6.4. The question which representation of ¥ appears here is in
fact determined by another choice: namely the choice of a trivialisation of the local system
R!f.Z on §. In section 11.2.1 we chose such a trivialisation by choosing the ordered basis
(7, 1) of the homology group Hy(E;, Z) for 7 € I). Lemma 11.2.1 then showed that this forces
the representation to be Sym” Z?. If we had chosen the basis (-1, 7) or (z, —1) instead, this
would have resulted in the representation Sym) (7).

3. Conventions regarding powers of 27i in complex error
terms

In definition 111.2.5, we defined the modular symbol &; attached to an eigenform f by a
formula with a factor ¢ := (2771)~" in front of it. This factor c is not standard in the literature.

We chose to define & with this factor appearing because the same factor also appears
in proposition 11.6.4 (where no choice is involved, so it appears naturally). The definition
of & affects the definition of the complex error term Ex(f, ™) (see definition 111.2.8), i. e.
if we change the factor to some ¢’, the complex error term also has to be changed by a
factor ¢’/c and hence also the interpolation formula in theorem B.1.11. The complex period
QZO(S(M(f)()(*)(n)) of course does not change, in the formula in theorem 1v.4.1 a factor ¢/c’
will appear, cancelling out the change in Ec(f, ™). So all results remain valid (with these
changes).

We list some texts in the literature and how they define ;.
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3. Conventions regarding powers of 27i in complex error terms

One of our main references, Kitagawa’s [Kitg4], has no factor at all, i. e. ¢ = 1. Therefore
the power of 271 in Kitagawa’s original interpolation formula is different from ours. This
convention seems to be not very common.

In the following texts, a factor ¢ = 2si is used: [MTT86]," [Delo8], [HidLFE], [Pol14],
[PS11], [PS13], [Bel1o].

Finally, [Kato4] uses the same convention as we do. More precisely, Kato defines complex
error terms in [Katog, §7.6] with a factor ¢ = (27i)*™! appearing (but without using modular
symbols). His definition is not completely the same as our definition of the error term, but one
can see easily that they differ only by an algebraic factor. In [Katog, (7.13.6)], his error term
is interpreted in terms of the pairing (-, -)g, similarly as we did in the proof of theorem 1v.4.1.
Again this is not precisely the same expression as here, but what Kato denotes “per” is the
Eichler-Shimura map and his element &; x(k, j) is a class in the Betti cohomology over Q, so
we see again that his error term differs from our one by an algebraic factor. This convention
fits best to the motivic situation, which is why we prefer it.

! We remark that the original text [MTT86], which first constructed the p-adic L-function for a single modular
form via modular symbols, does not use any complex periods at all. Instead, they directly use the modular
symbol f to construct the p-adic L-function (rather than 17¢) and use a fixed isomorphism C = C,, to view &f
as a p-adic modular symbol. In their definition of {7, they use the constant ¢ = 27i.
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Appendix B.
Kitagawa’s construction of p-adic L-functions

In this appendix we briefly sketch Kitagawa’s construction of p-adic L-functions, using our
previous work. Kitagawa uses slightly different conventions as we did, and further there are
some errors in his article (see section 1v.3.1). Since this thesis relies heavily on Kitagawa’s
work, it seemed reasonable to reproduce this here in order to avoid errors in the interpolation
formulas. Furthermore, we include the case where p does not divide the level, which is
omitted by Kitagawa.

1. The p-adic L-function for a single cusp form

We first construct the measure for a single cusp form. This is in fact due to Mazur, Tate
and Teitelbaum [MTT86], although we present it here in a more modern way, following
Kitagawa.

1.1. Some preliminary calculations with modular symbols

Let N > 3, k > 2 and fix a field K of characteristic 0. We define a map
Q: MS(N.K) — Maps(Q/Z,Sym**K?),  &+— Q¢

with Q¢ defined by
Qe(x) = ¢ [1 ’1“] ()= (0) (xeQ)

1 —x
- ( X )  £((e0) = ().

Here “[-]” and “e” denote the matrix actions. More precisely, we use the standard left action
of M3(Z) N GLy(Q) on Sym*~2 K2, denoted by “e” and then use remark 1.1.4 to get an action
of My(Z) N GLy(Q) on maps Div’(PY(Q)) —— Sym*~2 K?, which we normalise as a right
action and denote by “[-]”. Note that we have a priori only actions of ¥ = M,(Z) N GL,(Q),
but since we use coefficients in the field K, they extend to well-defined actions of GL,(Q).
Furthermore, since the elements of MSy (N, K) are by definition invariant under the action of
Ii(N)and (!}) € I3(N), the map Q¢ is indeed well-defined as a map on Q/Z. It is easy to see
that the map Q is a homomorphism of K-vector spaces if we endow Maps(Q/Z, Sym*~2 K?)
with the canonical K-vector space structure.

