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[Statistical Analysis and Parameter Selection for Mapper, Carrière,
Michel, Oudot, J. Machine Learning Research, 2018]

[Structure and Stability of the One-Dimensional Mapper, Carrière,
Oudot, Found. Comput. Math., 2018]

[Statistical analysis of Mapper for stochastic and multivariate filters,
Carrière, Michel, J. Preprint, 2020]



Mapper (hyper-)graphs
[Topological Methods for the Analysis of High Dimensional
Data Sets and 3D Object Recognition, Singh, Mémoli, Carls-
son, Symp. Point based Graphics, 2007]



Mapper (hyper-)graphs

visualize topology on
the data directly

[Topological Methods for the Analysis of High Dimensional
Data Sets and 3D Object Recognition, Singh, Mémoli, Carls-
son, Symp. Point based Graphics, 2007]



Two types of applications:

• clustering

• feature selection

principle: identify statistically relevant sub-
populations through patterns (flares, loops)

flares

loops

Mapper in applications



3d shapes classification

Mapper in applications



breast cancer subtype identification

Mapper in applications



recovery from spinal cord injuries

Mapper in applications



protein folding pathways

Mapper in applications



[Rucco et al. 2014]

diagnosis of
pulmonary embolism

Mapper in applications



Formal identification of cell cycle

Mapper in applications



Formal identification of cell cycle

Mapper in applications

Genomic analysis of spinal cord



Topological exploratory data analysis



Goal: build simplicial complexes that have the same topology (homology
groups, homotopy equivalence, homeomorphism, isotopy) than the data sets.
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Def: An open cover of a topological space X is a collection U = (Ui)i∈I of
open subsets Ui ⊆ X, i ∈ I where I is a set, such that X ⊆ ∪i∈IUi.

Def: Given a cover of a topological space X, U = (Ui)i∈I , its nerve is the
abstract simplicial complex C(U) whose vertex set is U and s.t.

σ = [Ui0 , Ui1 , . . . , Uik ] ∈ C(U) if and only if ∩kj=0 Uij 6= ∅.
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Def: An open cover of a topological space X is a collection U = (Ui)i∈I of
open subsets Ui ⊆ X, i ∈ I where I is a set, such that X ⊆ ∪i∈IUi.

Def: Given a cover of a topological space X, U = (Ui)i∈I , its nerve is the
abstract simplicial complex C(U) whose vertex set is U and s.t.

σ = [Ui0 , Ui1 , . . . , Uik ] ∈ C(U) if and only if ∩kj=0 Uij 6= ∅.

X

U1

U2

U3 U4

U5
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X

U1

U2

U3 U4

U5

U1
U2

U5

U3
U4

The Nerve Theorem: Let U = (Ui)i∈I be a finite open cover of a subset X
of Rd such that any intersection of the Ui’s is either empty or contractible.
Then X and C(U) are homotopy equivalent. In particular, their homology
groups are isomorphic.

For non-experts, you can replace:
- ’contractible’ by ’convex’,
- ’are homotopy equivalent’ by ’same topological invariants’.

[On the imbedding of systems of
compacta in simplicial complexes,
Borsuk, Fund. Math., 1948]

Topological exploratory data analysis



Two directions:

Q: How to build meaningful covers?
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Two directions:

1. Using a function (lens) defined on
the data:
→ the Mapper algorithm
→ exploratory data analysis

Q: How to build meaningful covers?

X

f

R

I
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2. Covering data by balls:
→ distance functions frameworks, persistence-
based signatures,...
→ geometric inference, provide a framework to
establish various theoretical results in TDA.
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Mapper in the continuous setting

X

f

Y = R
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Mapper in the continuous setting
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Mapper in the continuous setting

X

f

Y = R

I

V

Mapper

Mf (X, I)



Mapper in the continuous setting

Input:

- continuous function f : X → Y

- cover I of im(f) by open intervals: im(f) ⊆
⋃
I∈I I

• Compute pullback cover U of X: U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various con-
nected components in X

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

- topological space X

→ connected cover V

(Y = R in this talk)



Input:

• Compute pullback cover U of P : U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various clus-
ters, as identified by a clustering algorithm

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

- point cloud P ⊆ X with metric dP

intersections are assessed by the
presence of common data points

- continuous function f : P → R
- cover I of im(f) by open intervals: imf ⊆

⋃
I∈I I

→ connected cover V

Mapper in practice



Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- clustering algorithm C
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Parameters:

- function f : P → R

- cover I of im(f) by open intervals

lens or filter

- clustering algorithm C

Classical choices:

• density estimates

• centrality f(x) =
∑
y∈X d(x, y)

• eccentricity f(x) = maxy∈X d(x, y)

• PCA coordinates

• Eigenfunctions of graph laplacians.

• Functions detecting outliers.

• Distance to a root point.

• Prior knowledge

f

f

Mapper in practice



Parameters:

- function f : P → R

- cover I of im(f) by open intervals

range scale
Uniform cover:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

r

g = 30%

I

R

- clustering algorithm C
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Parameters:

- function f : P → R

- cover I of im(f) by open intervals

range scale
Uniform cover:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

r

g = 30%

I

R

- clustering algorithm C

Intuition:
- small r → finer resolution, more nodes.
- large r → rougher resolution, less nodes.

- small g → less connectivity, nerve dimension small.
- large g → more connectivity, nerve dimension large.

Mapper in practice



Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- for theoretical reasons, we prefer to work with

geometric scale

- clustering algorithm C

Classical choices:

- any clustering algorithm works

hierarchical clustering with (predefined) neighborhood size δ

- different clustering algorithms/parameters for each preimage

Mapper in practice



Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- clustering algorithm C

f

Take the connected components of the
subgraph spanned by the vertices in the
preimage f−1(U).

Build a neighboring
graph (kNN,...)

Mapper in practice



X

f

R

I

V

Mapper

δ

Gδ = δ-neighborhood graph

M•f,δ(P, I)

Mapper in practice



Choice of parameters

→ in practice: trial-and-error

[Topological Data Analysis for Discovery in Preclinical Spinal Cord Injury and Trau-
matic Brain Injury, Nielson et al., Nature, 2015]



Choice of parameters
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f = fx, δ = 1%
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Reeb Graph

Reeb graph ∼ Mapper with extremely small resolution

R
fX



R

Mapper ∼ pixelized Reeb graph

R

Reeb Graph



Reeb Graph

x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Def: Rf (X) := X/ ∼

R
fX

[Sur les points singuliers d’une forme de
Pfaff complètement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]
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Reeb Graph

x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Def: Rf (X) := X/ ∼

X
f //

π

��

R

Rf (X)

f̃

<<
R

fX f̃

Prop: Rf (X) is a graph when (X, f)
is Morse or of Morse type.

[Reeb Graphs: Approximation and
Persistence, Dey, Wang, DCG, 2013]

Prop: H∗(Rf (X)) = H∗(X)/H̄∗(X).

[Sur les points singuliers d’une forme de
Pfaff complètement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]



Reeb Graph

x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Def: Rf (X) := X/ ∼

X
f //

π

��

R

Rf (X)

f̃

<<
R

fX f̃

Prop: Rf (X) is a graph when (X, f)
is Morse or of Morse type.

[Reeb Graphs: Approximation and
Persistence, Dey, Wang, DCG, 2013]

Prop: H∗(Rf (X)) = H∗(X)/H̄∗(X).

horizontal homology ∼ ’those homology classes that
are included in a finite union of levelsets of f ’

[Sur les points singuliers d’une forme de
Pfaff complètement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]



Q: What is the Reeb graph of the height function on the trefoil knot?

