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this one possible solution among othersPros:

• information of a different nature

• strong invariance and stability:

Persistence diagrams as descriptors for data

• flexible and versatile

dataset 1-parameter family of spaces persistence diagram
(geometry) (algebraic

topology)

Cons:

• space of diagrams is not linear

• positive intrinsic curvature

• slow to compare

db(dgm(R(X)),dgm(R(Y ))) ≤ dGH(X,Y )



Persistence diagrams as descriptors for data

dataset 1-parameter family of spaces persistence diagram
(geometry) (algebraic

topology)

A solution: map diagrams to Hilbert space and use kernel trick

D

H

Φ

k(·, ·) := 〈Φ(·),Φ(·)〉H

(ideally: Φ quasi-isometry)



Supervised Machine Learning

Input: n observations + responses (x1, y1), . . . , (xn, yn) ∈ X × Y

X = images,
Y = {cat, dog, horse}

X = R

Y = R

regression

classification



Supervised Machine Learning

Goal: build a predictor f : X → Y from (x1, y1), . . . , (xn, yn)

Input: n observations + responses (x1, y1), . . . , (xn, yn) ∈ X × Y



Empirical Risk Minimization

Optimization problem (supervised regression / classification):

L : X ×X → R is the loss function

Ω : F → R is the regularizer

F is the class of predictors

L(yi, f(xi)) Name

1yi 6=f(xi) zero-one

max{0, 1− yif(xi)} hinge

exp(−yif(xi)) exponential

log(1 + exp(−yif(xi))) logistic

(yi − f(xi))
2 squared

→ Support Vector Machines

→ Adaptive boosting

→ Least squares

f∗ = argmin
f∈F

1

n

n∑
i=1

L(yi, f(xi)) + Ω(f)

→ Logistic regression

→ Bayes



Empirical Risk Minimization

Optimization problem (supervised regression / classification):

f∗ = argmin
f∈F

1

n

n∑
i=1

L(yi, f(xi)) + Ω(f)

zero-one

Adaptive boosting

Logistic regression

Least squares

SVM



Empirical Risk Minimization

Optimization problem (supervised regression / classification):

L : X ×X → R is the loss function

Ω : F → R is the regularizer

F is the class of predictors

→ use regularizer to avoid overfitting

f∗ = argmin
f∈F

1

n

n∑
i=1

L(yi, f(xi)) + Ω(f)



Empirical Risk Minimization

Optimization problem (supervised regression / classification):

L : X ×X → R is the loss function

Ω : F → R is the regularizer

F is the class of predictors

Ω(w) Name
‖w‖22 `2 (Tikhonov)

‖w‖1 `1 (LASSO)

α‖w‖22 + (1− α)‖w‖1 elastic net

F = {fw : w ∈ Rd}

→ differentiable

→ sparse

f∗ = argmin
f∈F

1

n

n∑
i=1

L(yi, f(xi)) + Ω(f)

`2

`1



Empirical Risk Minimization

Optimization problem (supervised regression / classification):

L : X ×X → R is the loss function

Ω : F → R is the regularizer

F is the class of predictors

Complexity of the minimization grows with the one of F

Easy to control when F is a Reproducing Kernel Hilbert Space

f∗ = argmin
f∈F

1

n

n∑
i=1

L(yi, f(xi)) + Ω(f)



here, X∗ denotes the continuous dual of X, consisting of all continuous linear functionals X → R here, ”isometric” isomorphism is in the sense that the norm is preserved (the norm on H is pushed forward from X through Φ). The facts that Φ is surjective and preserves the inner product (hence is also injective) imply the reproducing property: given f ∈ H, there exists a unique y ∈ X such that f = 〈y, ·〉. Then, for any x ∈ X we have f(x) = 〈y, x〉 = 〈f,Φ(x)〉.

Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

The kernel k is the pullback of the inner product onto the space of observations

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Case X Hilbert space:

H = X∗, Φ(x) = 〈x, ·〉X
Φ isometric isomorphism [Riesz]

〈·, ·〉H := 〈Φ−1(·),Φ−1(·)〉X

Terminology:

• feature space H, feature map Φ

• feature vector Φ(x)

• kernel k = 〈Φ(·), Φ(·)〉H : X ×X → R

X

H

Φ

reproducing
property

Def: Let H ⊂ RX Hilbert, with inner product 〈·, ·〉H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = 〈f,Φ(x)〉H



in other words, the Gram matrix (k(xi, xj))i,j is positive semi-definite

uniqueness of the kernel implies uniqueness of the feature map: Φ(x) = k(x, ·)

Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Prop: Given X, the kernel of a RKHS on X is unique.
Conversely, k is the kernel of at most one RKHS on X.

• linear: k(x, y) = 〈x, y〉

k(x, y) = (1 + 〈x, y〉)N =
∑

n1+···+nd=N

(
N

n1,...,nd

)
xn1

1 . . . x
nd
d yn1

1 . . . y
nd
d

• Gaussian: k(x, y) = exp

(
− ‖x−y‖

2
2

2σ2

)
, σ > 0.

Thm: The function k : X × X → R is a kernel iff it is positive
(semi-)definite, i.e. ∀n ∈ N, ∀x1, . . . , xn ∈ X, the Gram matrix
(k(xi, xj))i,j is positive semi-definite.

H = (Rd)∗, Φ(x) = 〈x, ·〉

• polynomial:

∝ Φ(x)

H ⊆ L2(Rd)

reproducing
property

Examples in X = (Rd, 〈·, ·〉):

Def: Let H ⊂ RX Hilbert, with inner product 〈·, ·〉H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = 〈f,Φ(x)〉H

[Theory of Reproducing
Kernels, Aronszajn, Trans.
Amer. Math. Soc., 1950]



here we have replace ‖f‖H by its square, which does not change anything since Ω can be chosen arbitrarily a priori. More generally, one can replace simply ‖f‖H by ‖α‖p for some p ≥ 1.

Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Thm: (Representer)
Given RKHS H with kernel k, any function f∗ ∈ H minimizing

1
n

∑n
i=1 L(yi, f(xi)) + Ω(‖f‖H)

is of the form f∗(·) =
∑n
j=1 αjk(xj , ·), where α1, . . . , αn ∈ R.

only the k(xi, xj) are
required to minimize
(kernel trick)

reproducing
property

 argmin
α

1

n

n∑
i=1

L

yi, n∑
j=1

αjk(xj , xi)

+ Ω

 n∑
i,j=1

αiαjk(xi, xj)


where α =

[ α1

...
αn

]
and K = (k(xi, xj))ij

Def: Let H ⊂ RX Hilbert, with inner product 〈·, ·〉H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = 〈f,Φ(x)〉H

[A correspondence between
Bayesian estimation on stochastic
processes and smoothing by
splines, Kimeldorf, Wahba, The
Annals Math. Stat., 1970]



Kernel Trick
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Kernels for persistence diagrams

Three approaches:

• build kernel from kernels (algebraic operations)

- sum of kernels ←→ concatenation of feature spaces

- product of kernels ←→ tensor product of feature spaces

k1(x, y) + k2(x, y) =
〈(

Φ1(x)
Φ2(x)

)
,
(

Φ1(y)
Φ2(y)

)〉

k1(x, y)k2(x, y) =
〈
Φ1(x)Φ2(x)T ,Φ1(y)Φ2(y)T

〉
Q: prove it.