Definition 1.1: For £ € MSi(N, K) and a primitive Dirichlet character y: (Z/c)* — K*
we write

AG) = 20 (1) ¢ Sym K2,
=0
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Appendix B. Kitagawa’s construction of p-adic L-functions

Note that if ¢ = 1 then we have A(¢, x) = Q#(0) and that the association & —— A(¢, y) for
fixed y is a K-linear map MS (N, K) — Sym*~2 K2,

We define A(¢, y,n) € K (n=0,...,k — 2) to be the coefficients of this element when we
see it as a homogeneous polynomial as in lemma A.1.2 (a), i. e. these are such that

k-2
A x) = D A, x,mX YR,
n=0
Lemma 1.2: We have forn=0,...,k—2

A(G[al xon) = (D" X(=DA(, x.n).

Proof: We first note that for any x € Q) the relation

(-0 )

holds. Using this, the definition of Q¢ and the definition of the action of matrices on modular
symbols, it is easy to check that for any x € @ we have

Qi[o)(x) = 2" @ Qs (—x).

We now further use the fact that the map Q) is defined on Q/Z and compute
S e j
Al = =
(&[51, x) ]E:O X (NQ¢po1 (C)
O —J
= § X (=1Q¢) ( )
. c
Jj=0

~ e Yo (1]

7=0

Since o' acts on Sym* =2 K? as (—1)" on the n-th component, the claim follows. O

1.2. The measure attached to a modular symbol

We continue to use the notation from the previous section. Now let R be a domain of
characteristic 0 and K its field of fractions, and fix a prime p.

Lemma 1.3: Let £ € MSg(N, R). Then we have for allx € Q/Z.:

p-1 .
Qr,¢(x) = (p 1) o ZQ§ (_x+]) .
= p

224



1. The p-adic L-function for a single cusp form

Proof: See [Kitgq, Lem. 4.2]. The proof comes down to a calculation that essentially uses
only the definition of T, and its explicit description from lemma 1.1.54. We point out that the
proof of [Kitg4, Lem. 4.2] contains an error: in the fourth line from below, the matrix (g 1 )

has to be replaced by ( (1) ;, ). (]

Now fix D € IN prime to p. For a € R we write MSi(N, R)’»=¢ for the R-submodule of
modular symbols & for which T,& = a&. To each such modular symbol we want to attach a
measure on ZX, p With values in Sym*2 R?. Such a measure is completely described if we
specify the measure of the sets z + Dp™Z,, p for each z € Z with (z, Dp) = 1and m € IN since
these sets form a fundamental system of open sets in Z;’ p- Of course these values cannot be

assigned arbitrarily, they have to obey the distribution law. We write Db(Z;’ D> Sym*~2 R?)

for the R-module of such measures (where D should mean “bounded distributions”).
Now fix £ € MSi(N, R)’»=4, and assume that a € RX. We define the measure by

. m —m (P z
pe(z + Dp™Zy,p) = a ( 1) ® Q¢ (W)

:a_m (pm _Zl/D) .g((oo)_(-DP%)) ’ ZGZ’ (Z’Dp):]" mE]N'

It is clear that the right hand side lies in Sym* =2 R?.
Lemma 1.4: (a) ji¢ satisfies the distribution relation.

(b) The association & —— [ig is a well-defined R-linear map

MSi(N,R)»=¢ —, Db(Z;’ b, Sym* % R%).

Proof: The proof of the first assertion works analogous to [Kitg4, Lem. 4.4] (using lemma 1.3).
The second assertion is clear by construction. (]

Lemma 1.5: Letm > 0 and y: (Z/Dp™)* —— R* be a primitive Dirichlet character (which
we view as a character on; p)- Then

[, wdie-
ZX

p.D m (pm

e At x), m=0,

a ° A(&, x), m > 0.

With the convention that y(p) = 0 if m > 0 this can be written more compactly as

/ZX X'dig=am" ((1 Pm) (1—61_1)(*(17) (1 p))) ® A&, x).

p.D
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Appendix B. Kitagawa’s construction of p-adic L-functions

Proof: For m > 0 we have

Dp™

[ xdie= Y x'@pete+ Dp"2,).

;,D z=0

Inserting the definition of /iy here immediately gives the result. For m = 0 this can be proved

as in [Kitg4, Lem. 4.5]. O
Since Sym*~? R? is a free R-module of rank k — 1, we can view each Sym*~? R?-valued

measure as a (k — 1)-tuple of R-valued measures. Viewing the elements of Sym R as
homogeneous polynomials, we write the projection Sym*~? R —— R to the last component
as f +—— £(0,1).

From now on we need to specialise our ring R to be the ring of integers O in a finite
extension of Q,. We have then a canonical character «: Z;, p > Zy — O,

We now define a measure yiz on Z;’ p With values in O by the formula

'ug_«(z + DPmZp,D) =q ME ((OO) - (—)) (0,1), z€eZ, (z,Dp)=1 meNN.

