2nd Workshop on Topological Methods in Data Analysis 4th - 6th October 2021, Heidelberg University

Topological Descriptors for Data Science and Machine Learning

Mathieu Carrière INRIA Sophia-Antipolis mathieu.carriere@inria.fr

Persistence diagrams as descriptors for data

Pros:

• strong invariance and stability:

 $d_b(\operatorname{dgm}(R(X)), \operatorname{dgm}(R(Y))) \le d_{GH}(X, Y)$

- information of a different nature
- flexible and versatile

Cons:

- slow to compare
- space of diagrams is not linear
- positive intrinsic curvature

Persistence diagrams as descriptors for data

A solution: map diagrams to Hilbert space and use kernel trick

Supervised Machine Learning

Input: n observations + responses $(x_1, y_1), \ldots, (x_n, y_n) \in X \times Y$

Supervised Machine Learning

Input: n observations + responses $(x_1, y_1), \ldots, (x_n, y_n) \in X \times Y$ **Goal:** build a predictor $f : X \to Y$ from $(x_1, y_1), \ldots, (x_n, y_n)$

Optimization problem (supervised regression / classification):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \Omega(f)$$

- ${\mathcal F}$ is the class of predictors
- $L:X\times X\to \mathbb{R}$ is the loss function
- $\Omega: \mathcal{F} \rightarrow \mathbb{R}$ is the regularizer

$L(y_i, f(x_i))$	Name	
$\mathbb{1}_{y_i \neq f(x_i)}$	zero-one	\rightarrow Bayes
$\max\{0, 1 - y_i f(x_i)\}$	hinge	\rightarrow Support Vector Machines
$\exp(-y_i f(x_i))$	exponential	ightarrow Adaptive boosting
$\log(1 + \exp(-y_i f(x_i)))$	logistic	ightarrow Logistic regression
$(y_i - f(x_i))^2$	squared	\rightarrow Least squares

Optimization problem (supervised regression / classification):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \Omega(f)$$

у·f

Optimization problem (supervised regression / classification):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \Omega(f)$$

- ${\mathcal F}$ is the class of predictors
- $L:X\times X\to \mathbb{R}$ is the loss function
- $\Omega: \mathcal{F} \to \mathbb{R}$ is the **regularizer**

 \rightarrow use regularizer to avoid overfitting

Optimization problem (supervised regression / classification):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \Omega(f)$$

- ${\mathcal F}$ is the class of predictors
- $L:X\times X\to \mathbb{R}$ is the loss function
- $\Omega: \mathcal{F} \rightarrow \mathbb{R}$ is the regularizer

 ℓ_2

Optimization problem (supervised regression / classification):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \quad \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \Omega(f)$$

- ${\mathcal F}$ is the class of predictors
- $L:X\times X\to \mathbb{R}$ is the loss function
- $\Omega: \mathcal{F} \rightarrow \mathbb{R}$ is the **regularizer**

Complexity of the minimization grows with the one of ${\mathcal F}$

Easy to control when ${\mathcal F}$ is a Reproducing Kernel Hilbert Space

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.: $\forall x \in X, \forall f \in \mathcal{H}, f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$

reproducing property

Terminology:

- feature space $\mathcal H_{\text{\rm J}}$ feature map Φ
- feature vector $\Phi(x)$

Case X Hilbert space: $\mathcal{H} = X^*, \ \Phi(x) = \langle x, \cdot \rangle_X$ Φ isometric isomorphism [Riesz] $\langle \cdot, \cdot \rangle_{\mathcal{H}} := \langle \Phi^{-1}(\cdot), \Phi^{-1}(\cdot) \rangle_X$

• kernel $k = \langle \Phi(\cdot), \Phi(\cdot) \rangle_{\mathcal{H}} : X \times X \to \mathbb{R}$

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.:

 $\forall x \in X, \ \forall f \in \mathcal{H}, \ f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$

[*Theory of Reproducing Kernels*, Aronszajn, Trans. Amer. Math. Soc., 1950]

reproducing property

Prop: Given X, the kernel of a RKHS on X is unique. Conversely, k is the kernel of at most one RKHS on X.

Thm: The function $k : X \times X \to \mathbb{R}$ is a kernel iff it is *positive (semi-)definite*, i.e. $\forall n \in \mathbb{N}, \forall x_1, \ldots, x_n \in X$, the Gram matrix $(k(x_i, x_j))_{i,j}$ is positive semi-definite.

Examples in $X = (\mathbb{R}^d, \langle \cdot, \cdot \rangle)$:

• linear: $k(x,y) = \langle x,y \rangle$ $\mathcal{H} = (\mathbb{R}^d)^*, \ \Phi(x) = \langle x,\cdot \rangle$

• polynomial: $k(x,y) = (1 + \langle x, y \rangle)^N = \sum_{\substack{n_1 + \dots + n_d = N}} {\binom{N}{n_1, \dots, n_d}} \underbrace{x_1^{n_1} \dots x_d^{n_d}}_{\propto \Phi(x)} y_1^{n_1} \dots y_d^{n_d}$ • Gaussian: $k(x,y) = \exp\left(-\frac{\|x-y\|_2^2}{2\sigma^2}\right), \ \sigma > 0. \quad \mathcal{H} \subseteq L_2(\mathbb{R}^d)$

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.:

 $\forall x \in X, \, \forall f \in \mathcal{H}, \, f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$

[A correspondence between Bayesian estimation on stochastic processes and smoothing by splines, Kimeldorf, Wahba, The Annals Math. Stat., 1970]

reproducing property

Thm: (Representer) Given RKHS \mathcal{H} with kernel k, any function $f^* \in \mathcal{H}$ minimizing $\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \Omega(\|f\|_{\mathcal{H}})$

is of the form $f^*(\cdot) = \sum_{j=1}^n \alpha_j k(x_j, \cdot)$, where $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$.

Kernel Trick

Three approaches:

• build kernel from kernels (algebraic operations)

- sum of kernels \longleftrightarrow concatenation of feature spaces

$$k_1(x,y) + k_2(x,y) = \left\langle \left(\begin{array}{c} \Phi_1(x) \\ \Phi_2(x) \end{array} \right), \left(\begin{array}{c} \Phi_1(y) \\ \Phi_2(y) \end{array} \right) \right\rangle$$

- product of kernels \longleftrightarrow tensor product of feature spaces

$$k_1(x,y)k_2(x,y) = \left\langle \Phi_1(x)\Phi_2(x)^T, \Phi_1(y)\Phi_2(y)^T \right\rangle$$

Q: prove it.