Kernels for persistence diagrams

Three approaches:

• define explicit feature map Φ : X → H (vectorization)

X

H

Φ

k(·, ·) := 〈Φ(·),Φ(·)〉H

• build kernel from kernels (algebraic operations)



Kernels for persistence diagrams

Thm:

If d : X ×X → R+ symmetric is conditionally negative semidefinite, i.e.:

∀n ∈ N, ∀x1, . . . , xn ∈ X,
n∑
i=1

αi = 0 =⇒
n∑
i=1

n∑
j=1

αiαj d(xi, xj) ≤ 0,

then k(x, y) = exp
(
− d(x,y)

2σ2

)
is positive definite for all σ > 0.

Q: does this apply to persistence diagrams?

Three approaches:

• define explicit feature map Φ : X → H (vectorization)

• define kernel from metric via radial basis function

• build kernel from kernels (algebraic operations)

[A correspondence between
Bayesian estimation on stochastic
processes and smoothing by
splines, Kimeldorf, Wahba, The
Annals Math. Stat., 1970]



Space of persistence diagrams

Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0

cost of a matched pair (x, y) ∈M : cp(x, y) := ‖x− y‖p∞

cost of an unmatched point z ∈ X t Y : cp(z) := ‖z − z̄‖p∞

cost of M :

cp(M) :=

 ∑
(x, y) matched

cp(x, y) +
∑

z unmatched

cp(z)

1/p

Def: p-th diagram distance (extended metric):

dp(X,Y ) := inf
M :X↔Y

cp(M)

Given a partial matching M : X ↔ Y :

x
yz

z̄

∆(2)

Def: bottleneck distance:

db(X,Y ) := lim
p→∞

dp(X,Y )



Space of persistence diagrams

Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0

cost of a matched pair (x, y) ∈M : cp(x, y) := ‖x− y‖p∞

cost of an unmatched point z ∈ X t Y : cp(z) := ‖z − z̄‖p∞

cost of M :

cp(M) :=

 ∑
(x, y) matched

cp(x, y) +
∑

z unmatched

cp(z)

1/p

Def: p-th diagram distance (extended metric):

dp(X,Y ) := inf
M :X↔Y

cp(M)

Given a partial matching M : X ↔ Y :

x
yz

z̄

∆(2)

Def: bottleneck distance:

db(X,Y ) := lim
p→∞

dp(X,Y )

dp is NOT cnsd

⇒ previous theorem is not applicable



diagrams are turned into 2-d density functions

diagrams are turned into families of 1-d functions

diagrams are turned into sequences of values

diagrams are turned into finite-dimensional vectors

diagrams are turned into pixelized images → finite-dimensional vectors

if you do the convolution naively as in [Chepushtanova et al. 2015] you don’t get stability; however, a more careful convolution with a carefully weighted kernel allows you to regain stability

• landscapes [Bubenik 2012] [Bubenik, D lotko 2015]

• images [Adams et al. 2015]

• discrete measures:

→ histogram [Bendich et al. 2014]

→ convolution with fixed kernel [Chepushtanova et al. 2015]

→ heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

→ convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]

State of the Art: define φ explicitly (vectorization) via:

Kernels for persistence diagrams

• finite metric spaces [Carrière et al. 2015]

5
4

3

a

b

c 0 4 5
4 0 3
5 3 0


a b c

a
b
c

• polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kalǐsnik 2016]
{p1, . . . , pn} 7→ (P1(p1, . . . , pn), . . . , Pr(p1, . . . , pn), . . . )



Attention: L2 is not an RKHS, just an ambient Hilbert space in which the RKHS is embedded

note: injective kernels can be made universal by post-composition with a Gaussian kernel

L2(N× R) is defined by taking the product of the counting measure on N and the Lebesgue measure on R, that is:
∫
N×R λ(k, t)dµ =

∑∞
k=1

∫
R λ(k, t)dt

Kernels for persistence diagrams

positive (semi-)definiteness

ambient Hilbert space

‖φ(·)− φ(·)‖H ≤ φ(dp)

‖φ(·)− φ(·)‖H ≥ ψ(dp)

universality

algorithmic cost

injectivity

landscapes
discretemetric

spaces

L2(N× R) L2(R2)(Rd, ‖.‖2)

O(n2) O(n2)
f. map: O(n2)

kernel: O(d)

measurespolynomials

`2(R)

f. map: O(nd)

kernel: O(d)

images

(Rd, ‖.‖2)

f. map: O(n2)

kernel: O(d)
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L2(N× R) is defined by taking the product of the counting measure on N and the Lebesgue measure on R, that is:
∫
N×R λ(k, t)dµ =

∑∞
k=1

∫
R λ(k, t)dt

Kernels for persistence diagrams

positive (semi-)definiteness

ambient Hilbert space

‖φ(·)− φ(·)‖H ≤ φ(dp)

‖φ(·)− φ(·)‖H ≥ ψ(dp)

universality

algorithmic cost

injectivity

landscapes
discretemetric

spaces

L2(N× R) L2(R2)(Rd, ‖.‖2)

O(n2) O(n2)
f. map: O(n2)

kernel: O(d)

measurespolynomials

`2(R)

f. map: O(nd)

kernel: O(d)

images

(Rd, ‖.‖2)
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diagrams are turned into 2-d density functions

diagrams are turned into families of 1-d functions

diagrams are turned into sequences of values

diagrams are turned into finite-dimensional vectors

diagrams are turned into pixelized images → finite-dimensional vectors

• landscapes [Bubenik 2012] [Bubenik, D lotko 2015]

• images [Adams et al. 2015]

• discrete measures:

→ histogram [Bendich et al. 2014]

→ convolution with fixed kernel [Chepushtanova et al. 2015]

→ heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

→ convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]

State of the Art: define φ explicitly (vectorization) via:

• finite metric spaces [Carrière, O., Ovsjanikov 2015]

5
4

3

a

b

c 0 4 5
4 0 3
5 3 0


a b c

a
b
c

• polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kalǐsnik 2016]
{p1, · · · , pn} 7→ (P1(p1, · · · , pn), · · · , Pr(p1, · · · , pn), · · · )

Kernels for persistence diagrams



Explicit Feature Map in Rd
[Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

Compute PD Rotate PD DiscretizationDiscretization

Discretize plane into one or several grid(s):

For each pixel P , compute I(P ) = # D ∩ P

Concatenate all I(P ) into a single vector PI(D)

Pixelate
+ concatenate into vector
Pixelate
+ concatenate into vector



Explicit Feature Map in Rd
[Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

Compute PD Rotate PD Discretization

Stability → weight points: wt(x, y) = 1

t
y

Pixelate
+ concatenate into vector

→ blur image

(convolve with Gaussian → details forthcoming)



Explicit Feature Map in Rd
[Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

Compute PD Rotate PD Discretization

Prop:

• ‖PI(D)− PI(D′)‖∞ ≤ C(w, φp) d1(D,D′)

• ‖PI(D)− PI(D′)‖2 ≤
√
dC(w, φp) d1(D,D′)