This is just the last entry in the (k — 1)-tuple of O-valued measures coming from i, as one
can easily see from the relation (?” ~%/P) e £(0,1) = £(0,1) for f € Sym** 0% z € Z and
m € IN. More generally, we have the following important statement, which is known as
“Manin’s Lemma” or “Manin’s trick™:

Lemma 1.6: We have

-2
djig(z) = (—ﬁX + Y) dpg(z) (z € Z;’D).

Proof: Analogous to the proof of [Kitg4, Lem. 4.6]. |

We can express the meaning of the above lemmas more explicitly as follows.

Corollary 1.7: Let y: Z;’D —— O be a primitive character of conductor Dp™ and n €
{0,...,k—2}. Then

k— -1
f X X*K”dﬂ§=( nz) (=D)"a ™™ (1~ a7 (A, ).

p.D

Proof: Write the integral
/ x'djig € Sym 2O
ZX

p.D

as a (k — 1)-tuple (ay, . . ., ax—2) with a; € O. Then

—nk_2 x n
an = (=D) ( )/ X Kk dpg
n ZXD

P,

by lemma 1.6. The claim then follows from lemma 1.5. O
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1. The p-adic L-function for a single cusp form

1.3. The measure attached to a cusp form

Up to now a large part of our discussion was independent of a concrete choice of a modular
symbol and partly also of the ring R. We now first look at the case R = K = C. Fix a
normalised eigenform f € Sg(Xi(N),C) and let £ € MS(N, C) be the modular symbol
attached to f, as defined in definition 111.2.5. The key to relating special values of the complex
L-function attached to f to the modular symbol £ comes from the fact that the L-function
can be expressed in terms of the Mellin transform of f, as stated in proposition 1v.1.3. This
together with proposition 1v.1.2 allows us to compute A(f, y).

Proposition 1.8: Let y: (Z/c)* —— C* be a primitive Dirichlet character and0 < n < k—2.
Then

k —
Al ym) = ( ) 2) (1" mIG()@mi)* > "L(f. o + 1)

Proof: This is a calculation that uses propositions 1v.1.2 and 1v.1.3, together with an easy
substitution and the definitions of the objects:

-1
Alr. x) = Z){ ()Q¢ ( )

Jj=0

oo )] 4
= (27i)k? Z () ( [ F2) (X + Y)k_zdz) [1

- e S 20 / @z = DX + Y)F-2dz

j=0
= (2ri) w( )G+ D)
1 '/0 jZ:;X z
= (27i)*'G(x") / ) fo(2)(zX + Y)F2dz

= (27i)*'G(y* )Z( ) (/ fr(2)z dz) xlyk-2-1

:(zm)k—lc.(x*)z_:(k )(( )’(2 ')l+1L(f )(,n+1)) xlyk=2-1, 0
=0

—_ 0 |~.

— O~
| S

(zX + Y)F2dz

Now let K be the number field generated by the Fourier coefficients of f and R its ring of
integers. Fix an embedding K —— @, which fixes an embedding of K into C.

Let §JZ—' be the projections of & to the +1-eigenspaces for the involution 5. Fix bases
17;—; € MSk(N,R)*[f] bases and let E(f, rf') € C* be the associated error terms (see def-
inition 111.2.8).
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Appendix B. Kitagawa’s construction of p-adic L-functions

Corollary 1.9: Let y: (Z/c)* —— C* be a primitive Dirichlet character and 0 < n < k — 2.
Then

k—
A(U]i;, X.n) = %( " 2) m(l + )((—1)(—1)")(—1)"n!G()(*)(Zﬁi)k_z_"L(f, x-n+1).

Proof: Using the relation f}f = 1(&r £ &¢[o]) and the fact that £ —— A(¢, y) is K-linear, this
follows immediately from proposition 1.8 and lemma 1.2. ]

Up to now we have not yet fixed a prime p. We now do so, but here we do not assume
that it divides N (in contrast to section 1.2). Our fixed embedding K «—— Q then fixes an
embedding of K into @p and a place p of K. Let O be the ring of integers of the completion
of K at p.

We can now define the p-adic L-function for f. For this we assume that f is ordinary,
i.e. that T,f = a,f with a, € O*. Since we want to use the results from section 1.2,
which need that p divides the level of the involved modular form, we need to go over to a
refinement. More precisely, let i/ be the nebentype of f and a € O be the unit root of the
p-th Hecke polynomial (see definition 11.5.16) and let f;, be the corresponding refinement
(see definition 11.7.3). Then f, is itself ordinary (see remark 11.7.4). If p | N, then we have
foa = f, while f, is a form of level Np if p { N. Recall that & = a, if p | N and that in any
case the p-th Hecke eigenvalue of f, is a. We apply the theory from section 1.2 to f.

