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Mapper in applications

Two types of applications:

e clustering principle: identify statistically relevant sub-

populations through patterns (flares, loops)

e feature selection
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3d shapes classification
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Topological exploratory data analysis

Us

Def: An open cover of a topological space X is a collection U = (U;);es of
open subsets U, C X, © € I where I Is a set, such that X C U,;c1U;.

Def: Given a cover of a topological space X, U = (U;);e;, its nerve is the
abstract simplicial complex C'(U) whose vertex set is U and s.t.

o= [U;,Ui,,..., U] € C(U) ifand only if N5_,U;, # 0.



[On the imbedding of systems of

Topological exploratory data analysis i o Yo

Borsuk, Fund. Math., 1948]

Us

Us U

The Nerve Theorem: Let U/ = (U;);c be a finite open cover of a subset X
of R? such that any intersection of the U;'s is either empty or contractible.

Then X and C(U) are homotopy equivalent. In particular, their homology
groups are iIsomorphic.

For non-experts, you can replace:

- ‘contractible’ by 'convex’,
- "are homotopy equivalent’ by 'same topological invariants’.
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Mapper in the continuous setting

Input:
- topological space X

- continuous function f: X — Y

- cover Z of im(f) by open intervals: im(f) C (J; .71

Method:
o Compute pullback cover U of X: U = {f~1(I)}1er

e Refine U4 by separating each of its elements into its various con-
nected components in X — connected cover V

e The Mapper is the nerve of V:
- 1 vertex per element V € V
- 1 edge per intersection VNV’ £0, V.,V €V
- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi#£0, Vo, -, VL €V



Mapper in practice

Input:
- point cloud P C X with metric dp
- continuous function f: P —- R

- cover Z of im(f) by open intervals: imf C J; ., 1

Method:
o Compute pullback cover U of P: U = {f~1(I)}1ez

e Refine U by separating each of its elements into its various clus-
ters, as identified by a clustering algorithm — connected cover V

o The Mapper is the nerve of Vi intersections are assessed by the

- 1 vertex per element V € V presence of common data points

- 1 edge per intersection VNV’ £0, V.,V €V
- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi#£0, Vo, -, VL €V
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Parameters:
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- clustering algorithm C



Mapper in practice

Parameters: f
- function f : P - R <= lens or filter
- cover T of im(f) by open intervals A/
- clustering algorithm C
00 ¢ 09 G0000 O o essoePt®
Classical choices:
e density estimates e Eigenfunctions of graph laplacians.

o centrality f(x) = ZyEX d(z,y) e Functions detecting outliers.

o eccentricity f(z) = max,ex d(7,Y¥) o Distance to a root point.

e PCA coordinates e Prior knowledge
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Parameters:

- function f: P - R

- cover Z of im( f) by open intervals

- clustering algorithm C \

_ range scale
Uniform cover:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)




Mapper in practice

Parameters:

- function f: P - R

- cover Z of im( f) by open intervals

- clustering algorithm C \

_ range scale
Uniform cover:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

Intuition:
- small » — finer resolution, more nodes.
- large r — rougher resolution, less nodes.

- small g — less connectivity, nerve dimension small.
- large g — more connectivity, nerve dimension large.

g = 30%



Mapper in practice

Parameters:

- function f: P - R
- cover Z of im(f) by open intervals

- clustering algorithm C

Classical choices:

- any clustering algorithm works
- different clustering algorithms/parameters for each preimage

- for theoretical reasons, we prefer to work with

hierarchical clustering with (predefined) neighborhood size ¢

|

geometric scale



Mapper in practice

A
Parameters: o ® 000
prone-- e LARRTEE ;
" ® :
- function f: P - R . @ '. - f
;o .
- cover Z of im(f) by open intervals R . o
e 9.'.............' ........
. . ®
- clustering algorithm C
Build a neighboring Take the connected components of the
graph (kNN,...) subgraph spanned by the vertices in the

preimage f~'(U).