Pixelate
+ concatenate into vector



diagrams are turned into 2-d density functions

diagrams are turned into families of 1-d functions

diagrams are turned into sequences of values

diagrams are turned into finite-dimensional vectors

diagrams are turned into pixelized images → finite-dimensional vectors

• landscapes [Bubenik 2012] [Bubenik, D lotko 2015]

• images [Adams et al. 2015]

• discrete measures:

→ histogram [Bendich et al. 2014]

→ convolution with fixed kernel [Chepushtanova et al. 2015]

→ heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

→ convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]

State of the Art: define φ explicitly (vectorization) via:

• finite metric spaces [Carrière et al. 2015]

5
4

3

a

b

c 0 4 5
4 0 3
5 3 0


a b c

a
b
c

• polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kalǐsnik 2016]
{p1, · · · , pn} 7→ (P1(p1, · · · , pn), · · · , Pr(p1, · · · , pn), · · · )

Kernels for persistence diagrams



5

4

3

x1

x2

x3

finite metric space

 0 4 5
4 0 3
5 3 0


x1 x2 x3

x1

x2

x3

distance matrix

φ1

(5, 4, 3, 0, · · · )

sorted sequence

with finite support

φ2

(5, 4, 3, 0, · · · , 0)

finite-dimensional vector

φ3

Def: Φ = Φ3 ◦ Φ2 ◦ Φ1

Explicit Feature Map in Rd
[Stable topological signatures for
points on 3D shapes, Carrière,
Oudot, Ovsjanikov, SGP, 2015]



x̄1

x1

x2

x3

 Dij = min{ ‖xi − xj‖∞,
‖xi − x̄i‖∞,
‖xj − x̄j‖∞}



(7.2, 7.2, 5.6, 4, 4, 4, 0, · · · )

sorted sequence

with finite support

distance matrix

finite-dimensional vector

φ1

φ2

φ3

x̄2

x̄3

(7.2, 7.2, 5.6, 4, 4, 4, 0, · · · , 0)

Explicit Feature Map in Rd
[Stable topological signatures for
points on 3D shapes, Carrière,
Oudot, Ovsjanikov, SGP, 2015]



x̄1

x1

x2

x3

 Dij = min{ ‖xi − xj‖∞,
‖xi − x̄i‖∞,
‖xj − x̄j‖∞}


distance matrix

finite-dimensional vector

φ1

x̄2

x̄3

(7.2, 7.2, 5.6, 4, 4, 4, 0, · · · , 0)

Prop:

• ‖Φ(D)− Φ(D′)‖∞ ≤ 2 d∞(D,D′)

• ‖Φ(D)− Φ(D′)‖2 ≤ 2
√
d d∞(D,D′)

Explicit Feature Map in Rd
[Stable topological signatures for
points on 3D shapes, Carrière,
Oudot, Ovsjanikov, SGP, 2015]



diagrams are turned into 2-d density functions

diagrams are turned into families of 1-d functions

diagrams are turned into sequences of values

diagrams are turned into finite-dimensional vectors

diagrams are turned into pixelized images → finite-dimensional vectors

• landscapes [Bubenik 2012] [Bubenik, D lotko 2015]

• images [Adams et al. 2015]

• discrete measures:

→ histogram [Bendich et al. 2014]

→ convolution with fixed kernel [Chepushtanova et al. 2015]

→ heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

→ convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]

State of the Art: define φ explicitly (vectorization) via:

• finite metric spaces [Carrière, O., Ovsjanikov 2015]

5
4

3

a

b

c 0 4 5
4 0 3
5 3 0


a b c

a
b
c

• polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kalǐsnik 2016]
{p1, · · · , pn} 7→ (P1(p1, · · · , pn), · · · , Pr(p1, · · · , pn), · · · )

Kernels for persistence diagrams



Explicit Feature Map in Function Space

[Statistical Topological Data Analysis using
Persistence Landscapes, Bubenik, JMLR, 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function

Rotate PD
Compute rank function

Rank function is defined as λ(x, y) = rank ιyx

ιyx : H(f−1(−∞, x))→ H(f−1(−∞, y)) induced linear map

x ≤ y =⇒ f−1(−∞, x) ⊆ f−1(−∞, y)



Explicit Feature Map in Function Space

[Statistical Topological Data Analysis using
Persistence Landscapes, Bubenik, JMLR, 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function
Use boundaries of
rank function

Landscape Λ : R2 → R is defined as: Λ(i, t) = λbic(t)

Boundaries of rank function: λi(t) = sup{s ≥ 0 : λ(t− s, t+ s) ≥ i}



Explicit Feature Map in Function Space

[Statistical Topological Data Analysis using
Persistence Landscapes, Bubenik, JMLR, 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function

Prop:

• ‖Λ(D)− Λ(D′)‖∞ ≤ d∞(D,D′)

• min{1, C(D,D′)‖Λ(D)− Λ(D′)‖2} ≤ d2(D,D′)



diagrams are turned into 2-d density functions

diagrams are turned into families of 1-d functions

diagrams are turned into sequences of values

diagrams are turned into finite-dimensional vectors

diagrams are turned into pixelized images → finite-dimensional vectors

• landscapes [Bubenik 2012] [Bubenik, D lotko 2015]

• images [Adams et al. 2015]

• discrete measures:

→ histogram [Bendich et al. 2014]

→ convolution with fixed kernel [Chepushtanova et al. 2015]

→ heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

→ convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]

State of the Art: define φ explicitly (vectorization) via:

• finite metric spaces [Carrière, O., Ovsjanikov 2015]
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b

c 0 4 5
4 0 3
5 3 0
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b
c

• polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kalǐsnik 2016]
{p1, · · · , pn} 7→ (P1(p1, · · · , pn), · · · , Pr(p1, · · · , pn), · · · )

Kernels for persistence diagrams



the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)

δx

x

birth birth birth

de
at

h

de
at

h

de
at

h

∆

discrete weighting
D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

Pb: µD is unstable (points on diagonal disappear)

measure

w(x) := arctan (c d(x,∆)r), c, r > 0

∆
∆

Explicit Feature Map in Function Space
[Persistence weighted Gaussian kernel for topological data anal-
ysis, Kisano, Hiraoka, Fukumizu, ICML, 2016]



the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)

δx

x

birth birth birth

de
at

h

de
at

h

de
at

h

∆

discrete weighting
D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

Pb: µD is unstable (points on diagonal disappear)

measure convolution

w(x) := arctan (c d(x,∆)r), c, r > 0

Def: φ(D) is the density function of µwD ∗ N (0, σ) w.r.t. Lebesgue measure:

µ̃wD := µwD ∗ N (0, σ)

∆
∆

φ(D) :=
1√
2πσ

∑
x∈D

arctan(c d(x,∆)r) exp

(
−‖ · −x‖

2

2σ2

)
k(D,D′) := 〈φ(D), φ(D′)〉L2(∆×R+)

Explicit Feature Map in Function Space
[Persistence weighted Gaussian kernel for topological data anal-
ysis, Kisano, Hiraoka, Fukumizu, ICML, 2016]



... because points/modes start mixing up together. Weighting also reduces discriminativity to some extent, but motivated by stability constraint and not a pure choice of design. In the following we will try to use the discrete measure itself, to avoid convolutions. Moreover, we will bypass the weighting.

the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)

δx

x

birth birth birth

de
at

h

de
at

h

de
at

h

∆

discrete weighting

Prop:

• ‖φ(D)− φ(D′)‖H ≤ cst dp(D,D
′).