Reeb Graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Dg f̃ provides a bag-of-features descriptor for Rf (X):

Ord0f̃ ←→ downward branches

Rel1f̃ ←→ upward branches

Ext0f̃ ←→ trunks (cc)

Ext1f̃ ←→ loops

ordinary / relative

extended
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0
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Dg f̃ provides a bag-of-features descriptor for Rf (X):

Ord0f̃ ←→ downward branches

Rel1f̃ ←→ upward branches

Ext0f̃ ←→ trunks (cc)

Ext1f̃ ←→ loops

ordinary / relative

extended

... and distance to diagonal measures the (in-)stability
of each feature w.r.t. perturbations of (X, f)



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence,

ordinary / relative

extended

using family of excursion sets (sublevel then superlevel sets) of Reeb graph

Ord: appears/dies in sublevels

Rel: appears/dies in superlevels

Ext: appears in sublevels, dies in superlevels



Graph Stratification

Reeb graph is a telescope (stratified space)

a−1 a0 a1

Y0

Y1

X0 X1

Y0 × [a−1, a0] ∪ψ−1
X0 × {a0} ∪φ0

Y1 × [a0, a1] ∪ψ0
X1 × {a1} ∪φ1

...

φ0
ψ0 φ1

f̃

Idea: deform the Reeb graph so that it becomes the Mapper and track
the changes in the persistence diagram



Operation 1: Merge Ma,b

a

a

b

b

(Yi−1 × [ai−1, ā]) ∪fi−1 (f̃−1([a, b])× {ā}) ∪gj (Yj × [ā, aj+1])

(Yi−1× [ai−1, ai])∪ψi−1 (Xi×{ai})∪φi ...∪ψj−1 (Xj ×{aj})∪φj (Yj × [aj , aj+1])

ā

ā



Operation 2: Split Spai,ε
(Yi−1 × [ai−1, ai]) ∪ψi−1 (Xi × {ai}) ∪φi (Yi × [ai, ai+1])

(Yi−1 × [ai−1, ai − ε]) ∪ψai−εi−1

(Xi × {ai − ε}) ∪id (Xi × [ai − ε, ai + ε]) ∪id

(Xi × {ai + ε}) ∪
φ
ai+ε
i

(Yi × [ai + ε, ai+1])

ai

ai

ai − ε

ai − ε

ai + ε

ai + ε



Operation 3: Shift Shai,ε
(Yi−1 × [ai−1, ai]) ∪ψi−1 (Xi × {ai}) ∪φi (Yi × [ai, ai+1])

(Yi−1 × [ai−1, ai + ε]) ∪ψi−1 (Xi × {ai + ε}) ∪φi (Yi × [ai + ε, ai+1])

ai

aj

ai + ε1

aj + ε2

ai + ε1

ai
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Let I be the cover of im(f)
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- M ′I is the union of all MIk for I ∈ I



Formula Reeb graph → Mapper

Let I be the cover of im(f)

- MI is the union of all MIk and MIk,k+1
for I ∈ I

I1 I1,2
I2 I2,3

I3 I3,4
I4

I

- SpI is the union of all Spε,ā with ε small

- ShI is the union of all Shε1,ā+ε and Shε2,ā−ε with ε1, ε2 small

Mf(X, I) =M ′
I ◦ ShI ◦ SpI ◦MI(Rf(X))

- M ′I is the union of all MIk for I ∈ I
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Let I be the cover of im(f)

Mf(X, I) =M ′
I ◦ ShI ◦ SpI ◦MI(Rf(X))



Formula Reeb graph → Mapper

Let I be the cover of im(f)

Mf(X, I) =M ′
I ◦ ShI ◦ SpI ◦MI(Rf(X))

I1

I2
I1,2



QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

Def: Dg Mf (X, I) := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I
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Def: Dg Mf (X, I) := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Thm: Dg Mf (X, I) provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches

Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)

Ext1 ←→ loops



QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

Let I minimal cover of Imf ⊆ R. For I ∈ I, let I = I− t Ĩ t I+

QOrd
I =

⋃
I∈I

Q+

Ĩ∪I+

QRel
I =

⋃
I∈I

Q−
I−∪Ĩ

QExt
I =

⋃
I,J∈I
I∩J 6=∅

Q−I∪J



Descriptor for Mapper

Let I ⊆ R interval

Q+
I = {(x, y) ∈ R2 | x ≤ y ∈ I}

Q−I = {(x, y) ∈ R2 | y < x ∈ I}

I

Q+
I

Q−I

R





Def: Dg Mf (X, I) := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Thm: Dg Mf (X, I) provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches

Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)

Ext1 ←→ loops

Cor: Dg Mf (X, I) = Dg f̃ whenever the resolution r of I is smaller than
the smallest distance from Dg f̃ \∆ to the diagonal ∆.