Three approaches:

- build kernel from kernels (algebraic operations)
- define explicit feature map $\Phi: X \to \mathcal{H}$ (vectorization)

[A correspondence between Bayesian estimation on stochastic processes and smoothing by splines, Kimeldorf, Wahba, The Annals Math. Stat., 1970]

Three approaches:

- build kernel from kernels (algebraic operations)
- define explicit feature map $\Phi: X \to \mathcal{H}$ (vectorization)
- define kernel from metric via radial basis function

Thm:

If $d: X \times X \to \mathbb{R}_+$ symmetric is *conditionally negative semidefinite*, i.e.:

$$\forall n \in \mathbb{N}, \ \forall x_1, \dots, x_n \in X, \ \sum_{i=1}^n \alpha_i = 0 \Longrightarrow \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \, d(x_i, x_j) \le 0,$$

then $k(x,y) = \exp\left(-\frac{d(x,y)}{2\sigma^2}\right)$ is positive definite for all $\sigma > 0$.

Q: does this apply to persistence diagrams?

Space of persistence diagrams

Persistence diagram \equiv finite multiset in the open half-plane $\Delta \times \mathbb{R}_{>0}$ Given a partial matching $M : X \leftrightarrow Y$:

cost of a matched pair $(x, y) \in M$: $c_p(x, y) := ||x - y||_{\infty}^p$

cost of an unmatched point $z \in X \sqcup Y$: $c_p(z) := ||z - \overline{z}||_{\infty}^p$

cost of M:

$$c_p(M) := \left(\sum_{(x, y) \text{ matched}} c_p(x, y) + \sum_{z \text{ unmatched}} c_p(z)\right)$$

Def: p-th diagram distance (extended metric): $d_p(X,Y) := \inf_{M:X \leftrightarrow Y} c_p(M)$

Def: bottleneck distance:

 $d_b(X,Y) := \lim_{p \to \infty} d_p(X,Y)$

Space of persistence diagrams

Persistence diagram \equiv **finite** multiset in the open half-plane $\Delta \times \mathbb{R}_{>0}$

Given a partial matching $M: X \leftrightarrow Y$:

cost of a matched pair $(x, y) \in M$: $c_p(x, y)$

 d_p is **NOT** cnsd

 \Rightarrow previous theorem is not applicable

cost of an unmatched point $z \in X \sqcup Y$: $c_p(z) := ||z - \overline{z}||_{\infty}^p$

cost of M:

$$c_p(M) := \left(\sum_{(x, y) \text{ matched}} c_p(x, y) + \sum_{z \text{ unmatched}} c_p(z) \right)$$

Def: p-th diagram distance (extended metric): $d_p(X, Y) := \inf_{M: X \leftrightarrow Y} c_p(M)$

Def: bottleneck distance:

 $d_b(X,Y) := \lim_{p \to \infty} d_p(X,Y)$

State of the Art: define ϕ explicitly (vectorization) via:

- images [Adams et al. 2015]
- finite metric spaces [Carrière et al. 2015]
- polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kališnik 2016] $\{p_1, \ldots, p_n\} \mapsto (P_1(p_1, \ldots, p_n), \ldots, P_r(p_1, \ldots, p_n), \ldots)$
- landscapes [Bubenik 2012] [Bubenik, Dłotko 2015]
- discrete measures:
 - \rightarrow histogram [Bendich et al. 2014]
 - \rightarrow convolution with fixed kernel [Chepushtanova et al. 2015]
 - \rightarrow convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]
 - \rightarrow heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

	metric				
	images	spaces	polynomials	landscapes	measures
ambient Hilbert space	$(\mathbb{R}^d, \ .\ _2)$	$(\mathbb{R}^d, \ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
positive (semi-)definiteness					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le \phi(d_p)$					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge \psi(d_p)$	×	×	×	×	×
injectivity	×	×			
universality	×	×	×	×	
algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

	metric				
	images	spaces	polynomials	landscapes	measures
ambient Hilbert space	$(\mathbb{R}^d, \ .\ _2)$	$(\mathbb{R}^d, \ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
positive (semi-)definiteness					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le \phi(d_p)$					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge \psi(d_p)$	×	×	×	×	×
injectivity	×	×			
universality	×	×	×	×	
algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

- \rightarrow convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]
- \rightarrow heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

[Persistence Images: A Stable Vector Representation of Persistent Homology, Adams et al., JMLR, 2017]

For each pixel P, compute $I(P) = \# D \cap P$

Concatenate all I(P) into a single vector PI(D)

[Persistence Images: A Stable Vector Representation of Persistent Homology, Adams et al., JMLR, 2017]

[Persistence Images: A Stable Vector Representation of Persistent Homology, Adams et al., JMLR, 2017]

Prop:

- $\|\operatorname{PI}(\mathbf{D}) \operatorname{PI}(\mathbf{D}')\|_{\infty} \leq C(w, \phi_p) d_1(\mathbf{D}, \mathbf{D}')$
- $\|\operatorname{PI}(\mathbf{D}) \operatorname{PI}(\mathbf{D}')\|_2 \le \sqrt{d}C(w,\phi_p) d_1(\mathbf{D},\mathbf{D}')$

State of the Art: define ϕ explicitly (vectorization) via:

- images [Adams et al. 2015]
- finite metric spaces [Carrière et al. 2015]
- polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kališnik 2016] $\{p_1, \dots, p_n\} \mapsto (P_1(p_1, \dots, p_n), \dots, P_r(p_1, \dots, p_n), \dots)$
- landscapes [Bubenik 2012] [Bubenik, Dłotko 2015]
- discrete measures:
 - \rightarrow histogram [Bendich et al. 2014]
 - \rightarrow convolution with fixed kernel [Chepushtanova et al. 2015]
 - \rightarrow convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]
 - \rightarrow heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

[Stable topological signatures for points on 3D shapes, Carrière, Oudot, Ovsjanikov, SGP, 2015]

[Stable topological signatures for points on 3D shapes, Carrière, Oudot, Ovsjanikov, SGP, 2015]

[Stable topological signatures for points on 3D shapes, Carrière, Oudot, Ovsjanikov, SGP, 2015]

State of the Art: define ϕ explicitly (vectorization) via:

 \rightarrow heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

Rank function is defined as $\lambda(x, y) = \operatorname{rank} \iota_x^y$

Boundaries of rank function: $\lambda_i(t) = \sup\{s \ge 0 : \lambda(t - s, t + s) \ge i\}$ Landscape $\Lambda : \mathbb{R}^2 \to \mathbb{R}$ is defined as: $\Lambda(i, t) = \lambda_{\lfloor i \rfloor}(t)$

- $\|\Lambda(\mathbf{D}) \Lambda(\mathbf{D}')\|_{\infty} \le d_{\infty}(\mathbf{D}, \mathbf{D}')$
- $\min\{1, C(D, D') \| \Lambda(D) \Lambda(D') \|_2\} \le d_2(D, D')$

State of the Art: define ϕ explicitly (vectorization) via:

- images [Adams et al. 2015]
- finite metric spaces [Carrière, O., Ovsjanikov 2015]
- polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kališnik 2016] $\{p_1, \dots, p_n\} \mapsto (P_1(p_1, \dots, p_n), \dots, P_r(p_1, \dots, p_n), \dots)$
- landscapes [Bubenik 2012] [Bubenik, Dłotko 2015]
- discrete measures:
 - \rightarrow histogram [Bendich et al. 2014]

 \rightarrow convolution with fixed kernel [Chepushtanova et al. 2015]

 \rightarrow convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]

 \rightarrow heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

 $\begin{bmatrix} 0 & 4 & 5 \\ b & 4 & 0 & 3 \\ c & 5 & 3 & 0 \end{bmatrix}$

Pb: μ_D is unstable (points on diagonal disappear) $w(x) := \arctan{(c d(x, \Delta)^r)}, c, r > 0$

Explicit Feature Map in Function Space

Pb: $\mu_{\rm D}$ is unstable (points on diagonal disappear)

$$w(x) := \arctan\left(c d(x, \Delta)^r\right)$$
, $c, r > 0$

Def: $\phi(D)$ is the density function of $\mu_D^w * \mathcal{N}(0, \sigma)$ w.r.t. Lebesgue measure: $\phi(D) := \frac{1}{\sqrt{2\pi\sigma}} \sum_{x \in D} \arctan(c \, d(x, \Delta)^r) \exp\left(-\frac{\|\cdot - x\|^2}{2\sigma^2}\right)$ $k(D, D') := \langle \phi(D), \phi(D') \rangle_{L_2(\Delta \times \mathbb{R}_+)}$

Explicit Feature Map in Function Space

[Persistence weighted Gaussian kernel for topological data analysis, Kisano, Hiraoka, Fukumizu, ICML, 2016]

Prop:

- $\|\phi(\mathbf{D}) \phi(\mathbf{D}')\|_{\mathcal{H}} \leq \operatorname{cst} d_p(\mathbf{D}, \mathbf{D}').$
- ϕ is injective and $\exp(k)$ is universal

Pb: convolution reduces discriminativity \rightarrow use discrete measure instead

$$\phi(\mathbf{D}) := \frac{1}{\sqrt{2\pi\sigma}} \sum_{x \in \mathbf{D}} \arctan(c \, d(x, \Delta)^r) \, \exp\left(-\frac{\|\cdot - x\|^2}{2\sigma^2}\right)$$
$$k(\mathbf{D}, \mathbf{D}') := \langle \phi(\mathbf{D}), \, \phi(\mathbf{D}') \rangle_{L_2(\Delta \times \mathbb{R}_+)}$$

Kernels for persistence diagrams

		metric			discrete
	images	spaces	polynomials	landscapes	measures
ambient Hilbert space	$(\mathbb{R}^d, \ .\ _2)$	$(\mathbb{R}^d, \ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
positive (semi-)definiteness					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le \phi(d_p)$					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge \psi(d_p)$	×	×	×	×	×
injectivity	×	×			
universality	×	×	×	×	
algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

One kernel to rule them all...

[*Sliced Wasserstein Kernel for persistence diagrams*, Carrière, Cuturi, Oudot, ICML, 2017]

Sliced Wasserstein Kernel

No feature map Provably stable Provably discriminative Mimicks the Gaussian kernel

View diagrams as discrete measures w/o density functions

Persistence diagrams as discrete measures

Pb: $d_p(D, D') \not \propto W_p(\mu_D, \mu_{D'})$ (W_p does not even make sense here)

$$\rightarrow \text{ given D, D', let} \qquad \bar{\mu}_{D} := \sum_{x \in D} \delta_{x} + \sum_{y \in D'} \delta_{\pi_{\Delta}(y)}$$
$$\bar{\mu}_{D'} := \sum_{y \in D'} \delta_{y} + \sum_{x \in D} \delta_{\pi_{\Delta}(x)}$$

Then, $d_p(D, D') \le W_p(\bar{\mu}_D, \bar{\mu}_{D'}) \le 2 d_p(D, D')$

Pb: $\bar{\mu}_{D}$ depends on D'

Persistence diagrams as discrete measures

Pb: $d_p(D, D') \not \propto W_p(\mu_D, \mu_{D'})$ (W_p does not even make sense here)

Solution: transfer mass negatively to μ_D :

$$\tilde{\mu}_{\mathrm{D}} := \sum_{x \in \mathrm{D}} \delta_x - \sum_{x \in \mathrm{D}} \delta_{\pi_{\Delta}(x)} \quad \in \mathcal{M}_0(\mathbb{R}^2)$$

 \rightarrow signed discrete measure of total mass zero metric: Kantorovich norm $\|\cdot\|_{K}$

Persistence diagrams as discrete measures

Hahn decomp. thm: For any $\mu \in \mathcal{M}_0(X, \Sigma)$ there exist measurable sets P, N such that:

(i)
$$P \cup N = X$$
 and $P \cap N = \emptyset$

(ii) $\mu(B) \ge 0$ for every measureable set $B \subseteq P$

(iii) $\mu(B) \leq 0$ for every measureable set $B \subseteq N$

Moreover, the decomposition is essentially unique.

$$\forall B \in \Sigma$$
, let $\mu^+(B) := \mu(B \cap P)$ and $\mu^-(B) := -\mu(B \cap N) \in \mathcal{M}_+(X)$

Def: $\|\mu\|_K := W_1(\mu^+, \mu^-)$

Prop: $\forall \mu, \nu \in \mathcal{M}_0(X)$, $W_1(\mu^+ + \nu^-, \nu^+ + \mu^-) = \|\mu - \nu\|_K$ for persistence diagrams: μ_D μ_D' $\mu_{D'}$ μ_D' μ_D' $W_1(\bar{\mu}_D, \bar{\mu}_{D'}) = \|\tilde{\mu}_D - \tilde{\mu}_{D'}\|_K$

A Wasserstein Gaussian kernel for PDs?

Thm: If $d: X \times X \to \mathbb{R}_+$ symmetric is *conditionally negative semidefinite*, i.e.:

$$\forall n \in \mathbb{N}, \ \forall x_1, \dots, x_n \in X, \ \sum_{i=1}^n \alpha_i = 0 \Longrightarrow \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \ d(x_i, x_j) \le 0,$$

then $k(x, y) := \exp\left(-\frac{d(x, y)}{2\sigma^2}\right)$ is positive semidefinite.

