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Class outline

The classes are about

Topological Data Analysis (TDA)

Goal: Study geometric data sets with techniques coming from topology.

Question: What is topology?

[Elements of Algebraic Topology,
Munkres, CRC Press, 1984]

[Algebraic Topology, Hatcher, Cam-
bridge University Press, 2002]

[Computational Topology: an introduc-
tion, Edelsbrunner, Harer, AMS, 2010]



Introduction: topological visualization

visualize topology on
the data directly



Two types of applications:

• clustering

• feature selection

Principle: identify statistically rele-
vant subpopulations through topolog-
ical patterns (flares, loops).

flares

loops

Introduction: topological visualization



Introduction: topological visualization

3d shapes classification
[Topological Methods for the Analysis of High Dimen-
sional Data Sets and 3D Object Recognition, Singh,
Mémoli, Carlsson, Symp. Point based Graphics, 2007]



Introduction: topological visualization

[Topological Methods for Exploring Low-density
States in Biomolecular Folding Pathways, Yao et
al., J. Chemical Physics, 2009]

Data: conformations of molecules.

Goal: detect folding pathways.

Idea: 1 loop = 2 pathways.



Introduction: topological visualization

Data: breast cancer patients that went through specific therapy.

Goal: detect variables that influence survival after therapy in breast cancer.

[Extracting insights from the shape
of complex data using topology,
Lum et al., Nature, 2013]
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We will see how to build new topological features from data sets...

...but why is that interesting?
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Introduction: topological descriptors built from data

Galaxies

Scans

3D shapes

Magnetometer

Data carrying geometric information is usually high dimensional.

Data often come as (sampling of) metric spaces or sets/spaces endowed with
a similarity measure with, possibly complex, topological/geometric structure.



Introduction: topological descriptors built from data

Galaxies

Scans

3D shapes

Magnetometer

Features from Topological Data Analysis allow to:
- infer relevant topological and geometric features of these spaces.
- take advantage of topol./geom. information for further processing of data
(classification, recognition, learning, clustering, parametrization...).
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Problem: how to define the
topology of a data set?



Challenges and advantages

Problem: how to define the
topology of a data set?

Challenges and goals:
→ no direct access to topological/geometric information: need of intermediate
constructions with simplicial complexes;
→ distinguish topological “signal” from noise;
→ topological information may be multiscale;
→ statistical analysis of topological information.



Challenges and advantages

Advantages:
→ coordinate invariance: topological features/invariants do not rely on any
coordinate system ⇒ no need to have data with coordinates, or to embed
data in spaces with coordinates... but the metric (distance/similarity between
data points) is important.
→ deformation invariance: topological features are invariant under homeo-
morphism and reparameterization.
→ compressed representation: topology offers a set of tools to summarize
the data in compact ways while preserving its topological structure.
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Roughly speaking, the goal of topology is to classify spaces.

Q: What is the most basic brick (space) topology can work on?

A: The so-called topological spaces.

Def: A topological space is a set X equipped with a topology, i.e., a family
O of subsets of X, called the open sets of X, such that:
(i) the empty set ∅ and X are elements of O,
(ii) any union of elements of O is an element of O,
(iii) any finite intersection of elements of O is an element of O.

Open sets are the tools that allow to define continuity, which is the primary
notion that allow to compare spaces in topology.



A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

Q: What is the most basic brick (space) topology can work on?

A: The so-called topological spaces.

Def: A topological space is a set X equipped with a topology, i.e., a family
O of subsets of X, called the open sets of X, such that:
(i) the empty set ∅ and X are elements of O,
(ii) any union of elements of O is an element of O,
(iii) any finite intersection of elements of O is an element of O.

Open sets are the tools that allow to define continuity, which is the primary
notion that allow to compare spaces in topology.

Def: a map f : X → Y is continuous if and only if the pre-image f−1(OY ) =
{x ∈ X : f(x) ∈ OY } of any open set OY ⊆ Y is an open set of X.



A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

Def: A metric (or distance) on X is a map d : X ×X → [0,+∞) such that:
(i) for any x, y ∈ X, d(x, y) = d(y, x),
(ii) for any x, y ∈ X, d(x, y) = 0 if and only if x = y,
(iii) for any x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).
The set X together with d is a metric space.