• φ is injective and exp(k) is universal

D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

measure convolution

µ̃wD := µwD ∗ N (0, σ)

∆
∆

φ(D) :=
1√
2πσ

∑
x∈D

arctan(c d(x,∆)r) exp

(
−‖ · −x‖

2

2σ2

)
k(D,D′) := 〈φ(D), φ(D′)〉L2(∆×R+)

Pb: convolution reduces discriminativity → use discrete measure instead

Explicit Feature Map in Function Space
[Persistence weighted Gaussian kernel for topological data anal-
ysis, Kisano, Hiraoka, Fukumizu, ICML, 2016]



Attention: L2 is not an RKHS, just an ambient Hilbert space in which the RKHS is embedded

note: injective kernels can be made universal by post-composition with a Gaussian kernel

L2(N× R) is defined by taking the product of the counting measure on N and the Lebesgue measure on R, that is:
∫
N×R λ(k, t)dµ =

∑∞
k=1

∫
R λ(k, t)dt

Kernels for persistence diagrams

positive (semi-)definiteness

ambient Hilbert space

‖φ(·)− φ(·)‖H ≤ φ(dp)

‖φ(·)− φ(·)‖H ≥ ψ(dp)

universality

algorithmic cost

injectivity

landscapes
discretemetric

spaces

L2(N× R) L2(R2)(Rd, ‖.‖2)

O(n2) O(n2)
f. map: O(n2)

kernel: O(d)

measurespolynomials

`2(R)

f. map: O(nd)

kernel: O(d)

images

(Rd, ‖.‖2)

f. map: O(n2)

kernel: O(d)



One kernel to rule them all... [Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]

No feature map

Provably stable

Provably discriminative

Mimicks the Gaussian kernel

View diagrams as discrete measures w/o density functions

Sliced Wasserstein Kernel



this is a quasi-isometric embedding

observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

this is because the two discrete measures have different masses. One could renormalize them and take the empirical measures, but then the optimal transport plan between them would be mass-splitting and therefore not equal to the metric between the diagrams

This is bad in practice because, basically, you need to make µD depend on all other diagrams at once, including the ones from the testing set (which you don’t know in advance) But this contradiction is only apparent, since, as we will see, it can be resolved using signed measures.

Persistence diagrams as discrete measures

δx

x

birth birth

de
at

h

de
at

h

∆

µD :=
∑
x∈D δx

→ given D,D′, let µ̄D :=
∑
x∈D

δx+
∑
y∈D′

δπ∆(y)

µ̄D′ :=
∑
y∈D′

δy+
∑
x∈D

δπ∆(x)

Then, dp(D,D
′) ≤Wp(µ̄D, µ̄D′) ≤ 2 dp(D,D

′)

Pb: dp(D,D
′) 6∝ Wp(µD, µD′) (Wp does not even make sense here)

Pb: µ̄D depends on D′

π∆(x)

∆



Indeed, the Kantorovich norm offers a lot of flexibility compared to other metrics between measures. In particular, it is compatible with signed measures. Note that it is a true norm only for W1

observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

this is because the two discrete measures have different masses. One could renormalize them and take the empirical measures, but then the optimal transport plan between them would be mass-splitting and therefore not equal to the metric between the diagrams

this is the space of measures with total mass zero over R2 note: we redefine µ̃D here

Persistence diagrams as discrete measures

δx

x

birth birth

de
at

h

de
at

h

∆

µD :=
∑
x∈D δx

Pb: dp(D,D
′) 6∝ Wp(µD, µD′) (Wp does not even make sense here)

∆

Solution: transfer mass negatively to µD:

µ̃D :=
∑
x∈D

δx −
∑
x∈D

δπ∆(x) ∈M0(R2)

π∆(x)

→ signed discrete measure of total mass zero

metric: Kantorovich norm ‖ · ‖K



unique in the sense that for any other such decomposition P ′, N ′, one has µ(P∆P ′) = 0 = µ(N∆N ′)

P is a positive set for µ

N is a negative set for µ

observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

now we can identify the space of PDs to a space of measures, and so we can adopt solutions from Optimal Transport theory

µ+ = positive part of µ, and µ− = negative part of µ

Persistence diagrams as discrete measures

Hahn decomp. thm: For any µ ∈ M0(X,Σ) there
exist measurable sets P,N such that:

(i) P ∪N = X and P ∩N = ∅
(ii) µ(B) ≥ 0 for every measureable set B ⊆ P
(iii) µ(B) ≤ 0 for every measureable set B ⊆ N

Moreover, the decomposition is essentially unique.

∆P

N

∀B ∈ Σ, let µ+(B) := µ(B ∩ P ) and µ−(B) := −µ(B ∩N) ∈M+(X)

Prop: ∀µ, ν ∈M0(X), W1(µ+ + ν−, ν+ + µ−) = ‖µ− ν‖K
µ̄D µ̄D′

µ̃D µ̃D′
for persistence diagrams:

W1(µ̄D, µ̄D′) = ‖µ̃D − µ̃D′‖K

‖µ‖K := W1(µ+, µ−)Def:



this is the path taken by [Aguey, Carlier] and [Ohta] for measures, by [Reiningshaus et al.] for PDs

it is indeed easy to generate counterexamples by randomly sampling the space of persistence diagrams.

A Wasserstein Gaussian kernel for PDs?

Pb: W1 is not cnsd, neither is d1

Solutions:

• relax the measures (e.g. convolution)

• relax the metric (e.g. regularization, slicing)

Thm:
If d : X ×X → R+ symmetric is conditionally negative semidefinite, i.e.:

∀n ∈ N, ∀x1, . . . , xn ∈ X,
n∑
i=1

αi = 0 =⇒
n∑
i=1

n∑
j=1

αiαj d(xi, xj) ≤ 0,

then k(x, y) := exp
(
− d(x,y)

2σ2

)
is positive semidefinite.



Sliced Wasserstein metric

one can then see P and Q as n-dimensional vectors

Special case: X = R, µ, ν discrete measures of mass n

µ :=
∑n
i=1 δxi , ν :=

∑n
i=1 δyi

Sort the atoms of µ, ν along the real line: xi ≤ xi+1 and yi ≤ yi+1 for all i

Then: W1(µ, ν) =
∑n
i=1 |xi − yi| = ‖(x1, · · · , xn)− (y1, · · · , yn)‖1

µ

ν

→ W1 is cnsd and easy to compute (same with ‖ · ‖K for signed measures)

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]



Note : une idee naturelle serait d’integrer sur toutes les droites du plan, soit RP 1 × R, mais en fait : - la distance entre les mesures projetees orthogonalement sur la droite est invariante par translation de la droite, donc il suffit d’integrer sur RP 1 ; - pour simplifier on integre sur S1, ce qui ne fait que doubler la valeur de la distance.

This is very much like a (inverse) Radon transform

Def: (sliced Wasserstein distance) for µ, ν ∈M+(R2),

SW1(µ, ν) :=
1

2π

∫
θ∈S1

W1(πθ#µ, πθ#ν) dθ

where πθ = orthogonal projection onto line passing through origin with angle θ.