Mapper in practice

Mapper
M5 5 (P, 1)

(GGs = o-neighborhood graph




Choice of parameters

— In practice: trial-and-error

high-dimensional data sets**®, This is performed automatically within the
software, by deploying an ensemble machine learning algorithm that iterates
through overlapping subject bins of different sizes that resample the metric space
(with replacement), thereby using a combination of the metric location and
similarity of subjects in the network topology. |After performing millions of
iterations, the algorithm returns the most stable, consensus vote for the resultin
‘solden network’ (Reeb graph), representing the multidimensional data shape'

| Topological Data Analysis for Discovery in Preclinical Spinal Cord Injury and Trau-
matic Brain Injury, Nielson et al., Nature, 2015]










Reeb Graph

Reeb graph ~ Mapper with extremely small resolution




Reeb Graph

Mapper ~ pixelized Reeb graph
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R b G h [Sur les points singuliers d’une forme de
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[Sur les points singuliers d’une forme de

Reeb G ra ph Pfaff complétement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]

T~y <= [ f(z) = f(y) and z,y belong to same cc of f~'({f(z)}) ]
Def: Rf(X) = X/ ~

Prop: R;(X) is a graph when (X, f)
iIs Morse or of Morse type.

Prop: H.(R;(X)) = H.(X)/H.(X).

[Reeb Graphs: Approximation and
Persistence, Dey, Wang, DCG, 2013]




[Sur les points singuliers d’une forme de

RGEb G ra ph Pfaff complétement intégrable ou d’une
fonction numérique, Reeb, C. R. Acad.
Sci. Paris, 1946]

T~y <= [ f(z) = f(y) and z,y belong to same cc of f~'({f(z)}) ]
Def: Rf(X) = X/ ~

X > R
7 l /
R Ry (X)

Prop: R;(X) is a graph when (X, f)
iIs Morse or of Morse type.

horizontal homology ~ 'those homology classes that
are included in a finite union of levelsets of f'

Prop: H.(R;(X @X

[Reeb Graphs: Approximation and
Persistence, Dey, Wang, DCG, 2013]




Reeb Graph

Q: What is the Reeb graph of the height function on the trefoil knot?

A




Graph Descriptor

Dg f provides a bag-of-features descriptor for R (X):

Ordg f <— downward branches Extof <— trunks (cc)
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e ordinary / relative
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Dg f provides a bag-of-features descriptor for R (X):

Ordg f <— downward branches Extof <— trunks (cc)

Rellf <— upward branches Extlf +— loops

.. and distance to diagonal measures the (in-)stability e ordinary / relative

of each feature w.r.t. perturbations of (X, f) m extended
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Graph Descriptor

Construction uses extended persistence,

using family of excursion sets (sublevel then superlevel sets) of Reeb graph

Ord: appears/dies in sublevels

e ordinary / relative

Rel: appears/dies in superlevels

Ext: appears in sublevels, dies in superlevels ® extended



Graph Stratification

Reeb graph is a telescope (stratified space)

Y() X [CL_l,CL()] U¢_1 X() X {CLQ} U¢O Yl X [ag,al] U¢o X1 X {@1} U¢1

~

a_1q ago aq

Idea: deform the Reeb graph so that it becomes the Mapper and track
the changes in the persistence diagram



Operation 1: Merge M,

(Yic1 X [ai—1,a:]) Uy, _y (Xi X {ai}) Up; .. Uy, (Xj X {a;}) Ug; (Y X [aj,a;j41])




Operation 2: Split Sp,,

(Yie1 X [ai—1,a5]) Uy, _y (X X {ai}) Ug, (Yi X [as, ait1])

'

(Yic1 X |ai—1,a; — €]) U o= (X x {a;i —€}) Uiq (X5 X [a; — €,a; + €]) Uia
1—1

(Xi x{ai+€}) U a;+c (Yi X [ai + € aiya])




Operation 3: Shift Sh,, .

