L-Funktionen vom Grad 2

10. Übungsblatt

10.01.2018

Auf dem ganzen Blatt sei F eine endliche Erweiterung von \mathbb{Q}_p mit Ganzheitsring \mathcal{O} und $G = \mathrm{GL}_2(F)$.

Aufgabe 1. Es sei V eine irreduzible zulässige Darstellung von G. Zeige, dass V genau dann als Unterquotient einer Darstellung der Form $B(\chi)$ auftritt, wenn $J(V) \neq 0$. (Hierbei ist χ ein Charakter des Torus' T der Matrizen der Form $\left(\begin{smallmatrix} s & 0 \\ 0 & * \end{smallmatrix}\right)$.)

Aufgabe 2. Zeige, dass $V^{\vee} \otimes V$ als Darstellung von $G \times G$ irreduzibel ist.

Hinweis: Betrachte die Invarianten unter einer hinreichend kleinen kompakt-offenen Untergruppe und benutze dann die Hecke-Algebra und den Jacobsonschen Dichtheitssatz.

Aufgabe 3. In dieser Aufgabe betrachten wir die Hecke-Algebra $\mathcal{H}_K := e_K \mathcal{H}(G) e_K$, wobei $K = \mathrm{GL}_2(\mathcal{O})$ sei und $\mathcal{H}(G)$ und e_K wie in der Vorlesung definiert sind. Dann ist \mathcal{H}_K eine assoziative \mathbb{C} -Algebra mit 1, die auch die *sphärische Hecke-Algebra* genannt wird.

- (a) Benutze die Cartan-Zerlegung, um eine Basis von \mathcal{H}_K als \mathbb{C} -Vektorraum anzugeben.
- (b) Zeige, dass \mathcal{H}_K kommutativ ist. *Hinweis*: Benutze die Transposition von Matrizen.
- (c) Sei V eine irreduzible zulässige Darstellung. Zeige, dass dann V^K höchstens eindimensional ist.