Structure of Mapper



Stability of Mapper

Def: Dg Mf (X, I) := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Thm: Dg Mf (X, I) provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches

Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)

Ext1 ←→ loops

... and distance to staircase boundary mea-
sures (in-)stability of each feature w.r.t.
perturbations of (X, f, I)







Dg Mf (X, I) Dg Mf ′ (X, I)←→m :

costI(m)

Stability of Mapper

Def: dI(Dg Mf (X, I), Dg Mf (X, I)) := infm costI(m)



Dg Mf (X, I) Dg Mf ′ (X, I)←→m :

Thm: For any functions f, f ′ : X → R of Morse type,

dI(Dg Mf (X, I), Dg Mf ′(X, I)) ≤ ‖f − f ′‖∞
costI(m)

Stability of Mapper

Def: dI(Dg Mf (X, I), Dg Mf (X, I)) := infm costI(m)



Dg Mf (X, I) Dg Mf ′ (X, I)←→m :

Thm: For any functions f, f ′ : X → R of Morse type,

dI(Dg Mf (X, I), Dg Mf ′(X, I)) ≤ ‖f − f ′‖∞
costI(m)

Extensions to:

• perturbations of X

• perturbations of I

Stability of Mapper

Def: dI(Dg Mf (X, I), Dg Mf (X, I)) := infm costI(m)



serves as a proxy for the geometry of the underlying space

Mapper in practice

Input:

• Compute pullback cover U of P : U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various con-
nected components in G

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

- point cloud P ⊆ X with metric dP

• Compute neighborhood graph G = (P,E)

(intersections materialized
by data points)

- continuous function f : P → R
- cover I of im(f) by open intervals: imf ⊆

⋃
I∈I I

→ connected cover V



Mapper in practice

X

f

R

I

V

Mapper

δ

Gδ = δ-neighborhood graph

M•f,δ(X̂n, I)



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Questions:

• Statistical properties of the estimator M•f,δ(X̂n, I) ?

• Convergence to the ground truth Rf (X) in db? Deviation bounds?

f
+ cover I

M•f,δ(X̂n, I)

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

Let Mf,δ(X̂n, I) denote Mf (Gδ, I)

1. Link between Rf (X) and Mf,δ(X̂n,V)?

2. Link between Mf,δ(X̂n, I) and M•f,δ(X̂n, I)?

X → Gδ(X̂n)

intersections given by metric graph → intersections given by points

support → δ-neighborhood graph Reeb graph → Mappera. b.

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

1. Link between Rf (X) and Mf,δ(X̂n, I)?

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

support → δ-neighborhood graph

Thm: If 4dH(X, X̂n) ≤ δ ≤ min
{

1
4 rch(X), 1

4ρ(X)
}

db(Dg Rf (X),Dg Rf (Gδ(X̂n))) ≤ 2ω(δ)

1. Link between Rf (X) and Mf,δ(X̂n, I)?

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

support → δ-neighborhood graph

Thm: If 4dH(X, X̂n) ≤ δ ≤ min
{

1
4 rch(X), 1

4ρ(X)
}

db(Dg Rf (X),Dg Rf (Gδ(X̂n))) ≤ 2ω(δ)

Reeb graph → Mapper

Thm: db(Dg Rf (Gδ(X̂n)),Dg Mf,δ(X̂n, I)) ≤ r

1. Link between Rf (X) and Mf,δ(X̂n, I)?

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

1. Link between Rf (X) and Mf,δ(X̂n, I)?

ω: modulus of continuity of f

ω : δ 7→ sup{|f(x)− f(y)| : d(x, y) ≤ δ}
rch: reach of X.

ρ: radius of convexity of X: largest r s.t. geodesic balls of
radius r are convex.

dH : Hausdorff distance.