Sliced Wasserstein metric

θ

→ from integral geometry:

∫
Gr(1,2)

· · ·

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]



Note : une idee naturelle serait d’integrer sur toutes les droites du plan, soit RP 1 × R, mais en fait : - la distance entre les mesures projetees orthogonalement sur la droite est invariante par translation de la droite, donc il suffit d’integrer sur RP 1 ; - pour simplifier on integre sur S1, ce qui ne fait que doubler la valeur de la distance.

Def: (sliced Wasserstein distance) for µ, ν ∈M+(R2),

SW1(µ, ν) :=
1

2π

∫
θ∈S1

W1(πθ#µ, πθ#ν) dθ

where πθ = orthogonal projection onto line passing through origin with angle θ.

Sliced Wasserstein metric

Props: (inherited from W1 over R)

- satisfies the axioms of a metric

- conditionally negative semidefinite

- well-defined barycenters, fast to compute via stochastic gradient descent, etc.

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]



(vector norm + discrete set of directions, either full arrangement or fixed subset for approximation)

this is the same as SW1(µD + π∆#µD′ , µD′ + π∆#µD)

Sliced Wasserstein kernel

Def: Given σ > 0, for any µ, ν ∈M+(R2):

kSW (µ, ν) := exp

(
−SW1(µ, ν)

2σ2

)

Cor:
kSW is positive semidefinite.

(from SW cnsd)

→ application to persistence diagrams:

D 7→ µD :=
∑
x∈D δx

δx

x

birth

de
at

h

∆

π∆(x)

7→ µ̃D := µD − π∆#µD

kSW (D,D′) := exp

(
−SW1(D,D′)

2σ2

)
SW1(D,D′) :=

∫
θ∈S1

‖πθ#µ̃D − πθ#µ̃D′‖K dθ

- positive semidefinite

- simple and fast to compute

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]



this is the same as SW1(µD + π∆#µD′ , µD′ + π∆#µD)

Sliced Wasserstein kernel

→ application to persistence diagrams:

D 7→ µD :=
∑
x∈D δx

δx

x

birth

de
at

h

∆

π∆(x)

7→ µ̃D := µD − π∆#µD

kSW (D,D′) := exp

(
−SW1(D,D′)

2σ2

)
SW1(D,D′) :=

∫
θ∈S1

‖πθ#µ̃D − πθ#µ̃D′‖K dθ

Thm:
The metrics d1 and SW1 on the space DN of persistence diagrams of size
bounded by N are strongly equivalent, namely: for D,D′ ∈ DN ,

1

2 + 4N(2N − 1)
d1(D,D′) ≤ SW1(D,D′) ≤ 2

√
2 d1(D,D′)

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]

Q: prove it.



Sliced Wasserstein kernel

Thm:
The metrics d1 and SW1 on the space DN of persistence diagrams of size
bounded by N are strongly equivalent, namely: for D,D′ ∈ DN ,

1

2 + 4N(2N − 1)
d1(D,D′) ≤ SW1(D,D′) ≤ 2

√
2 d1(D,D′)

Cor: The feature map φ associated with kSW is weakly metric-preserving:
∃g, h nonzero except at 0 such that g ◦ d1 ≤ ‖φ(·)− φ(·)‖H ≤ h ◦ d1.

[Sliced Wasserstein Kernel for
persistence diagrams, Carrière,
Cuturi, Oudot, ICML, 2017]

Q: prove it.



Metric distortion in practice



Application to supervised shape segmentation

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

Foot

Head Torso

Hand

Label = ?

Training Test



Application to supervised shape segmentation

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape
(training data)



Application to supervised shape segmentation

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

Error rates (%) using TDA descriptors (kernels on barcodes):

TDA geometry/stats TDA + geometry/stats

Human 26.0 21.3 11.3
Airplane 27.4 18.7 9.3
Ant 7.7 9.7 1.5
FourLeg 27.0 25.6 15.8
Octopus 14.8 5.5 3.4
Bird 28.0 24.8 13.5
Fish 20.4 20.9 7.7



the behavior of the orbit is highly dependent on the value of r, as illustrated below (where the labels correspond to certain ranges of values of r)

Application to supervised orbits classification

Goal: classify orbits of linked twisted map, modelling fluid flow dynamics

Orbits described by (depending on parameter r):

{
xn+1 = xn + r yn(1− yn) mod 1

yn+1 = yn + r xn+1(1− xn+1) mod 1

Label = 2

Label = 1 Label = 5

Label = 4
Label = 3



Application to supervised orbits classification

Goal: classify orbits of linked twisted map, modelling fluid flow dynamics

Orbits described by (depending on parameter r):

{
xn+1 = xn + r yn(1− yn) mod 1

yn+1 = yn + r xn+1(1− xn+1) mod 1

kPSS kPWG kSW

Orbit 64.0± 0.0 78.7± 0.0 83.7± 1.1

kPSS kPWG kSW

Orbit N × 9183.4± 65.6 N × 69.2± 0.9 385.8± 0.2 +NC

Accuracies (%) using only TDA descriptors (kernels on barcodes):

Running times (in seconds on N-sized parameter space from 100 orbits):

(PDs as discrete measures)



whatever that means... this is a descriptor for patterns that takes the form of a real-valued function on the domain of the image, whose persistence can then be computed

Application to supervised texture classification

Label = Canvas Label = TileLabel = Carpet

Goal: classify textures from the OUTEX00000 database

Textures described by CLBP (Compound Local Binary Pattern)

→ apply degree-0 persistence on 1st sign component



whatever that means... this is a descriptor for patterns that takes the form of a real-valued function on the domain of the image, whose persistence can then be computed

Application to supervised texture classification

Goal: classify textures from the OUTEX00000 database

Textures described by CLBP (Compound Local Binary Pattern)

→ apply degree-0 persistence on 1st sign component

kPSS kPWG kSW

Orbit 98.7± 0.06 96.7± 0.4 96.1± 0.1

kPSS kPWG kSW

Orbit N × 10337.4± 140.5 N × 45.9± 0.6 126.4± 0.2 +NC

Accuracies (%) using only TDA descriptors (kernels on barcodes):

Running times (in seconds on N-sized parameter space from 100 orbits):

(PDs as discrete measures)



Statistics on Persistence Diagrams

∞

0
0

X̂n F(X̂n)

D(F(X̂n))

(X, d) metric space
µ probability measure with compact support Xµ

Sample n points
according to µ.

Examples:
- F(X̂n) = Rips(X̂n)

- F(X̂n) = Čech(X̂n)

- F(X̂n) = sublevelset filtration of d(., Xµ).

Questions:

• Statistical properties of D(F(X̂n)) ? D(F(X̂n))→? as n→ +∞?

• Can we do more statistics with persistence diagrams?



Statistics on Persistence Diagrams

∞

0
0

X̂n F(X̂n)

D(F(X̂n))

(X, d) metric space
µ probability measure with compact support Xµ

Sample n points
according to µ.

Examples:
- F(X̂n) = Rips(X̂n)

- F(X̂n) = Čech(X̂n)

- F(X̂n) = sublevelset filtration of d(., Xµ).

