Teoría de Iwasawa

Ejercicios

Lunes, 13 de agosto

Part A Introduction to algebraic number theory and class field theory

- **Exercise A.1.** (a) Show that \mathbb{Z}_p is a principal ideal domain and that each ideal is generated by a power of p.
- (b) Show that \mathbb{Q}_p is the quotient field of \mathbb{Z}_p .

Exercise A.2. (a) Let $(a_n)_{n\geq 1}$ be a sequence in \mathbb{Q}_p . Show that the series $\sum_{n=1}^{\infty} a_n$ converges in \mathbb{Q}_p if and only if $\lim_{n\to\infty} a_n = 0$.

(b) Show that any $x \in \mathbb{Z}_p$ can be written uniquely as

$$x = \sum_{n=0}^{\infty} b_n p^n$$

with $b_n \in \{0, \dots, p-1\}$. What about \mathbb{Q}_p ? (c) Show that \mathbb{Z}_p is uncountable.

Exercise A.3. (a) Show that

$$\lim_{n \in \mathbb{N}} \mathbb{Z} / p^n \cong \left\{ (x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathbb{Z} / p^n \mid \forall i \ge j \colon x_i \mod p^j = x_j \right\}.$$

(b) Show that there is a canonical isomorphism

$$\mathbb{Z}_p \cong \lim_{n \in \mathbb{N}} \mathbb{Z} / p^n$$

Exercise A.4. Show that $\mathbb{Z}_p^{\times} \cong \mathbb{F}_p^{\times} \times (1 + p\mathbb{Z}_p)$.

Exercise A.5. Let $K = \mathbb{Q}(\zeta_p)$, where ζ_p is a primitive *p*-th root of unity.

- (a) Show that $\mathcal{O}_K = \mathbb{Z}[\zeta_p]$.
- (b) Describe the isomorphism class of the unit group \mathcal{O}_K^{\times} .

Part B Structure theory of Iwasawa modules and Iwasawa's asymptotic formula

As in the lectures, let *K* be a finite extension of \mathbb{Q}_p with ring of integers *R* and maximal ideal \mathfrak{m} .

Exercise B.1. Show that the minimal prime ideals in R[[T]] are $\mathfrak{m}R[[T]]$ and $F \cdot R[[T]]$ for irreducible distinguished polynomials *F*.

Exercise B.2. Let *G* be a profinite group and let $\Lambda(G)$ be the corresponding Iwasawa algebra. Let *S* be any profinite¹ *R*-algebra and let $\varphi: G \longrightarrow S^{\times}$ be a continuous group homomorphism. Show that φ extends uniquely to a continuous homomorphism of *R*-algebras

$$\varphi^*\colon \Lambda(G) \longrightarrow S.$$

Exercise B.3. Fix a profinite group *G*. Let *M* be a profinite *R*-module on which *G* acts continuously and *R*-linearly. Show that *M* is in a unique way a compact $\Lambda(G)$ -module.

Exercise B.4. Let *A* be a commutative ring and *G* a finite group such that $#G \in A^{\times}$. For any homomorphism $\chi: G \longrightarrow A^{\times}$ define

$$e_{\chi} = \frac{1}{\#G} \sum_{g \in G} \chi(g)^{-1}g \in A[G]$$

Show the following equalities:

(a) $e_{\chi}^2 = e_{\chi}$ for any χ ;

- (b) $e_{\chi}^{n}g = \chi(g)e_{\chi}$ for any χ and $g \in G$;
- (c) $e_{\chi}e_{\psi} = 0$ if $\chi \neq \psi$;
- (d) $\sum_{\chi} e_{\chi} = 1$, where the sum runs over all possible χ .

Let now *M* be an *A*[*G*]-module. For any $\chi : G \longrightarrow A^{\times}$ we write

$$M[\chi] = \{m \in M | \forall g \in G \colon gm = \chi(g)m\}.$$

- (e) Show that $M[\chi] = e_{\chi}M$.
- (f) Conclude that $M = \bigoplus_{\chi} M[\chi]$, where again the sum runs over all possible χ .

Part C Local Units, Coleman's construction, higher logarithmic derivatives

As in the lecture we write $R = \mathbb{Z}_p[[T]]$.

Exercise C.1. Let $a \in \mathbb{Z}_p^{\times}$ and $n \in \mathbb{N}$. Show that $\binom{a}{n} \in \mathbb{Z}_p$.

Exercise C.2. Check that the endomorphisms of *R* defined by φ , ψ , N and $\sigma \in \mathcal{G}$ are continuous. Show that φ , ψ and N commute with the action of \mathcal{G} .

Exercise C.3. Show that $\sum_{\xi \in \mu_n} \xi f$ is divisible by p for any $f \in R$.

¹ A profinite *R*-algebra is a topological *R*-algebra which can be written as a limit of finite *R*-algebras.

Part D Measures and Iwasawa-algebras

Let *G* be a profinite group and *K* a complete non-archimedean field with ring of integers *R*. Denote by D(G, R) the *R*-module of integral measures.

Exercise D.1. In the lecture a canonical isomorphism $D(G, R) \cong \Lambda(G)$ of *R*-modules was constructed. Show that it is in fact an isomorphism of *R*-algebras if we define the multiplication on D(G, R) by convolution, i. e.

$$\int_{G} f d(\mu_{1} * \mu_{2}) = \int_{G} \left(\int_{G} f(gh) d\mu_{1}(g) \right) d\mu_{2}(h) \text{ for } f \in C^{\infty}(G, R), \ \mu_{1}, \ \mu_{2} \in D(G, R).$$

Exercise D.2. Let $\varphi: G \longrightarrow R^{\times}$ be a continuous homomorphism. Then by Exercise B.2 we have an induced homomorphism

$$\varphi^*\colon \Lambda(G) \longrightarrow R.$$

On the other hand, we have an isomorphism $D(G, R) \cong \Lambda(G)$. Show that the composition

$$\mathcal{D}(G,R) \xrightarrow{\varphi} \Lambda(G) \xrightarrow{\varphi^*} R$$

is given by

$$\mu\longmapsto \int_G \varphi \ \mathrm{d}\mu.$$