Definition 1.10: Define the p-adic L-function attached to f as the measure on Z; p With
values in O defined by

Ilf = Hq;a+’7;a - Iln;a + I’[’]}a ’

Theorem 1.11 (Mazur/Tate/Teitelbaum): Forn = 0,...,k — 2 and each primitive Dirichlet
character y: (Z./Dp™)* —— C* we have

/ xxtdup =
ZX

" n mnG *
nl(1— &y (p)p")(1 - oy (p)ph ) ——2 PO

a'”(27ri)”+2‘k8m(fa, ’7}“)

L(f, x,n+1),

where s = (=1)" y(-1).

Proof: By corollaries 1.7 and 1.9, we have

n!G(x")
@) 2 E(fa 7))

The result then follows from proposition 1v.1.4. O

(L (1)) (DY 1=y (") L(far o m+1).

Note that the two Euler factor-like expressions are of a different nature: the first comes
from the fact that we need to go over to a refinement in order to construct the p-adic
L-function, while the second is a technical necessity forced by lemma 1.5.
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2. The p-adic L-function for a Hida family

2. The p-adic L-function for a Hida family

The step from the p-adic L-function for a single modular form to that for a Hida family is easy
to describe using our previous work. We use the setup for Hida families: Let L, O and 1 be
as in situation 11.3.11, let K be the number field Q N L and p the place of K such that L = K,
and fix an 7 -adic cusp form F € $"4(Np*, I'). We need to assume that condition 111.4.5 is
satisfied.

Let £ € MS*Y(Np™, 7). Then E is a map UM (Np™,©®)— I, and we have a

canonical map Div’(PY(Q)) — UM (Np™, 0) = Hom@(mgrd(Npm, 0), O) given by
(x) = (y) — [ — &((x) - ()]

(of course it has to be checked that this is well-defined). Hence by precomposing with this
map we can regard = as a map Div’(P!(Q)) —— 7. We can thus define

Q=(x) = E((00) - (x)), x€Q.

Totally analogously as in section 1.2, one can show that this defines a map Qz: Q/Z —— I

and that
Lk x+j
aQetx) = 3, 0s ()
=0 p

if T,E = aE for some a € I*. We then define

ps(z + Dp™Z,) = a " Q= (pi) , z€Z, (z,Dp)=1, meN.

m

Using the above property, we can show that this defines an 7 -valued measure on Z;, p again

analogously as in section 1.2.
We now choose 7 -bases Z* of IMS™(Np™, T)*[F] and let &,(Z*, qz) € O be the p-adic

error term for each ¢ € X}rith((’)), as defined in definition 111.4.14. By construction, it is then
clear that for any character ¢ of Z; pandany ¢ € X }rith((?), we have

4éxww+

p.D

—eu@n) [ v,
Zp,D

Theorem 2.1 (Kitagawa): There is an I -valued measure jip on Z;,D such that for each ¢ €

X}ﬁth((’)) of type (k, €, 1), each primitive Dirichlet character y: (Z/Dp™)* —— C* and each
n=0,...,k—2 we have

4AX

p.D

Dp™"G(x")E(E*, my)
a;j¢(2ﬂi)"+2‘k8m(F¢, 17;5)

X*K"dﬂp) =nl(1-a,l,x"(p)p") L(Fy, x,n+1),

where s = (—1)" y(-1).

Proof: Put pp = p=+ + p=-. Then the result follows from the above and theorem 1.11. [
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Appendix B. Kitagawa’s construction of p-adic L-functions

At the end we now assume that the Hida family F is new and has nebentype . Then
we can formulate the statement also in the following slightly different form. Recall from
theorem 111.3.15 that Fy is often a newform, and in the case where it is not, there exists
a newform of level N such that Fy is its unique ordinary refinement. As introduced in
definition 111.3.16 we write F};* for the newform at ¢. For each ¢ of type (k,e,7) let ay
denote the unit root of the Hecke polynomial

X% = al X + e~ (p)p* !

of F;ew, where a;e(‘;’ is the p-th Hecke eigenvalue of F;ew. Note that in the cases where Fy

is already new, we just have ay = a, 4. Using again proposition 1v.1.4, we can derive the
following version of theorem 2.1.

Corollary 2.2: There is an I -valued measure ur on Z;’D such that for each ¢ € X}rith((?) of

type (k, e, r), each primitive Dirichlet character y: (Z/Dp™)* —— C* andn=0,...,k—2
we have

¢(/Z

p.D

X*Kndw) _
anmnG(X*)Sp Ei’ ’72)
o 2y 2k E o (Fy, 1)

nl(1 - ag' )" (Pp™)(1 — oz xeyo ™ (p)p* ") L(E™, yon +1),

where s = (=1)" y(-1).
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