(Yie1 X [ai—1,a:]) Uy, _y (Xi X {ai}) Ug, (Yi X [a;, ait1])

'

(Yic1 X [ai—1,ai +€]) Uy, _; (Xi X {ai +€}) Ug, (Y X |a; + €, ait1])
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Let 7 be the cover of im(f)

Mf(X, I) — Mé O Sh] O sz O MI(Rf(X))



Descriptor for Mapper
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Descriptor for Mapper

Def: DgM;(X,Z) := Ordf \ Q2" URelf \ Q' UExtf \ Q7™
Thm: DgM((X,Z) provides a bag-of-features descriptor for M (X, 7):

Ordy <— downward branches Extg <— trunks (cc)

Rely «— upward branches Ext; <— loops




Descriptor for Mapper

Let Z minimal cover of Inf CR. For [ € Z, let I=1- LUTUIT

OI‘d U Q
TUI+ Ext —
IeZ QI — U QIUJ
I,JET
17 = U Q-7 InJ#0
Iel

-~

Rel
7z




Descriptor for Mapper

Let / C R interval

Q7 ={(z,y) €R
Qr ={(z,y) €R







Structure of Mapper

Def: DgM;(X,Z) := Ordf \ Q2" URelf \ Q' UExtf \ Q7™

Thm: DgM((X,Z) provides a bag-of-features descriptor for M (X, 7):

Ordg «—— downward branches

Rely «— upward branches

Extg <— trunks (cc)

Ext, «— loops

Cor: DgM(X,7) = Dg f whenever the resolution r of Z is smaller than
the smallest distance from Dg f \ A to the diagonal A.



Stability of Mapper

Def: DgM/(X,Z) := Ordf \ Q2" URelf \ QF°' UExtf \ QF*

Thm: DgM((X,Z) provides a bag-of-features descriptor for M (X, 7):

Ordy <— downward branches Extg <— trunks (cc)
Rely «— upward branches Ext; <— loops
.—
.. and distance to staircase boundary mea- ?
sures (in-)stability of each feature w.r.t.
perturbations of (X, f,7) e










Stability of Mapper

Def: dz(DgM;(X,Z), DgM;(X,T)) := inf,, costz(m)

costz(m)
4
LA
B o

)

\

m: DgM(X,Z) «— DgM (X, T)




Stability of Mapper

Def: dz(DgM;(X,Z), DgM;(X,T)) := inf,, costz(m)

Thm: For any functions f, f' : X — R of Morse type,

dz(DgMy(X,Z), DgMy (X, 1)) < |If — f'll

costz(m)
4
LA
B o

)

\

m: DgM(X,Z) «— DgM (X, T)




Stability of Mapper

Def: dz(DgM;(X,Z), DgM;(X,T)) := inf,, costz(m)

Thm: For any functions f, f' : X — R of Morse type,

dz(DgMy(X,Z), DgMy (X, ) < [If = f'lo
costz(m)

Extensions to:

e perturbations of X r e

e perturbations of Z

)

\

m: DgM(X,Z) «— DgM (X, T)




Mapper in practice

Input:
- point cloud P C X with metric dp
- continuous function f: P —- R

- cover Z of im(f) by open intervals: imf C J; ., 1

Method: e Compute neighborhood graph G = (P, F)
o Compute pullback cover U of P: U = {f~1(I)}1ez

e Refine U4 by separating each of its elements into its various con-
nected components in G — connected cover V

e The Mapper is the nerve of V: (intersections materialized

- 1 vertex per element V € V by data pOintS)
- 1 edge per intersection VNV’ £0, V.,V €V
- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi#£0, Vo, -, VL €V



Mapper in practice

AR
0
Mapper
Jh . ppA
Mf75(Xn,I)
""""" (GGs = o-neighborhood graph




Statistics for Mapper

A

Questions:

)

./ﬂ

n points sampled
I.I.d. according to L.