Stability thm: db(D(F(Xµ)),D(F(X̂m))) ≤ 2dGH(Xµ, X̂n)

P
(
db
(

D(F(Xµ)),D(F(X̂n))
)
> ε
)
≤ P

(
dGH(Xµ, X̂n) >

ε

2

)So, for any ε > 0,



Deviation inequality

X̂n F(X̂n)

(X, d, µ)

X1, X2, . . . , Xn
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Thm: If µ satisfies the (a, b)-standard assumption, then for any ε > 0:

P
(
db
(

D(F(Xµ)),D(F(X̂n))
)
> ε
)
≤ min

{
8b

aεb
exp

(
−naεb

)
, 1

}
.

Moreover lim
n→∞

P

(
db
(

D(F(Xµ)),D(F(X̂n))
)
≤ C1

(
logn

n

)1/b
)

= 1.

where C1 is a constant only depending on a and b.

Xµ compact

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]



Deviation inequality

X̂n F(X̂n)

(X, d, µ)

X1, X2, . . . , Xn
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Sketch of proof:

1. Upperbound P
(
dH(Xµ, X̂n) > ε

2

)
.

2. (a, b) standard assumption⇒ an explicit upper bound for the covering number
of Xµ (by balls of radius ε/2).

3. Apply “union bound” argument.

Xµ compact

C(ε) ≤ P (ε/2)

+ µ(B(x, ε/2)) ≥ a(ε/2)b

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]



Minimax rate of convergence

Let P(a, b,X) be the set of all the probability measures on the metric space (X, d)
satisfying the (a, b)-standard assumption on X:

Rem: we can obtain slightly better bounds if Xµ is a submanifold of RD.

Thm: Let P(a, b,X) be the set of (a, b)-standard proba measures on X. Then:

sup
µ∈P(a,b,X)

E
[
db(D(F(Xµ)),D(F(X̂n)))

]
≤ C

(
logn

n

)1/b

where the constant C only depends on a and b (not on X!). Assume moreover that
there exists a non isolated point x in X and let xm be a sequence in X \ {x} such
that d(x, xn) ≤ (an)−1/b . Then for any estimator D̂n of D(F(Xµ)):

lim inf
n→∞

d(x, xn)−1 sup
µ∈P(a,b,X)

E
[
db(D(F(Xµ)), D̂n)

]
≥ C′

where C′ is an absolute constant.

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]



Numerical illustrations

- µ: unif. measure on Lissajous curve Xµ.
- F : distance to Xµ in R2.
- sample k = 300 sets of n points for n =
[2100 : 100 : 3000].
- compute

Ên = Ê[db(D(F(Xµ)),D(F(X̂n)))].

- plot log(Ên) as a function of log(log(n)/n).

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]



Numerical illustrations

- µ: unif. measure on a torus Xµ.
- F : distance to Xµ in R3.
- sample k = 300 sets of n points for n =
[12000 : 1000 : 21000].
- compute

Ên = Ê[db(D(F(Xµ)),D(F(X̂n)))].

- plot log(Ên) as a function of log(log(n)/n).

[Convergence rates for persistence diagram estima-
tion in Topological Data Analysis, Chazal, Glisse,
Labruère, Michel ICML, 2014]



Example: Circle with one outlier.

[On the Bootstrap for Persistence Di-
agrams and Landscapes, Chazalet al.,
Model. Anal. Inform. Sist., 2013]

Numerical illustrations: confidence for landscapes



[On the Bootstrap for Persistence Di-
agrams and Landscapes, Chazalet al.,
Model. Anal. Inform. Sist., 2013]

Example: 3D shapes

From k = 100 subsamples of size n = 300

Numerical illustrations: confidence for landscapes



(Toy) Example: Accelerometer data from smartphone.

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!

[On the Bootstrap for Persistence Di-
agrams and Landscapes, Chazalet al.,
Model. Anal. Inform. Sist., 2013]

Numerical illustrations: confidence for landscapes



Persistence Diagrams and Machine Learning

persistence

∞

⊆ ⊆
Persistence diagram

H

Φk(·, ·) := 〈Φ(·),Φ(·)〉H

Etc.

• Classifier (RF, SVM, NN etc.)

• Dim. red. (PCA, MDS, UMAP, t-SNE)

• Clustering (DBSCAN, K-means, etc.)

What filtration to choose?

What linearization to choose?



Q: What happens in general when one embeds PDs in Hilbert?

Prop: H Hilbert with dot product 〈·, ·〉H and distance ‖ ·‖H. Assume
dH and d∞ or dp are equivalent.

(i) H = Rd ⇒ Impossible

even if the PDs are included in [−L,L]2 and have less than N points

(ii) H separable, p = 1 ⇒ either A→ 0 or B → +∞
when L,N → +∞

Def: Two metrics d, d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, Carrière, SoCG, 2019]

Q: prove (ii).



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d, d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:

(ii) The space of PDs with possibly infinite number of points
is not separable with respect to d1

Consider S = {Du}u∈{0,1}N

where Du =
{(
k, k + 1

k

)
: uk = 1

}
S is not countable with d1

k

1/k1/k

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, Carrière, SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d, d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:
S = {Du}u∈{0,1}N

Indeed, let S′ ⊆ S be a dense set and ε > 0

∀Du ∈ S, ∃Du′ ∈ S′ : d1(Du, Du′) ≤ ε

Supports of u′ and u must differ on a finite
number of terms only

⇒ card(S′) ≥ card(S/ ∼)

where Du ∼ Dv ⇔ supp(u) 4 supp(v) <∞

uncountable!

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, Carrière, SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d, d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Ex: Persistence surface

Φ(D) =
∑
p∈D w(p) · exp

(
−‖·−p‖

2
2

2σ2

)
where w((x, y)) = arctan (C|y − x|α) with C,α > 0

If α ≥ 2, S is in the domain of Φ

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, Carrière, SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d, d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:

(i) is a little more tricky

Def: Let (X, d) be a metric space. Given a subset E ⊂ X and r > 0,
let Nr(E) be the least number of open balls of radius ≤ r that can cover
E. The Assouad dimension of (X, d) is:

dimA(X, d) = inf{α : ∃C s.t. supxNβr(B(x, r)) ≤ Cβ−α, 0 < β ≤ 1}

dimA(D, dp) = +∞ whereas dimA(Rd) = d

dimA is preserved for equivalent metrics

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, Carrière, SoCG, 2019]



Q: What happens in general when one embeds PDs in Hilbert?

Def: Two metrics d, d′ are equivalent if

∃0 < A,B < +∞ s.t. Ad(·, ·) ≤ d′(·, ·) ≤ B d(·, ·)

Proof:

dimA(D, dp) = +∞ whereas dimA(Rd) = d

dimA is preserved for equivalent metrics

r

r

βr

Idea: Consider the ball of radius r
around the empty diagram and dia-
grams with single points at distance
r from ∆ and from each other

The number of such diagrams in-
creases to +∞ as β goes to 0

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, Carrière, SoCG, 2019]



Illustrations:

We generate diagrams by
uniformly sampling into the
upper unit half-square

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, Carrière, SoCG, 2019]



Illustrations:

We generate diagrams by
uniformly sampling into the
upper unit half-square

The space of persistence diagrams [On the Metric Distortion of Embedding Persis-
tence Diagrams into separable Hilbert Spaces,
Bauer, Carrière, SoCG, 2019]

Idea: Stay in Euclidean space Rd but
learn best vectorization with Neural Net



Deep Set is a novel neural net architecture that is able to handle sets instead
of finite dimensional vectors

Input: {x1, ..., xn} ⊂ Rd instead of x ∈ Rd

Network is permutation invariant: F (X) = ρ (
∑
i φ(xi))

x1
x2
x3

xn

x1
x2
x3 ...