Statistics for Mapper



Statistics for Mapper

Def: The distance function to a compact M ⊂ Rd, dM : Rd → R+ is:

dM (x) = inf
p∈M
‖x− p‖

Def: The Hausdorff distance between two compact sets M,M ′ ⊂ Rd is:

dH(M,M ′) = sup
x∈Rd

|dM (x)− dM ′(x)|

dH(M,M ′)

M

M ′



Statistics for Mapper

M
x

ΓM (x)

ΓM (x) = {y ∈M : dM (x) = ‖x− y‖}

Def: The medial axis of M :

M(M) = {x ∈ Rd : |ΓM (x)| ≥ 2}



Statistics for Mapper

M

M(M)

rch(M)

Def: The reach of M , rch(M) is the smallest distance from M(M) to M :

rch(M) = inf
y∈M(M)

dM (y)



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

2. Link between Mf,δ(X̂n, I) and M•f,δ(X̂n, I)?

intersections given by metric graph → intersections given by points

Thm: If there are no intersection-crossing edges, then

Mf,δ(X̂n, I) = M•f,δ(X̂n, I)

Statistics for Mapper



Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

X̂n is random ⇒ dH(X, X̂n) is random

Hyp: µ is (a, b)-standard

µ(B(x, r)) ≥ min{1, arb} for all x ∈ X and r > 0

Then it is known that, for n sufficiently large, one
has with high probability:

dH(X, X̂n) ≤
(

2logn
an

)1/b

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Thm: If µ is (a, b)-standard and f is c-Lipschitz then for:

sup
µ∈P

E
[
db

(
Dg M•f,δn (X̂n, I(gn, rn)), Dg Rf (X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b, c.

f
+ cover I

δn = 4
(

2 logn
an

)1/b

, gn ∈
(

1
3 ,

1
2

)
, rn = cδn

gn
, one has ∀ε > 0

More generally: rn = ω(δn)/gn

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

Moreover, the estimator DgF(X̂n) is minimax optimal (up to a log n
factor) on the space P of (a, b)-standard probability measures on X.

Thm: For any estimator R̂, one has:

sup
µ∈P

E
[
db

(
Dg R̂, Dg Rf (X)

)]
≥ C

(
1

n

)1/b

,

where C depends only on a, b.

Consequence of Le Cam’s lemma

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Thm: If µ is (a, b)-standard and f is c-Lipschitz then for:

sup
µ∈P

E
[
db

(
Dg M•f,δn (X̂n, I(gn, rn)), Dg Rf (X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b, c.

f
+ cover I

δn = 4
(

2 logn
an

)1/b

, gn ∈
(

1
3 ,

1
2

)
, rn = cδn

gn
, one has ∀ε > 0

More generally: rn = ω(δn)/gn

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)

→ subsampling to tune δn: let β > 0 and take s(n) = n
log(n)1+β

δn

δn := dH(X̂
s(n)
n , X̂n) where X̂

s(n)
n is a subset of X̂n of size s(n)

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)

→ subsampling to tune δn: let β > 0 and take s(n) = n
log(n)1+β

δn

Thm: If µ is (a, b)-standard and f is c-Lipschitz, then for:

sup
µ∈P

E
[
db

(
Dg M•f,δn (X̂n, I(gn, rn)), Dg Rf (X)

)]
≤ C

(
log(n)2+β

n

)1/b

,

where C depends only on a, b, c.

δn := dH(X̂
s(n)
n , X̂n) where X̂

s(n)
n is a subset of X̂n of size s(n)

Statistics for Mapper

δn = dH(X̂
s(n)
n , X̂n), gn ∈

(
1
3 ,

1
2

)
, rn = cδn

gn
, one has ∀ε > 0



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)
δn

Ex : PCA filter

Statistics for Mapper

Π1 : orthonormal projection onto first principal direction of covariance operator

Π̂1 : orthonormal projection onto first principal direction of empirical covariance operator

E
[
db
(

RΠ1(X ),M•
Π̂1(X̂n),δn

(X̂n, I(gn, rn))
)]

.
(

(log(n))2+β

n

)1/b

∨ 1√
n

[PCA-Kernel Estimation, Biau, Mas, Statistics & Risk Modeling
with Applications in Finance and Insurance, 2012]



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)
δn

Statistics for Mapper

Thm: If µ is (a, b)-standard and f is c-Lipschitz, then for:

sup
µ∈P

E
[
db

(
Dg M•f,δn (X̂n, I(gn, rn)), Dg Rf (X)

)]
≤ C

(
log(n)2+β

n

)1/b

,

where C depends only on a, b, c.