+ cover L

e Statistical properties of the estimator M},(;(f(n,I) ?

@

o 0@ LN
®eo0®

®
®

®

®
@

SR R OO

>

~»

=
B
:

e Convergence to the ground truth R¢(X) in dp? Deviation bounds?

s



Statistics for Mapper

‘é;,/@
A A
o °* % o, ®
° ° QQQ
’/\‘ ® o @@/ Q
°® R o ’* @
. . ,
n points sampled |, Xn
. . . P .. @
I.l.d. according to u. | « . °® o °
] ° Y @@
o 0 |
+ cover L o o,
< ®
/

A

Let M 5(X,,,Z) denote M ((Gs,7)

1. Link between R(X) and My 5(X,,V)?

a. support — d-neighborhood graph b. Reeb graph — Mapper
X — G(s(Xn)

AN AN

2. Link between My 5(X,,Z) and M$ (X, Z)?

intersections given by metric graph — intersections given by points



Statistics for Mapper

A

1. Link between R¢(X) and My 5(X,,Z)7

./ﬂ

n points sampled
I.I.d. according to L.

+ cover L

A

®eo0®

@
®
®
®
@

SR R OO



Statistics for Mapper

A A e ©
./ﬂ .0. * ]
_ . N * b
n points sampled |, Xn °
i.i.d. according to u. | %
. + cover 1L ° °o.

A

1. Link between R¢(X) and My 5(X,,Z)7
support — 0-neighborhood graph
Thm: If 4dy (X, X,,) < < min {Lrch(X), 1p(X)}
dy(Dg Ry(X), DgRy(G5(Xn))) < 2w(5)

¢
®
@
®
®
®



Statistics for Mapper

A A e ©
./ﬂ .0. * ]
_ . N * b
n points sampled |, Xn °
i.i.d. according to u. | %
. + cover 1L ° °o.

A

1. Link between R¢(X) and My 5(X,,Z)7
support — 0-neighborhood graph

Thm: If 4dy (X, X,,) < < min {Lrch(X), 1p(X)}
dy(DgR(X), Dg Ry (G5(Xn))) < 2w(6)

Reeb graph — Mapper

A A

Thm: db(Dng(G(s(Xn)),Dng’(s(Xn,Z)) <7

SR R OO



Statistics for Mapper

o ?
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A A
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n points sampled . X, °
- . Y \
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1. Link between R¢(X) and My 5(X,,Z)7

w: modulus of continuity of f

w:d — sup{|f(z) — f(y)| : d(z,y) <4}
rch: reach of X.

p: radius of convexity of X: largest r s.t. geodesic balls of
radius r are convex.

dg: Hausdorff distance.



Statistics for Mapper

M

Def: The distance function to a compact M C R% dy : R — R, 1s:

du(x) = inf o

Def: The Hausdorff distance between two compact sets M, M’ C R? is:

dpg (M, M') = sup dy (z) — dp ()]
xR



Statistics for Mapper

Fyv(z) =1y € M : du(z) = ||z — yll}

Def: The medial axis of M:

M(M) = {z € R* : [T ()] > 2}




Statistics for Mapper

rch(M)

Def: The reach of M, rch(M) is the smallest distance from M (M) to M:

reh(M) = inf du(y)
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2. Link between My 5(Xy,Z) and M$ 5(X,,,Z)?

Intersections given by metric graph — intersections given by points

Thm: If there are no intersection-crossing edges, then
Mf,5(Xnvz) — },5<X’mz)
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Statistics for Mapper

A A e ©
./\‘ .0. * ]
_ . N * b
n points sampled |, Xn °
i.i.d. according to u. | %
. + cover 1L ° °o.