Pb: W_1 is not cnsd, neither is d_1

Solutions:

- relax the measures (e.g. convolution)
- relax the metric (e.g. regularization, slicing)

Sliced Wasserstein metric

[*Sliced Wasserstein Kernel for persistence diagrams*, Carrière, Cuturi, Oudot, ICML, 2017]

Special case: $X = \mathbb{R}$, μ, ν discrete measures of mass n

$$\mu := \sum_{i=1}^n \delta_{x_i}$$
, $\nu := \sum_{i=1}^n \delta_{y_i}$

Sort the atoms of μ, ν along the real line: $x_i \leq x_{i+1}$ and $y_i \leq y_{i+1}$ for all i

Then:
$$W_1(\mu,\nu) = \sum_{i=1}^n |x_i - y_i| = ||(x_1,\cdots,x_n) - (y_1,\cdots,y_n)||_1$$

 $\rightarrow W_1$ is considered and easy to compute (same with $\|\cdot\|_K$ for signed measures)

Sliced Wasserstein metric

[*Sliced Wasserstein Kernel for persistence diagrams*, Carrière, Cuturi, Oudot, ICML, 2017]

Def: (sliced Wasserstein distance) for $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$,

$$SW_1(\mu,\nu) := \frac{1}{2\pi} \int_{\theta \in \mathbb{S}^1} W_1(\pi_\theta \# \mu, \, \pi_\theta \# \nu) \, d\theta$$

where π_{θ} = orthogonal projection onto line passing through origin with angle θ .

Sliced Wasserstein metric

[*Sliced Wasserstein Kernel for persistence diagrams*, Carrière, Cuturi, Oudot, ICML, 2017]

Def: (sliced Wasserstein distance) for $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$,

$$SW_1(\mu,\nu) := \frac{1}{2\pi} \int_{\theta \in \mathbb{S}^1} W_1(\pi_\theta \# \mu, \, \pi_\theta \# \nu) \, d\theta$$

where π_{θ} = orthogonal projection onto line passing through origin with angle θ .

Props: (inherited from W_1 over \mathbb{R})

- satisfies the axioms of a metric
- well-defined barycenters, fast to compute via stochastic gradient descent, etc.
- conditionally negative semidefinite

Sliced Wasserstein kernel

[Sliced Wasserstein Kernel for persistence diagrams, Carrière, Cuturi, Oudot, ICML, 2017]

Def: Given
$$\sigma > 0$$
, for any $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$:
 $k_{SW}(\mu, \nu) := \exp\left(-\frac{SW_1(\mu, \nu)}{2\sigma^2}\right)$

1

Cor: (from SW cnsd) k_{SW} is positive semidefinite.

 \rightarrow application to persistence diagrams:

$$\mathbf{D} \mapsto \mu_{\mathbf{D}} := \sum_{x \in \mathbf{D}} \delta_x$$

$$\mapsto \tilde{\mu}_{\mathrm{D}} := \mu_{\mathrm{D}} - \pi_{\Delta} \# \mu_{\mathrm{D}}$$

$$SW_{1}(\mathbf{D},\mathbf{D}') := \int_{\theta \in S^{1}} \|\pi_{\theta} \# \tilde{\mu}_{\mathbf{D}} - \pi_{\theta} \# \tilde{\mu}_{\mathbf{D}'} \|_{K} d\theta$$

$$k_{SW}(\mathbf{D},\mathbf{D}') := \exp\left(-\frac{SW_{1}(\mathbf{D},\mathbf{D}')}{2\sigma^{2}}\right) \quad \text{- positive semidefinite}$$

$$- \operatorname{simple and fast to compute}$$

Sliced Wasserstein kernel

[*Sliced Wasserstein Kernel for persistence diagrams*, Carrière, Cuturi, Oudot, ICML, 2017]

Thm:

The metrics d_1 and SW_1 on the space \mathcal{D}_N of persistence diagrams of size bounded by N are strongly equivalent, namely: for $D, D' \in \mathcal{D}_N$,

$$\frac{1}{2 + 4N(2N - 1)} d_1(D, D') \leq SW_1(D, D') \leq 2\sqrt{2} d_1(D, D')$$

Q: prove it.

 \rightarrow application to persistence diagrams:

$$D \mapsto \mu_D := \sum_{x \in D} \delta_x$$

$$\mapsto \tilde{\mu}_{\mathrm{D}} := \mu_{\mathrm{D}} - \pi_{\Delta} \# \mu_{\mathrm{D}}$$

$$SW_1(\mathbf{D},\mathbf{D}') := \int_{\theta \in S^1} \|\pi_\theta \# \tilde{\mu}_{\mathbf{D}} - \pi_\theta \# \tilde{\mu}_{\mathbf{D}'} \|_K d\theta$$

$$k_{SW}(\mathbf{D},\mathbf{D}') := \exp\left(-\frac{SW_1(\mathbf{D},\mathbf{D}')}{2\sigma^2}\right)$$

Sliced Wasserstein kernel

Thm:

The metrics d_1 and SW_1 on the space \mathcal{D}_N of persistence diagrams of size bounded by N are strongly equivalent, namely: for $D, D' \in \mathcal{D}_N$,

$$\frac{1}{2+4N(2N-1)} d_1(D,D') \leq SW_1(D,D') \leq 2\sqrt{2} d_1(D,D')$$

Q: prove it.

Cor: The feature map ϕ associated with k_{SW} is weakly metric-preserving: $\exists g, h$ nonzero except at 0 such that $g \circ d_1 \leq \|\phi(\cdot) - \phi(\cdot)\|_{\mathcal{H}} \leq h \circ d_1$.

Metric distortion in practice

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

(training data)

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

Error rates	(%)	using	TDA	descriptors	(kernels	on	barcodes):
--------------------	-----	-------	-----	-------------	----------	----	----------	----

	TDA	geometry/stats	TDA + geometry/stats
Human	26.0	21.3	11.3
Airplane	27.4	18.7	9.3
Ant	7.7	9.7	1.5
FourLeg	27.0	25.6	15.8
Octopus	14.8	5.5	3.4
Bird	28.0	24.8	13.5
Fish	20.4	20.9	7.7

Application to supervised orbits classification

Goal: classify orbits of *linked twisted map*, modelling fluid flow dynamics

Orbits described by (depending on parameter r):

$$\begin{cases} x_{n+1} = x_n + r y_n (1 - y_n) \mod 1 \\ y_{n+1} = y_n + r x_{n+1} (1 - x_{n+1}) \mod 1 \end{cases}$$

Application to supervised orbits classification

Goal: classify orbits of *linked twisted map*, modelling fluid flow dynamics

Orbits described by (depending on parameter r):

$$\begin{cases} x_{n+1} = x_n + r y_n (1 - y_n) \mod 1 \\ y_{n+1} = y_n + r x_{n+1} (1 - x_{n+1}) \mod 1 \end{cases}$$

Accuracies (%) using only TDA descriptors (kernels on barcodes):

	$k_{\rm PSS}$	$k_{ m PWG}$	$k_{\rm SW}$	
Orbit	64.0 ± 0.0	78.7 ± 0.0	83.7 ± 1.1	(PDs as discrete measures)