δn = dH(X̂
s(n)
n , X̂n), gn ∈

(
1
3 ,

1
2

)
, rn = cδn

gn
, one has ∀ε > 0

Get confidence region with E [d(·, ·)] =
∫
α
P(d(·, ·) ≥ α)dα



Multivariate case: filter-based pseudometric

Def: The filter-based pseudometric df : M ×M → R is defined as

df (x, x′) = infγ∈Γ(x,x′) diamY (f ◦ γ),

where Γ(x, x′) denotes the set of all continuous paths γ : [0, 1] → M such that
γ(0) = x and γ(1) = x′, and diamY denotes the diameter of a subset of Y .

Def: The Gromov-Hausdorff metric dGH between (M,df ), (M ′, df ′) is defined as

dGH(M,M ′) =
1

2
infC sup(x,x′),(y,y′)∈C |df (x, y)− df ′(x′, y′)|,

where C denotes the set of all correspondences between M and M ′ (subsets of
M ×M ′ s.t. projections onto M and M ′ are surjective).

[Topological Analysis of Nerves, Reeb
Spaces, Mappers, and Multiscale Map-
pers, Dey, Mémoli, Wang, SoCG, 2017]



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

δn

Statistics for Mapper in general

Question:

How to assess distance confidence?

E [dGH(Mf ,Rf) ≤ ?] ≥ 0.95

I



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

δn

Statistics for Mapper in general

Thm: If µ and f#µ are (a, b)-standard, then for δn as before, one has:

E
[
dGH(M•f,δn (X̂n, I),Rf (X))

]
≤ 5 · E [res(I)] +Cω

(
log(n)2+β

n

)1/b

,

where C depends only on a, b, and res denotes the resolution of the cover I, i.e., the
diameter of its elements

I

Moreover, using covers with hypercubes or K-means, or quantized Distance-
to-Measure allows to bound E [res(I)]. [A k-points-based distance for robust geometric inference,

Brecheteau, Levrard, Bernouilli, 2020]



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

δn

Statistics for Mapper in general

I

Thm: If w(u) ≤ cuγ for some c > 0, γ ∈ (0, 1), and for a cover I given by
thickening a K-means partition in RD:

E [res(I)] ≤ K−(2γ2)/(2γb+b2) +

(
KD

n

)γ/(2b+4γ)



Other works

Another line of work is about the interleaving distance between Mappers
and Reeb spaces seen as cosheaves Open(Rd)→ Set.

Prop: For f : X → Rd, dI(C(Rf (X)), C(Mf (X, I))) ≤ res(I)

Prop: For f : X → R,

limn→+∞ P
(
dI(C(Rf (X)), C(Mf (X̂n, I))) ≤ res(I)

)
= 1

[Convergence between categorical representations of Reeb
space and Mapper, Munch, Wang, SoCG, 2016]

[Probabilistic convergence and stability of random Mapper
graphs, Brown et al., JACT, 2020]
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Chromosome conformation captureExperiments



Chromosome conformation capture

Formal identification of cell cycle with 95% confidence

Experiments



Experiments Spinal cord data



Experiments Spinal cord data



Experiments Spinal cord data



Gene expression (SPLiTseq) and gene accessibility (ATACseq) of
single cells of one healthy individual for 3 sections of spinal cord

Experiments Spinal cord data



Machine learning classifier

Filter = confidence of Random Forest classifier (in R3)

Experiments



Machine learning classifier

Sitting

Standing

Walking up

Walking

Walking down

Intermediate
between laying

and sitting

Laying

Filter = confidence of Random Forest classifier (in R6)

Experiments



Thanks!!


