Teoría de Iwasawa

Ejercicios

Miércoles, 15 de agosto

Part A Introduction to algebraic number theory and class field theory

Exercise A.10. For the following fields *K*, determine which primes are ramified and how the Frobenius automorphism at unramified primes looks like:

(a) $K = \mathbb{Q}(\sqrt{d})$ for $d \in \mathbb{Z}$ not a square;

(b) $K = \mathbb{Q}(\xi_n)$, where ξ_n is a primitive *n*-th root of unity, for any $n \in \mathbb{N}$. Use the results to derive the quadratic reciprocity law

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{2}}$$

for odd primes *p*, *q*.

Exercise A.11. Let L/K be an extension of number fields of degree *n*. Then we have the norm map of ideals

 $N_{L/K}$: $Div(\mathcal{O}_L) \longrightarrow Div(\mathcal{O}_K)$,

where Div(-) means the group a fractional ideals. Show that for any ideals $I \subseteq \mathcal{O}_K$ we have

$$N_{L/K}(I\mathcal{O}_L) = I^n.$$

Hint: Use that equality $\sum_i e_i f_i = n$, where e_i resp. f_i are the ramification resp. inertial degree for prime ideals as introduced in the lecture.

Exercise A.12. For $n \in \mathbb{N}$ let $\mathcal{F}_n = \mathbb{Q}(\mu_{p^{n+1}})$. Let A_n be the *p*-Sylow group of the ideal class group $\operatorname{Cl}(\mathcal{F}_n)$ of \mathcal{F}_n , L_n the *p*-Hilbert class field of \mathcal{F}_n (i. e. the maximal unramified abelian *p*-extension of \mathcal{F}_n) and $X_n = \operatorname{Gal}(L_n/K_n)$. Then we have the Artin map

$$A_n \xrightarrow{\sim} X_n, \quad [\mathfrak{p}] \longmapsto \operatorname{Frob}_{\mathfrak{p}}. \tag{1}$$

We have an exact sequence

$$1 \longrightarrow \operatorname{Gal}(L_n/\mathcal{F}_n) \longrightarrow \operatorname{Gal}(L_n/\mathbb{Q}) \longrightarrow \operatorname{Gal}(\mathcal{F}_n/\mathbb{Q}) \longrightarrow 1$$

Find a canonical action of $\operatorname{Gal}(\mathcal{F}_n/\mathbb{Q})$ on $X_n = \operatorname{Gal}(L_n/\mathcal{F}_n)$ and note that we also have a natural action of $\operatorname{Gal}(\mathcal{F}_n/\mathbb{Q})$ on $A_n = \operatorname{Cl}(\mathcal{F}_n)_p$. Show that the Artin map is equivariant for these actions.

Part C Local Units, Coleman's construction, higher logarithmic derivatives

Let $R = \mathbb{Z}_p[\![T]\!]$.

Exercise C.7. Check the relations between operators on *R* mentioned in the lecture:

- (a) $D \circ \varphi = p \varphi \circ D;$
- (b) $D \circ \psi = \frac{1}{p} \psi \circ D;$
- (c) $D \circ \sigma = \chi(\sigma)\sigma \circ D$ for $\sigma \in \mathcal{G}$.

Exercise C.8. Check that the map

$$\Delta \colon R^{\times} \longrightarrow R, \quad f \longmapsto (1+T)\frac{f'(T)}{f(T)}$$

is a group homomorphism. Show that it maps $W = (R^{\times})^{\mathcal{N}=1}$ into $R^{\psi=1}$.

Exercise C.9. Later in the lectures, we want to construct a *p*-adic ζ -function, which will be given by a measure on \mathcal{G} , i. e. an element in the Iwasawa algebra $\Lambda(\mathcal{G})$. This measure will arise from the norm-compatible system **u** of cyclotomic units from exercise C.5.

Have a look at the various maps we studied and find a way to obtain such a measure from \mathbf{u} , i. e. find a map

$$\mathcal{U}_{\infty} \longrightarrow \Lambda(\mathcal{G}).$$

What do we know about this map?