Running times (in seconds on *N*-sized parameter space from 100 orbits):

	k_{PSS}	$k_{ m PWG}$	$k_{ m SW}$
Orbit	$N \times 9183.4 \pm 65.6$	$N \times 69.2 \pm 0.9$	$385.8 \pm 0.2 + NC$

Application to supervised texture classification

Goal: classify textures from the OUTEX00000 database

Textures described by CLBP (Compound Local Binary Pattern)

 \rightarrow apply degree-0 persistence on 1st sign component

Application to supervised texture classification

Goal: classify textures from the OUTEX00000 database

Textures described by CLBP (Compound Local Binary Pattern)

 \rightarrow apply degree-0 persistence on 1st sign component

Accuracies (%) using only TDA descriptors (kernels on barcodes):

	$k_{\rm PSS}$	$k_{ m PWG}$	$k_{\rm SW}$	
Orbit	98.7 \pm 0.06	96.7 ± 0.4	96.1 ± 0.1	(PDs as discrete measures)

Running times (in seconds on *N*-sized parameter space from 100 orbits):

	$k_{\rm PSS}$	$k_{ m PWG}$	$k_{ m SW}$
Orbit	$N \times 10337.4 \pm 140.5$	$N \times 45.9 \pm 0.6$	$126.4 \pm 0.2 + NC$

Statistics on Persistence Diagrams

Questions:

- Statistical properties of $D(\mathcal{F}(\hat{X}_n))$? $D(\mathcal{F}(\hat{X}_n)) \rightarrow ?$ as $n \rightarrow +\infty?$
- Can we do more statistics with persistence diagrams?

Statistics on Persistence Diagrams

Stability thm: $d_b(D(\mathcal{F}(X_\mu)), D(\mathcal{F}(\hat{X}_m))) \leq 2d_{GH}(X_\mu, \hat{X}_n)$

So, for any $\varepsilon > 0$,

$$P\left(d_b\left(\mathcal{D}(\mathcal{F}(X_{\mu})), \mathcal{D}(\mathcal{F}(\hat{X}_n))\right) > \varepsilon\right) \le P\left(d_{GH}(X_{\mu}, \hat{X}_n) > \frac{\varepsilon}{2}\right)$$

Deviation inequality

[Convergence rates for persistence diagram estimation in Topological Data Analysis, Chazal, Glisse, Labruère, Michel ICML, 2014]

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in X_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Thm: If μ satisfies the (a, b)-standard assumption, then for any $\varepsilon > 0$:

$$P\left(d_b\left(\mathcal{D}(\mathcal{F}(X_{\mu})),\mathcal{D}(\mathcal{F}(\hat{X}_n))\right) > \varepsilon\right) \le \min\left\{\frac{8^b}{a\varepsilon^b}\exp\left(-na\varepsilon^b\right),1\right\}.$$

Moreover
$$\lim_{n \to \infty} P\left(d_b\left(\mathcal{D}(\mathcal{F}(X_{\mu})), \mathcal{D}(\mathcal{F}(\hat{X}_n))\right) \le C_1\left(\frac{\log n}{n}\right)^{1/b}\right) = 1.$$

where C_1 is a constant only depending on a and b.

Deviation inequality

[Convergence rates for persistence diagram estimation in Topological Data Analysis, Chazal, Glisse, Labruère, Michel ICML, 2014]

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in X_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Sketch of proof:

- 1. Upperbound $P\left(d_H(X_\mu, \hat{X}_n) > \frac{\varepsilon}{2}\right)$.
- 2. (a, b) standard assumption \Rightarrow an explicit upper bound for the covering number of X_{μ} (by balls of radius $\varepsilon/2$).
- 3. Apply "union bound" argument.

Minimax rate of convergence

[Convergence rates for persistence diagram estimation in Topological Data Analysis, Chazal, Glisse, Labruère, Michel ICML, 2014]

Let $\mathcal{P}(a, b, X)$ be the set of all the probability measures on the metric space (X, d) satisfying the (a, b)-standard assumption on X:

Thm: Let $\mathcal{P}(a, b, X)$ be the set of (a, b)-standard proba measures on X. Then:

$$\sup_{\mu \in \mathcal{P}(a,b,X)} \mathbb{E}\left[d_b(\mathcal{D}(\mathcal{F}(X_{\mu})), \mathcal{D}(\mathcal{F}(\hat{X}_n)))\right] \le C\left(\frac{\log n}{n}\right)^{1/d}$$

where the constant C only depends on a and b (not on X!). Assume moreover that there exists a non isolated point x in X and let x_m be a sequence in $X \setminus \{x\}$ such that $d(x, x_n) \leq (an)^{-1/b}$. Then for any estimator \hat{D}_n of $D(\mathcal{F}(X_\mu))$:

$$\liminf_{n \to \infty} d(x, x_n)^{-1} \sup_{\mu \in \mathcal{P}(a, b, X)} \mathbb{E}\left[d_b(\mathcal{D}(\mathcal{F}(X_\mu)), \hat{\mathcal{D}}_n)\right] \ge C'$$

where C' is an absolute constant.

Rem: we can obtain slightly better bounds if X_{μ} is a submanifold of \mathbb{R}^{D} .

Numerical illustrations

- μ : unif. measure on Lissajous curve X_{μ} . - \mathcal{F} : distance to X_{μ} in \mathbb{R}^2 .
- sample k = 300 sets of n points for n = [2100:100:3000].
- compute

 $\hat{\mathbb{E}}_n = \hat{\mathbb{E}}[d_b(\mathcal{D}(\mathcal{F}(X_\mu)), \mathcal{D}(\mathcal{F}(\hat{X}_n)))].$

- plot $\log(\hat{\mathbb{E}}_n)$ as a function of $\log(\log(n)/n)$.

[Convergence rates for persistence diagram estimation in Topological Data Analysis, Chazal, Glisse, Labruère, Michel ICML, 2014]

Numerical illustrations

[Convergence rates for persistence diagram estimation in Topological Data Analysis, Chazal, Glisse, Labruère, Michel ICML, 2014]

- μ : unif. measure on a torus X_{μ} . - \mathcal{F} : distance to X_{μ} in \mathbb{R}^3 . - sample k = 300 sets of n points for n = [12000 : 1000 : 21000].
- compute

$$\hat{\mathbb{E}}_n = \hat{\mathbb{E}}[d_b(\mathcal{D}(\mathcal{F}(X_\mu)), \mathcal{D}(\mathcal{F}(\hat{X}_n)))].$$

- plot $\log(\hat{\mathbb{E}}_n)$ as a function of $\log(\log(n)/n)$.

Numerical illustrations: confidence for landscapes

[On the Bootstrap for Persistence Diagrams and Landscapes, Chazalet al., Model. Anal. Inform. Sist., 2013]

Numerical illustrations: confidence for landscapes

[On the Bootstrap for Persistence Diagrams and Landscapes, Chazalet al., Model. Anal. Inform. Sist., 2013]

Example: 3D shapes

From k = 100 subsamples of size n = 300

Numerical illustrations: confidence for landscapes

(Toy) Example: Accelerometer data from smartphone.