A

X, is random = dp (X, X,,) is random
Hyp: 4 is (a, b)-standard
w(B(x,r)) > min{l,ar’} for all z € X and r > 0

Then it is known that, for n sufficiently large, one
has with high probability:

. 1/b
dH(X,Xn) S (QIOg’I’L)

an

SR R OO



Statistics for Mapper
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A A
. °° L. b
I . [ . @QQQ QO
. . - P “
n points sampled |, Xn °
- . () PY @,.@ ®
I.i.d. according to (. | « . e *e o
+ cover T e o.°
i 5
f ®
®
Thm: If u is (a,b)-standard and f is c-Lipschitz then for:
1/b
2logn 1 1 dn,
5n:4( aqu ) ,gnE(g,ﬁ),rn:Cg—n, one has Ve > 0

. 5 logn 1/
sup E [db (Dng,(Sn(Xn,I(gn,rn)), Dng(X))} <C ( ) |
neP n

where C' depends only on a, b, c.

More generally: 7, = w(d,)/gn
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A A,
./\‘ .0.
n points sampled |, Xn
i.i.d. according to u. |
7 + cover 1L c °.

AN

SR R OO

Moreover, the estimator Dg F(X,,) is minimax optimal (up to a logn
factor) on the space P of (a,b)-standard probability measures on X.

Thm: For any estimator R, one has:

sup E [db (Dg R, Dg Rf(X))}

pneP

where C depends only on a, b.

Consequence of Le Cam’s lemma
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,gnE(g, %),Tnzcg(s—:, one has Ve > 0

. 5 logn 1/
sup E [db (Dng’(Sn(Xn,I(gn,rn)), Dng(X))} <C ( ) |
neP n

where C' depends only on a, b, c.

More generally: 7, = w(d,)/gn
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< °
f
®
— subsampling to tune d,: let 8 > 0 and take s(n) = =

log(n)!+7

5, = dp(X5™ ) X,)) where X5 is a subset of X,, of size s(n)
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A A,
... o
n points sampled |, Xn
i.i.d. according to 1t | «
o LIPS
.f

— subsampling to tune §,: let 8 > 0 and take s(n) =

®
; @/@
® ®
®
®
@ ®

° I(gn, 'rn) @ \@@

n

10g(n)1+5

5, = dp(X5™ ) X,)) where X5 is a subset of X,, of size s(n)

Thm: If y is (a,b)-standard and f is c-Lipschitz, then for:

6n = du (X", X0), gn € (3, 3)0 Tn =

pneP

where C' depends only on a, b, c.

con,
gn '

sup E |dy (DgM}5, (Xn, Z(gn, ), DgRy(X))] <

°(

one has Ve > 0

log(n)?+F

n

>1/b
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Ex : PCA filter

II1 : orthonormal projection onto first principal direction of covariance operator

II1 : orthonormal projection onto first principal direction of empirical covariance operator

Y n

. 1/b
E [db (Rnl(?()aMfﬁl(X ),6 (Xn,I(gn,"“n)))] < (Uog(n))Hﬁ) v

Si-

|PCA-Kernel Estimation, Biau, Mas, Statistics & Risk Modeling
with Applications in Finance and Insurance, 2012]
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Thm: If p is (a,b)-standard and f is c-Lipschitz, then for:

5n:dH(X;(N)7Xn),gn€ (%7 %),Tn:%1 one has Ve > 0

. g log(n) >\ */°
sup E [db (Dng’(;n (Xn,Z(gn,Tn)), Dng(X))} <C ( ) :
pneP n

where C' depends only on a, b, c.

Get confidence region with E [d(-,-)] = | P(d(-,-) > a)do



Multivariate case: filter-based pseudometric

[ Topological Analysis of Nerves, Reeb
Spaces, Mappers, and Multiscale Map-
pers, Dey, Mémoli, Wang, SoCG, 2017]

Def: The filter-based pseudometric ds : M X M — R is defined as

de(z,z') = inf er(y,,) diamy (f o),
where T'(z,z") denotes the set of all continuous paths v : [0,1] — M such that
v(0) = x and v(1) = z’, and diamy denotes the diameter of a subset of Y.

