Prof. Dr. Otmar Venjakob Dr. Michael Fütterer Milan Malčić

Algebraische Geometrie

12. Übungsblatt

08.07.2019

Aufgabe 1 (4 *Punkte*). Für gewisse Schemamorphismen $f: X \longrightarrow Y$ wurde in der Vorlesung definiert, was eine dualisierende Garbe ω_f ist. Wir betrachten hier den Spezialfall, dass $Y = \operatorname{Spec} A$ affin ist. Zeige, dass die Formulierung aus Beispiel 46 (Gleichung (2)) äquivalent ist zur Definition von ω_f .

Aufgabe 2 (3 *Punkte*). Zeige, dass das Paar (ω_f , tr_f) aus der Definition einer dualisierenden Garbe eindeutig bis auf eindeutige Isomorphie ist.

Hinweis: Dies kann direkt gezeigt werden. Man kann aber auch die Charakterisierung aus Aufgabe 1 verwenden (lokal auf Y) und diese so formulieren, dass ω_f das darstellende Objekt für einen geeigneten Funktor ist.

Aufgabe 3 (4 *Punkte*). Sei k ein Körper, $X = \text{Proj } k[T_0, \dots, T_n]/I$ eine projektive Varietät definiert durch ein homogenes Ideal I sowie $F \in k[T_0, \dots, T_n] \setminus I$ homogen. Beschreibe, wie man in natürlicher Weise zu F einen effektiven Cartier-Divisor D_F assoziieren kann, sodass das abgeschlossene Unterschema definiert durch (D_F, \mathcal{O}_{D_F}) gerade $V_+(F) \subseteq X$ ist.

Aufgabe 4 (3 Punkte). Sei X ein Schema, sodass \mathcal{K}_X welk ist. Zeige, dass dann $CaCl(X) \cong H^1(X, \mathcal{O}_X^{\times})$.