[On the Bootstrap for Persistence Diagrams and Landscapes, Chazalet al., Model. Anal. Inform. Sist., 2013]

spatial time series (accelerometer data from the smarphone of users).
 no registration/calibration preprocessing step needed to compare!

Persistence Diagrams and Machine Learning

What linearization to choose?

The space of persistence diagrams

[On the Metric Distortion of Embedding Persistence Diagrams into separable Hilbert Spaces, Bauer, Carrière, SoCG, 2019]

Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d, d' are *equivalent* if $\exists 0 < A, B < +\infty \text{ s.t. } A d(\cdot, \cdot) \leq d'(\cdot, \cdot) \leq B d(\cdot, \cdot)$

Prop: \mathcal{H} Hilbert with dot product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and distance $\|\cdot\|_{\mathcal{H}}$. Assume $d_{\mathcal{H}}$ and d_{∞} or d_p are equivalent.

(i) $\mathcal{H} = \mathbb{R}^d \Rightarrow$ Impossible

even if the PDs are included in $[-L, L]^2$ and have less than N points

$$\begin{array}{ll}(ii) \ \mathcal{H} \ \text{separable,} \ p=1 \Rightarrow \text{either} \ A \to 0 \ \text{or} \ B \to +\infty \\\\ & \text{when} \ L, N \to +\infty \end{array}$$

Q: prove (ii).

The space of persistence diagrams

[On the Metric Distortion of Embedding Persistence Diagrams into separable Hilbert Spaces, Bauer, Carrière, SoCG, 2019]

Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d, d' are *equivalent* if $\exists 0 < A, B < +\infty$ s.t. $A d(\cdot, \cdot) \leq d'(\cdot, \cdot) \leq B d(\cdot, \cdot)$

Proof:

(ii) The space of PDs with possibly infinite number of points is not separable with respect to d_1

Consider $S = \{D_u\}_{u \in \{0,1\}^N}$ where $D_u = \{(k, k + \frac{1}{k}) : u_k = 1\}$

S is not countable with d_1

The space of persistence diagrams

[On the Metric Distortion of Embedding Persistence Diagrams into separable Hilbert Spaces, Bauer, Carrière, SoCG, 2019]

Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d, d' are *equivalent* if $\exists 0 < A, B < +\infty$ s.t. $A d(\cdot, \cdot) \leq d'(\cdot, \cdot) \leq B d(\cdot, \cdot)$

Proof:

$$S = \{D_u\}_{u \in \{0,1\}^{\mathbb{N}}}$$

Indeed, let $S'\subseteq S$ be a dense set and $\epsilon>0$

$$\forall D_{\boldsymbol{u}} \in S, \ \exists D_{\boldsymbol{u'}} \in S' : d_1(D_{\boldsymbol{u}}, D_{\boldsymbol{u'}}) \leq \epsilon$$

Supports of u' and u must differ on a finite number of terms only

 $\Rightarrow \operatorname{card}(S') \ge \operatorname{card}(S/\sim) \quad \begin{array}{l} \operatorname{uncountable!} \\ \\ \text{where } D_u \sim D_v \Leftrightarrow \operatorname{supp}(u) \bigtriangleup \operatorname{supp}(v) < \infty \end{array}$
[On the Metric Distortion of Embedding Persistence Diagrams into separable Hilbert Spaces, Bauer, Carrière, SoCG, 2019]

Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d, d' are equivalent if $\exists 0 < A, B < +\infty$ s.t. $A d(\cdot, \cdot) \leq d'(\cdot, \cdot) \leq B d(\cdot, \cdot)$

Ex: Persistence surface

$$\begin{split} \Phi(\mathrm{D}) &= \sum_{p \in \mathrm{D}} w(p) \cdot \exp\left(-\frac{\|\cdot - p\|_2^2}{2\sigma^2}\right) \\ \text{where } w((x,y)) &= \arctan\left(C|y - x|^{\alpha}\right) \text{ with } C, \alpha > 0 \end{split}$$

If $\alpha \geq 2$, S is in the domain of Φ

[On the Metric Distortion of Embedding Persistence Diagrams into separable Hilbert Spaces, Bauer, Carrière, SoCG, 2019]

Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d, d' are *equivalent* if $\exists 0 < A, B < +\infty$ s.t. $A d(\cdot, \cdot) \leq d'(\cdot, \cdot) \leq B d(\cdot, \cdot)$

Proof:

 $\left(i\right)$ is a little more tricky

Def: Let (X, d) be a metric space. Given a subset $E \subset X$ and r > 0, let $N_r(E)$ be the least number of open balls of radius $\leq r$ that can cover E. The Assouad dimension of (X, d) is:

 $\dim_A(X,d) = \inf\{\alpha : \exists C \text{ s.t. } \sup_x N_{\beta r}(B(x,r)) \le C\beta^{-\alpha}, \ 0 < \beta \le 1\}$

 \dim_A is preserved for equivalent metrics $\dim_A(\mathcal{D}, d_p) = +\infty$ whereas $\dim_A(\mathbb{R}^d) = d$

[On the Metric Distortion of Embedding Persistence Diagrams into separable Hilbert Spaces, Bauer, Carrière, SoCG, 2019]

Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d, d' are *equivalent* if $\exists 0 < A, B < +\infty$ s.t. $A d(\cdot, \cdot) \leq d'(\cdot, \cdot) \leq B d(\cdot, \cdot)$

Idea: Consider the ball of radius r around the empty diagram and diagrams with single points at distance r from Δ and from each other

The number of such diagrams increases to $+\infty$ as β goes to 0

 \dim_A is preserved for equivalent metrics $\dim_A(\mathcal{D}, d_p) = +\infty$ whereas $\dim_A(\mathbb{R}^d) = d$

[On the Metric Distortion of Embedding Persistence Diagrams into separable Hilbert Spaces, Bauer, Carrière, SoCG, 2019]

Illustrations:

We generate diagrams by uniformly sampling into the upper unit half-square

[On the Metric Distortion of Embedding Persistence Diagrams into separable Hilbert Spaces, Bauer, Carrière, SoCG, 2019]

Illustrations:

We generate diagrams by uniformly sampling into the upper unit half-square

Idea: Stay in Euclidean space \mathbb{R}^d but *learn* best vectorization with Neural Net

The Deep Set architecture

Deep Set is a novel neural net architecture that is able to handle sets instead of finite dimensional vectors

Input: $\{x_1, ..., x_n\} \subset \mathbb{R}^d$ instead of $x \in \mathbb{R}^d$

Network is *permutation invariant*: $F(X) = \rho(\sum_{i} \phi(x_i))$

In practice: $\phi(x_i) = W \cdot x_i + b$

The Deep Set architecture

Deep Set is a novel neural net architecture that is able to handle sets instead of finite dimensional vectors