Def: The Gromov-Hausdorff metric dou between (M, dy), (M',ds/) is defined as

1.
d(}H(]\4'7 M/) = §1IlfC Sup(x’x/)’(y,y/)gc‘df(x,y) — df/ (a:’,y,)\,

where C' denotes the set of all correspondences between M and M’ (subsets of
M x M’ s.t. projections onto M and M’ are surjective).



Statistics for Mapper in general

oo
o * .o /\g
—n ) S
n points sampled |, Xn ° 5
i.i.d. according to 1t | « % In %
° . o L
o o ¢°
47 )
v [dGH(Mf, Rf) < 7] > 0.95
Question:

How to assess distance confidence?



Statistics for Mapper in general

;%,@
. ° °* L. E/
° O
’/\‘ ° ¢ ° @Qu QO
. P R o d @@
n points sampled |, Xn ° 5
- . Y mn ®
1.1.d. according to ° o® ®
g M| e . . L T ®e,0®
e o 9°
4 g
/

Thm: If 4 and f#u are (a, b)-standard, then for 5n as before. one has:

~ og\n 2+P 1/b
K [dGH(M},én (Xn,I),Rf(X))} S 5-E[I‘GS(I)] —I—C’w (1 g(n) i > ]

where C depends only on a, b, and res denotes the resolution of the cover Z, i.e., the
diameter of its elements

Moreover, using covers with hypercubes or K-means, or quantized Distance-

_ [A k-points-based distance for robust geometric inference,
tO Measure a”OWS tO bound E [reS (I)] ) Brecheteau, Levrard, Bernouilli, 2020]
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Thm: If w(u) < cu” for some ¢ > 0,7 € (0,1), and for a cover Z given by
thickening a K-means partition in R”:

E [res(T)] < K~/ Gy | (@

v/ (2b+47)
)



Other works

Another line of work is about the interleaving distance between Mappers
and Reeb spaces seen as cosheaves Open(R%) — Set.

Prop: For f: X — R?, d;(C(Rs(X)),C(M;(X,T))) < res(T)

Prop: For f : X — R,

lim, .o P (dI(C(Rf(X)),C(Mf(Xn,I))) < res(Z)) —1

[Convergence between categorical representations of Reeb
space and Mapper, Munch, Wang, SoCG, 2016]

| Probabilistic convergence and stability of random Mapper
graphs, Brown et al., JACT, 2020]



Experiments 85% confidence intervals
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Experiments Chromosome conformation capture
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Experiments Chromosome conformation capture

0.60 0.65 0.70 0.75 0.80 0.08 0.10 0.12 0.14 0.16 0.18
f near band f mitotic_band

Formal identification of cell cycle with 95% confidence



Experiments Spinal cord data

Cervical (C1 - C7) Section Specific

SPLiT-Seq and scATAC-Seq

Thoracic (T1-T12) Topological Representation of

scRNA-Seq and scATAC-Seq

Statistics, Alignment and
Cross Modality Integration

Lumbar (L1 - L5) Transcriptional Imputation

Sacral (S1-S5)

[Va lidation by in situ Sequencing ]

Coccygeal




Experiments Spinal cord data
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Experiments
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Experiments Spinal cord data

Gene expression (SPLiTseq) and gene accessibility (ATACseq) of
single cells of one healthy individual for 3 sections of spinal cord

Transcription Start Site

Distal Enhancer Enhancer Silencer Promoter I Exon Intron

Distal Enhancer Enhancer

Promoter

Closed Chromatin Open Chromatin



Experiments Machine learning classifier

Filter = confidence of Random Forest classifier (in R?)
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Experiments Machine learning classifier

Filter = confidence of Random Forest classifier (in R°)
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