...

sum

X

⇒ F ({x1, ..., xn}) = F ({xσ(1), ..., xσ(n)}), ∀σ

φ

In practice:

ρ

φ(xi) = W · xi + b

The Deep Set architecture [Deep Sets, Zaheer, Kottur, Ravanbakhsh, Poc-
zos, Salakhutdinov, Smola, NeurIPS, 2017]



Deep Set is a novel neural net architecture that is able to handle sets instead
of finite dimensional vectors

Input: {x1, ..., xn} ⊂ Rd instead of x ∈ Rd

Network is permutation invariant: F (X) = ρ (
∑
i φ(xi))

Universality theorem

Thm:

A function f is permutation invariant iif f(X) = ρ (
∑
i φ(xi))

for some ρ and φ, whenever X is included in a countable space

The Deep Set architecture [Deep Sets, Zaheer, Kottur, Ravanbakhsh, Poc-
zos, Salakhutdinov, Smola, NeurIPS, 2017]



Application to PDs



Permutation invariant layers generalize several TDA approaches

→ persistence images → landscapes

But not all of them since R2 is not countable

Using any permutation invariant operation (such as max, min, kth largest
value) allows to generalize other TDA approaches

→ Betti curves

Weight function

Point transformation

PersLay(D) = ρ (op{w(p) · φ(p)}p∈D)

Permutation-invariant
operation

Application to PDs [PersLay: A Neural Network Layer for Per-
sistence Diagrams and New Graph Topologi-
cal Signatures, Carrière, Chazal, Ike, Lacombe,
Royer, Umeda, AISTATS, 2019]

[Time Series Classifica-
tion via Topological Data
Analysis, Umeda, Trans.
Jap. Soc. for AI, 2017]



Λp1

Λp2

Λp3

p1

p2

p3

p4

φΛ : p 7→


Λp(t1)
Λp(t2)

...
Λp(tq)


Parameters t1, · · · , tq ∈ R

w(p) = 1 op = top-k

Application to PDs [PersLay: A Neural Network Layer for Per-
sistence Diagrams and New Graph Topologi-
cal Signatures, Carrière, Chazal, Ike, Lacombe,
Royer, Umeda, AISTATS, 2019]



Γp1

Γp2

Γp3

Γp4

φΓ : p 7→


Γp(t1)
Γp(t2)

...
Γp(tq)


Parameters t1, · · · , tq ∈ R2

w(p) = wt((x, y)) op = sum

Application to PDs [PersLay: A Neural Network Layer for Per-
sistence Diagrams and New Graph Topologi-
cal Signatures, Carrière, Chazal, Ike, Lacombe,
Royer, Umeda, AISTATS, 2019]



[φL(p1)]1

[φL(p1)]2 [φL(p3)]2 [φL(p2)]2

[φL(p2)]1

[φL(p3)]1

∆1

∆2

p1

p2

p3

p4

φL : p 7→


〈p, e∆1〉+ b∆1

〈p, e∆2〉+ b∆2

...
〈p, e∆q

〉+ b∆q


Parameters ∆1, · · · ,∆q ∈

[
−π2 ,

π
2

]
b∆1 , · · · , b∆q ∈ R

op = top-k

w(p) = 1

Application to PDs [PersLay: A Neural Network Layer for Per-
sistence Diagrams and New Graph Topologi-
cal Signatures, Carrière, Chazal, Ike, Lacombe,
Royer, Umeda, AISTATS, 2019]



features

w(·)φ(·) op

op

op
ρ

w(·)φ(·)

w(·)φ(·)

opw(·)φ(·)

data

Application to PDs [PersLay: A Neural Network Layer for Per-
sistence Diagrams and New Graph Topologi-
cal Signatures, Carrière, Chazal, Ike, Lacombe,
Royer, Umeda, AISTATS, 2019]



features

w(·)φ(·) op

op

op
ρ

w(·)φ(·)

w(·)φ(·)

opw(·)φ(·)

data

Application to PDs [PersLay: A Neural Network Layer for Per-
sistence Diagrams and New Graph Topologi-
cal Signatures, Carrière, Chazal, Ike, Lacombe,
Royer, Umeda, AISTATS, 2019]



Let G = (V,E) be a graph, A its adjacency matrix

D its degree matrix

and Lw(G) = I −D−1/2AD−1/2 its normalized Laplacian.

Lw(G) decomposes on a orthonormal basis φ1 . . . φn

with eigenvalues 0 ≤ λ1 ≤ · · · ≤ λn ≤ 2

Def: Let t ≥ 0, and define the Heat Kernel Signature of param t:

hksG,t : v 7→
∑n
k=1 exp(−λkt)φk(v)2

Application to graph classification [PersLay: A Neural Network Layer for Per-
sistence Diagrams and New Graph Topologi-
cal Signatures, Carrière, Chazal, Ike, Lacombe,
Royer, Umeda, AISTATS, 2019]



Def: Let t ≥ 0, and define the Heat Kernel Signature of param t:

hksG,t : v 7→
∑n
k=1 exp(−λkt)φk(v)2

1

1

1 3

2

2 1

1
Sublevel graphs (increasing values of hks)

superlevel graphs (decreasing values of hks)

Application to graph classification [PersLay: A Neural Network Layer for Per-
sistence Diagrams and New Graph Topologi-
cal Signatures, Carrière, Chazal, Ike, Lacombe,
Royer, Umeda, AISTATS, 2019]



Graph from the Corresponding extended
persistence diagramPROTEINS dataset

α

β

Application to graph classification [PersLay: A Neural Network Layer for Per-
sistence Diagrams and New Graph Topologi-
cal Signatures, Carrière, Chazal, Ike, Lacombe,
Royer, Umeda, AISTATS, 2019]



Application to graph classification [PersLay: A Neural Network Layer for Per-
sistence Diagrams and New Graph Topologi-
cal Signatures, Carrière, Chazal, Ike, Lacombe,
Royer, Umeda, AISTATS, 2019]

Weight function learnt

(after training on the
MUTAG dataset)



Persistence diagrams and optimization

persistence

∞

⊆ ⊆
Persistence diagram

H

Φk(·, ·) := 〈Φ(·),Φ(·)〉H

Etc.

• Classifier (RF, SVM, NN etc.)

• Dim. red. (PCA, MDS, UMAP, t-SNE)

• Clustering (DBSCAN, K-means, etc.)

What filtration to choose?

What linearization to choose?



Q: How to define ∇D?

Q: Given a parameterized family of functions F = {fθ : θ ∈ Θ}, how to
define ∇θDk(fθ)?

Q: Given a point cloud X ⊆ Rd, how to define ∇XDk(Rips(X))?

Problem setting

Idea: Let’s go back to the PD construction...



