Algebraische Geometrie

9. Übungsblatt

10.12.2018

Aufgabe 1 (3 Punkte). Sei R ein Ring. Zeige, dass $\Gamma(\mathbb{P}_R^n, \mathcal{O}_{\mathbb{P}_R^n}) = R$ gilt.

Aufgabe 2 (2 Punkte). Sei X die affine Gerade mit Doppelpunkt aus der Vorlesung (Beispiel 11). Zeige, dass X nicht affin ist.

Aufgabe 3 (3+3+1=7 *Punkte*). In dieser Aufgabe geht es um die Charakteristik eines Schemas. Um Missverständnissen vorzubeugen, sei hier noch einmal erwähnt, dass die Charakteristik eines Rings R der nichtnegative Erzeuger des Kerns des eindeutigen Ringhomomorphismus' $\mathbb{Z} \longrightarrow R$ ist.

- (a) Sei p eine Primzahl oder 0 und X ein nichtleeres Schema. Zeige die Äquivalenz der folgenden Aussagen:
 - (i) $\mathcal{O}_X(X)$ hat Charakteristik p;
 - (ii) für jede nichtleere offene Teilmenge $U \subseteq X$ hat $\mathcal{O}_X(U)$ Charakteristik p;
 - (iii) der Morphismus $X \longrightarrow \operatorname{Spec} \mathbb{Z}$ faktorisiert durch $\operatorname{Spec} \mathbb{F}_p$ (hierbei sei $\mathbb{F}_0 = \mathbb{Q}$).

Wenn diese Aussagen gelten, heißt X Schema der Charakteristik p.

- (b) Sei $n \in \mathbb{Z}$, $n \ge 0$. Wie sollte man ein "Schema der Charakteristik n" definieren? Wie müssen die Aussagen (i)–(iii) aus (a) angepasst werden? Wir wollen natürlich, dass für jeden Ring R die Charakteristik von Spec R die von R ist.
 - Hat dann jedes Schema eine wohldefinierte Charakteristik?
- (c) Seien X und Y nichtleere Schemata von Charakteristik m bzw. n. Zeige: Wenn $m \nmid n$, dann gibt es keinen Morphismus $X \longrightarrow Y$.

Aufgabe 4 (*4 Punkte*). (a) Zeige, dass die disjunkte Vereinigung unendlich vieler nichtleerer affiner Schemata nicht affin ist.

(b) Beschreibe die globalen Schnitte in einer solchen unendlichen Vereinigung.