Input: $\{x_1, ..., x_n\} \subset \mathbb{R}^d$ instead of $x \in \mathbb{R}^d$

Network is *permutation invariant*: $F(X) = \rho(\sum_{i} \phi(x_i))$

Universality theorem

Thm:

A function f is permutation invariant iif $f(X) = \rho(\sum_i \phi(x_i))$ for some ρ and ϕ , whenever X is included in a *countable* space

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, Carrière, Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

Permutation invariant layers generalize several TDA approaches

 \rightarrow persistence images \rightarrow landscapes \rightarrow Betti curves $\begin{bmatrix} t \\ t \end{bmatrix}$

[*Time Series Classification via Topological Data Analysis*, Umeda, Trans. Jap. Soc. for AI, 2017]

But not all of them since \mathbb{R}^2 is not countable

Using any permutation invariant operation (such as max, min, kth largest value) allows to generalize other TDA approaches

Parameters
$$\Delta_1, \dots, \Delta_q \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $b_{\Delta_1}, \dots, b_{\Delta_q} \in \mathbb{R}$ $\phi_L : p \mapsto \begin{bmatrix} \langle p, e_{\Delta_1} \rangle + b_{\Delta_1} \\ \langle p, e_{\Delta_2} \rangle + b_{\Delta_2} \\ \vdots \\ \langle p, e_{\Delta_q} \rangle + b_{\Delta_q} \end{bmatrix}$ $w(p) = 1$
 $op = top-k$

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, Carrière, Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

Let G = (V, E) be a graph, A its adjacency matrix D its degree matrix and $L_w(G) = I - D^{-1/2}AD^{-1/2}$ its normalized Laplacian. $L_w(G)$ decomposes on a orthonormal basis $\phi_1 \dots \phi_n$ with eigenvalues $0 < \lambda_1 < \dots < \lambda_n < 2$

Def: Let $t \ge 0$, and define the Heat Kernel Signature of param t: $hks_{G,t}: v \mapsto \sum_{k=1}^{n} \exp(-\lambda_k t) \phi_k(v)^2$

[PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures, Carrière, Chazal, Ike, Lacombe, Royer, Umeda, AISTATS, 2019]

Def: Let $t \ge 0$, and define the *Heat Kernel Signature* of param t: $hks_{G,t} : v \mapsto \sum_{k=1}^{n} \exp(-\lambda_k t) \phi_k(v)^2$

Persistence diagrams and optimization

What linearization to choose?

Problem setting

Q: How to define $\nabla D?$

Q: Given a parameterized family of functions $\mathcal{F} = \{f_{\theta} : \theta \in \Theta\}$, how to define $\nabla_{\theta} D_k(f_{\theta})$?

Q: Given a point cloud $X \subseteq \mathbb{R}^d$, how to define $\nabla_X D_k(\operatorname{Rips}(X))$?

Idea: Let's go back to the PD construction...

Computation with matrix reduction

Input: simplicial filtration

1

3

4

Ž

(Persistent) homology can be computed by using the fact that each simplex is either: *positive*, i.e., it *creates a new homology class negative*, i.e., it *destroys an homology class*

2

5

4

Computation with matrix reduction

- Input: simplicial filtration
- Output: boundary matrix reduced to column-echelon form
 -) simplex pairs give finite intervals: [2,4), [3,5), [6,7)

unpaired simplices give infinite intervals: $[1, +\infty)$

	1	2	3	4	5	6	7
1				*		*	
2				*	*		
3					*	*	
4							*
5							*
6							*
7							

	1	2	3	4	5	6	7
1				*			
2				(1)	*		
3					$\left \begin{array}{c} 1 \end{array} \right $		
4							*
5							*
6							(1)
$\boxed{7}$							

Computation with matrix reduction

Input: simplicial filtration

Output: boundary matrix reduced to column-echelon form

Simplex pairs give finite intervals: [2,4), [3,5), [6,7)

unpaired simplices give infinite intervals: $[1, +\infty)$

A persistence diagram D is made of all $(\mathcal{F}(\sigma_+), \mathcal{F}(\sigma_-)) \in \mathbb{R}^2$ where σ_+ (resp. σ_-) is positive (resp. negative), and \mathcal{F} is the filtration function.

Thus we can define the gradient of a point $p = (\mathcal{F}(\sigma_+), \mathcal{F}(\sigma_-)) \in D$ as

 $\nabla p = [\nabla \mathcal{F}(\sigma_+), \nabla \mathcal{F}(\sigma_-)]$

Q: Define and compute Vietoris-Rips gradient?

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

 $\mathcal{F}(\sigma) = \max_{i,j} \|v_i - v_j\|$

Let $p = (\mathcal{F}(\sigma_+), \mathcal{F}(\sigma_-)) \in D_k(\operatorname{Rips}(X))$

with $\sigma_+ = \{v_0, \dots, v_k\}$ and $\sigma_- = \{w_0, \dots, w_{k+1}\}$

$$\nabla_X p = \left[\frac{\partial}{\partial X} \| v_{i^*} - v_{j^*} \|, \frac{\partial}{\partial X} \| w_{a^*} - w_{b^*} \| \right]$$
$$\frac{\partial}{\partial v_i^{(d)}} \| v_{i^*} - v_{j^*} \| = (-) \frac{1}{\| v_{i^*} - v_{j^*} \|} (v_{i^*}^{(d)} - v_{j^*}^{(d)}) \text{ if } i = i^* \ (j^*) \text{ and } 0 \text{ otherwise}$$

With this gradient rule, one can do gradient descent with any function of persistence!

Let's say we want to maximize the number of holes in that point cloud.

We can use gradient descent to minimize loss

$$\mathcal{L}(X) = -\sum_{p} \|p\|_2^2,$$

with $p \in D_1(\operatorname{Rips}(X))$

Let's say we want to maximize the number of holes in that point cloud.

We can use gradient descent to minimize loss

$$\mathcal{L}(X) = -\sum_{p} \|p\|_2^2,$$

with $p \in D_1(\operatorname{Rips}(X))$

Let's say we want to maximize the number of holes in that point cloud.

We can use gradient descent to minimize^{0.25} loss

$$\mathcal{L}(X) = -\sum_{p} \|p\|_{2}^{2} + d(X, C),$$

with $p \in D_1(\operatorname{Rips}(X))$ and C unit square

Example: Sublevel sets

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

$$\mathcal{F}(\sigma) = \max_{i} f_{\theta}(v_{i})$$
$$\nabla_{\theta} p = \left[\frac{\partial}{\partial \theta} f_{\theta}(v_{i^{*}}), \frac{\partial}{\partial \theta} f_{\theta}(w_{a^{*}})\right]$$

Let's say we want to remove the stains in that image.