1 2

3

4

56
7

simplicial filtrationInput:

Computation with matrix reduction

1 1 2 1 2

3

1 2

3

4
1 2

3

4

5

1 2

3

4

56

1 2

3

4

56 7

(Persistent) homology can be computed by us-
ing the fact that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class



1 2

3

4

56
7

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗
5 ∗
6 ∗
7

1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

simplicial filtration

Output: boundary matrix

Input:

simplex pairs give finite intervals:

unpaired simplices give infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Computation with matrix reduction



1 2

3

4

56
7

1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

simplicial filtration

Output: boundary matrix

Input:

simplex pairs give finite intervals:

unpaired simplices give infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Computation with matrix reduction

A persistence diagram D is made of all
(F(σ+),F(σ−)) ∈ R2 where σ+ (resp.
σ−) is positive (resp. negative), and F is
the filtration function.

Thus we can define the gradient of a point
p = (F(σ+),F(σ−)) ∈ D as

∇p = [∇F(σ+),∇F(σ−)]



Example: Vietoris-Rips gradient

Q: Define and compute Vietoris-Rips gradient?



Persistence barcode
Point cloud X̂n

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi,j‖vi − vj‖

Example: Vietoris-Rips gradient

Let p = (F(σ+),F(σ−)) ∈ Dk(Rips(X))

with σ+ = {v0, . . . , vk} and σ− = {w0, . . . , wk+1}



Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

∇Xp =
[
∂
∂X ‖vi∗ − vj∗‖,

∂
∂X ‖wa∗ − wb∗‖

]
∂

∂v
(d)
i

‖vi∗ − vj∗‖ = (−) 1
‖vi∗−vj∗‖

(v
(d)
i∗ − v

(d)
j∗ ) if i = i∗ (j∗) and 0 otherwise

With this gradient rule, one can do gradient descent with any function of
persistence!



Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Let’s say we want to maximize
the number of holes in that
point cloud.

We can use gradient descent to
minimize loss

L(X) = −
∑
p

‖p‖22,

with p ∈ D1(Rips(X))



Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Let’s say we want to maximize
the number of holes in that
point cloud.

We can use gradient descent to
minimize loss

L(X) = −
∑
p

‖p‖22,

with p ∈ D1(Rips(X))



Persistence barcode
Point cloud X̂n

Example: Vietoris-Rips gradient

Let’s say we want to maximize
the number of holes in that
point cloud.

We can use gradient descent to minimize
loss

L(X) = −
∑
p

‖p‖22 + d(X,C),

with p ∈ D1(Rips(X)) and C unit square



Example: Sublevel sets

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi fθ(vi)

∇θp =
[
∂
∂θfθ(vi∗),

∂
∂θfθ(wa∗)

]
Let’s say we want to remove
the stains in that image.

We can use gradient descent to minimize
loss

L(X) =
∑
p

‖p‖22,

with p ∈ D0(I)



Example: Sublevel sets

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi fθ(vi)

∇θp =
[
∂
∂θfθ(vi∗),

∂
∂θfθ(wa∗)

]
Let’s say we want to remove
the stains in that image.

We can use gradient descent to minimize
loss

L(X) =
∑
p

‖p‖22,

with p ∈ D0(I)



Example: Sublevel sets

Given k-dim. simplex σ = [v0, . . . , vk], one has

F(σ) = maxi fθ(vi)

∇θp =
[
∂
∂θfθ(vi∗),

∂
∂θfθ(wa∗)

]
Let’s say we want to remove
the stains in that image.

We can use gradient descent to minimize
loss

L(X) =
∑
p

‖p‖22 +
∑
P∈I

max{|P |, |1−P |},

with p ∈ D0(I)



Topological gradient descent

For a fixed ordering of the simplices in a simplicial complex K, the correspond-
ing persistence diagram always has the same number of points: its gradient
is well-defined!

If the ordering changes, the boundary matrix can have a new reduced form
and the persistence diagram can have a new, different number of points.

Prop: Let K be a simplicial complex and let Φ : A→ R|K| a (parameterized)
filtration of K. There exists a partition A = S t O1 t · · · t Ok s.t. all the
restrictions Φ : Oi → R|K| are differentiable.

The Oi’s are the parts of A where the ordering of the simplices of K is
preserved, and S is the boundaries of all Oi’s.

Q: What is S for Vietoris-Rips? Sublevel sets?

[Optimizing persistent homology based func-
tions, Carrière, Chazal, Glisse, Ike, Kanna,
Umeda, ICML, 2021]



Topological gradient descent

Def: The Clarke subdifferential ∂L of L is the set:

∂xL = conv{limxi→x∇L(xi) : L is diff. at xi},

where conv denotes the convex hull.

[Optimizing persistent homology based func-
tions, Carrière, Chazal, Glisse, Ike, Kanna,
Umeda, ICML, 2021]



Topological gradient descent

Let {αk}k, {ζk}k s.t.

αk ≥ 0,
∑
k αk = +∞ and

∑
k α

2
k < +∞

ζk random variables s.t. E[ζk] = 0 and E[‖ζk‖2] < C for some C > 0

Thm: As long as L ◦ Pers ◦ Φ is locally Lipschitz, the sequence

ak+1 = ak − αk(gk + ζk),

where gk ∈ ∂ak(L ◦ Pers ◦ Φ), converges to a critical point of L ◦ Pers ◦ Φ.

[Optimizing persistent homology based func-
tions, Carrière, Chazal, Glisse, Ike, Kanna,
Umeda, ICML, 2021]

Q: Does this result apply to db and dp? What is the gradient?



Topological stratified gradient descent [A gradient sampling algorithm for
stratified maps with applications to
topological data analysis, Leygonie,
Carrière, Lacombe, Oudot, 2021]

Better guarantees can be obtained by smoothing the gradient definition.

Def: The smoothed topological gradient of Pers ◦ Φ is defined as:

∇̃a = argmin{‖g‖ : g ∈ conv(Sa)}
where Sa = {∇a′ : a′ ∈ Oi, Oi ∈ N (Oa)}, where Oa is the stratum associ-
ated to a, and N (Oa) is the set of strata that are close to Oa.

Intuitively, close strata means that their corresponding orderings are very sim-
ilar, e.g., they differ by single swaps, or their distance is bounded by ε > 0.

Thm: Let ε > 0. As long as L ◦ Pers ◦ Φ is Lipschitz, the sequence

ak+1 = ak − ε · ∇̃ak/‖∇̃ak‖,

converges in finitely many iterations to ã s.t. ∃ā : ∇̃ā = 0 and ‖ã− ā‖ ≤ ε.



Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.

Ex: images fil-
tered by a direc-
tion parameter-
ized by angle.



Example: filter selection

Assume we have a supervised classification task. The goal is to find a filtration
from a family F such that the corresponding persistence diagrams give the
best classification score.

Idea: minimize:

L(f) =
∑
l

∑
yi=yj=l

dp(Df (xi),Df (xj))∑
yi=l

dp(Df (xi),Df (xj))
,

one can also use Sliced Wasserstein for speedup.



More examples

[Topological autoencoders, Moor,
Horn, Rieck, Borgwardt, ICML, 2020]

[A Topological Regularizer for Classi-
fiers via Persistent Homology, Chen,
Ni, Bai, Wang, AISTATS, 2019]


