Algebraische Gruppen

1. Übungsblatt

18.04.2018

Aufgabe 1 (2 *Punkt*). Theorem 15 der Vorlesung sagt, dass der Funktor, der einer affinen Varietät ihren Koordinatenring zuordnet, eine Äquivalenz der Kategorien der affinen Varietäten über einem algebraisch abgeschlossenen Körper k und der reduzierten endlich erzeugten k-Algebren ist.

Zeige, dass diese Aussage falsch ist, wenn k nicht algebraisch abgeschlossen ist.

Welche der vorangegangenen Aussagen ist in diesem Fall ebenfalls falsch?

Aufgabe 2 (4 *Punkte*). Sei k ein Körper und $n \in \mathbb{N}$. Beweise Lemmata 2 und 3 aus der Vorlesung:

- (a) Für Ideale $I_1,I_2,I_\lambda\subseteq k[X_1,\ldots,X_n]$ (wobei λ eine beliebige Indexmenge Λ durchläuft) gilt:
 - (i) $I_1 \subseteq I_2 \implies V(I_1) \supseteq V(I_2)$,
 - (ii) $V(I_1) \cup V(I_2) = V(I_1 \cap I_2) = V(I_1 I_2)$,
 - (iii) $V(\sum_{\lambda \in \Lambda} I_{\lambda}) = \bigcap_{\lambda \in \Lambda} V(I_{\lambda}).$
- (b) Die Mengen V(I) für Ideale $I \subseteq k[X_1, \dots, X_n]$ bilden die abgeschlossenen Mengen einer Topologie auf \mathbb{A}^n , und die Mengen D(f) für Polynome $f \in k[X_1, \dots, X_n]$ bilden eine Basis für diese Topologie.