We can use gradient descent to minimize loss

$$\mathcal{L}(X) = \sum_{p} \|p\|_2^2,$$

with $p \in D_0(I)$

Example: Sublevel sets

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

$$\mathcal{F}(\sigma) = \max_{i} f_{\theta}(v_{i})$$
$$\nabla_{\theta} p = \left[\frac{\partial}{\partial \theta} f_{\theta}(v_{i^{*}}), \frac{\partial}{\partial \theta} f_{\theta}(w_{a^{*}})\right]$$

Let's say we want to remove the stains in that image.

We can use gradient descent to minimize loss

$$\mathcal{L}(X) = \sum_{p} \|p\|_2^2,$$

with $p \in D_0(I)$

Example: Sublevel sets

Given k-dim. simplex $\sigma = [v_0, \ldots, v_k]$, one has

$$\mathcal{F}(\sigma) = \max_{i} f_{\theta}(v_{i})$$
$$\nabla_{\theta} p = \left[\frac{\partial}{\partial \theta} f_{\theta}(v_{i^{*}}), \frac{\partial}{\partial \theta} f_{\theta}(w_{a^{*}})\right]$$

Let's say we want to remove the stains in that image.

We can use gradient descent to minimize loss

$$\mathcal{L}(X) = \sum_{p} \|p\|_{2}^{2} + \sum_{P \in I} \max\{|P|, |1-P|\},\$$

with $p \in D_0(I)$

Topological gradient descent

[Optimizing persistent homology based functions, Carrière, Chazal, Glisse, Ike, Kanna, Umeda, ICML, 2021]

For a fixed ordering of the simplices in a simplicial complex K, the corresponding persistence diagram always has the same number of points: its gradient is well-defined!

If the ordering changes, the boundary matrix can have a new reduced form and the persistence diagram can have a new, different number of points.

Prop: Let K be a simplicial complex and let $\Phi : A \to \mathbb{R}^{|K|}$ a (parameterized) filtration of K. There exists a partition $A = S \sqcup O_1 \sqcup \cdots \sqcup O_k$ s.t. all the restrictions $\Phi : O_i \to \mathbb{R}^{|K|}$ are differentiable.

The O_i 's are the parts of A where the ordering of the simplices of K is preserved, and S is the boundaries of all O_i 's.

Q: What is S for Vietoris-Rips? Sublevel sets?

Topological gradient descent

[*Optimizing persistent homology based functions*, Carrière, Chazal, Glisse, Ike, Kanna, Umeda, ICML, 2021]

Def: The *Clarke subdifferential* $\partial \mathcal{L}$ of \mathcal{L} is the set:

$$\partial_x \mathcal{L} = \operatorname{conv} \{ \lim_{x_i \to x} \nabla \mathcal{L}(x_i) : \mathcal{L} \text{ is diff. at } x_i \},\$$

where conv denotes the convex hull.

Topological gradient descent

[Optimizing persistent homology based functions, Carrière, Chazal, Glisse, Ike, Kanna, Umeda, ICML, 2021]

Let $\{\alpha_k\}_k$, $\{\zeta_k\}_k$ s.t.

 $\alpha_k \geq 0$, $\sum_k \alpha_k = +\infty$ and $\sum_k \alpha_k^2 < +\infty$

 ζ_k random variables s.t. $E[\zeta_k] = 0$ and $E[\|\zeta_k\|^2] < C$ for some C > 0

Thm: As long as $\mathcal{L} \circ \operatorname{Pers} \circ \Phi$ is locally Lipschitz, the sequence

$$a_{k+1} = a_k - \alpha_k (g_k + \zeta_k),$$

where $g_k \in \partial_{a_k}(\mathcal{L} \circ \operatorname{Pers} \circ \Phi)$, converges to a critical point of $\mathcal{L} \circ \operatorname{Pers} \circ \Phi$.

Q: Does this result apply to d_b and d_p ? What is the gradient?

Topological stratified gradient descent

[A gradient sampling algorithm for stratified maps with applications to topological data analysis, Leygonie, Carrière, Lacombe, Oudot, 2021]

Better guarantees can be obtained by smoothing the gradient definition.

Def: The *smoothed topological gradient* of $Pers \circ \Phi$ is defined as:

 $\tilde{\nabla}_a = \operatorname{argmin}\{\|g\| : g \in \operatorname{conv}(S_a)\}$

where $S_a = \{\nabla_{a'} : a' \in O_i, O_i \in \mathcal{N}(O_a)\}$, where O_a is the stratum associated to a, and $\mathcal{N}(O_a)$ is the set of strata that are close to O_a .

Intuitively, close strata means that their corresponding orderings are very similar, e.g., they differ by single swaps, or their distance is bounded by $\epsilon > 0$.

Thm: Let $\epsilon > 0$. As long as $\mathcal{L} \circ \text{Pers} \circ \Phi$ is Lipschitz, the sequence

$$a_{k+1} = a_k - \epsilon \cdot \tilde{\nabla}_{a_k} / \|\tilde{\nabla}_{a_k}\|,$$

converges in **finitely many** iterations to \tilde{a} s.t. $\exists \bar{a} : \tilde{\nabla}_{\bar{a}} = 0$ and $\|\tilde{a} - \bar{a}\| \leq \epsilon$.
Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration from a family \mathcal{F} such that the corresponding persistence diagrams give the best classification score.

Ex: images filtered by a direction parameterized by angle.

Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration from a family \mathcal{F} such that the corresponding persistence diagrams give the best classification score.

Idea: minimize:

$$\mathcal{L}(f) = \sum_{l} \frac{\sum_{y_i = y_j = l} d_p(D_f(x_i), D_f(x_j))}{\sum_{y_i = l} d_p(D_f(x_i), D_f(x_j))},$$

one can also use Sliced Wasserstein for speedup.

Dataset	Baseline	Before	After	Difference	Dataset	Baseline	Before	After	Difference
vs01	100.0	61.3	99.0	+37.6	vs26	99.7	98.8	98.2	-0.6
vs02	99.4	98.8	97.2	-1.6	vs28	99.1	96.8	96.8	0.0
vs06	99.4	87.3	98.2	+10.9	vs29	99.1	91.6	98.6	+7.0
vs09	99.4	86.8	98.3	+11.5	vs34	99.8	99.4	99.1	-0.3
vs16	99.7	89.0	97.3	+8.3	vs36	99.7	99.3	99.3	-0.1
vs19	99.6	84.8	98.0	+13.2	vs37	98.9	94.9	97.5	+2.6
vs24	99.4	98.7	98.7	0.0	vs57	99.7	90.5	97.2	+6.7
vs25	99.4	80.6	97.2	+16.6	vs79	99.1	85.3	96.9	+11.5

More examples

[A Topological Regularizer for Classifiers via Persistent Homology, Chen, Ni, Bai, Wang, AISTATS, 2019]