The smallest topology containing all the open balls B(x, r) = {y ∈ X : d(x, y) < r}
is called the metric topology on X induced by d.

A very common family of topological spaces is comprised of the metric spaces.

Ex: the standard topology in an Euclidean space is the one induced by the
metric defined by the norm: d(x, y) = ‖x− y‖.
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A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one
’continuously deforms’ onto the other.

Def: Here are the main comparison tools of topology:

• Two maps f0 : X → Y and f1 : X → Y are homotopic if ∃ a continuous
map F : [0, 1]×X → Y s.t. ∀x ∈ X, F (0, x) = f0(x) and F1(1, x) = f1(x).
X and Y are homotopy equivalent if ∃ continuous maps f : X → Y and
g : Y → X s.t. g ◦ f is homotopic to idX and f ◦ g is homotopic to idY .

• X and Y are homeomorphic if ∃ a bijection (homeomorphism) h : X → Y
s.t. h and h−1 are continuous.

• X and Y are isotopic if ∃ a continuous map (isotopy) F : X× [0, 1]→ Y s.t.
F (., 0) = idX , F (X, 1) = Y and ∀t ∈ [0, 1], F (., t) is an homeomorphism.

Q: Which notion is stronger/weaker?
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Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one
’continuously deforms’ onto the other.

f0(x) = x

ft(x) = (1− t)x

f1(x) = 0

homotopy equiv.

homotopy equiv.

not homotopy equiv.

(but not homeomorphic
nor isotopic)

(but not homeomorphic
nor isotopic)



A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one
’continuously deforms’ onto the other.

Previous examples are particular homotopy equivalences called deformation
retracts.

Def: If Y ⊆ X and if there exists a continuous map F : [0, 1]×X → X s.t.:
(i) ∀x ∈ X, F (0, x) = x
(ii) ∀x ∈ X, F (1, x) ∈ Y
(iii) ∀y ∈ Y , ∀t ∈ [0, 1], F (t, y) ∈ Y
then X and Y are homotopy equivalent. If one replaces condition (iii) by ∀y ∈ Y ,
∀t ∈ [0, 1], H(t, y) = y then H is a deformation retract of X onto Y .
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In topology, two spaces are the same (i.e., belong to the same class) if one
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A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one
’continuously deforms’ onto the other.

Q: Can you find two spaces that are homeomorphic but not isotopic?

A: Torus and trefoil knot.



A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one
’continuously deforms’ onto the other.

Q: Can you find an isotopy between these guys?
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’continuously deforms’ onto the other.
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A brief look at topology

Roughly speaking, the goal of topology is to classify spaces.

In topology, two spaces are the same (i.e., belong to the same class) if one
’continuously deforms’ onto the other.

Pb 2: Looking for homotopy equivalences/homeomorphisms/isotopies is ex-
tremely difficult. Are there mathematical quantities that are invariant to ho-
motopy equivalences and easy to compute?

Pb 1: How to encode topological spaces for computational purposes?

Can you think of some-
thing? Obviously not pair-
wise distances or curvature



A topological space fit for computation
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computational purposes?



A topological space fit for computation

Pb 1: How to encode topological spaces for
computational purposes?

A: Using spaces made of small convex bricks, namely
the simplicial complexes made of simplices.



Simplex and simplicial complex
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0-simplex:
vertex

1-simplex:
edge

2-simplex:
triangle

3-simplex:
tetrahedron

etc...

Def: Given a set P = {p0, . . . , pk} ⊂ Rd of k+1 affinely independent points,
the k-dimensional simplex σ (or k-simplex for short) spanned by P is the set
of convex combinations

k∑
i=0

λi pi, with

k∑
i=0

λi = 1 and λi ≥ 0.

The points p0, . . . , pk are called the vertices of σ.

Simplex and simplicial complex
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Def: A simplicial complex K in Rd is a collection of simplices s.t.:

• (i) any face of a simplex of K is a simplex of K,

• (ii) the intersection of any two simplices of K is either empty or a
common face of both.

The underlying space of K (written |K| ⊆ Rd) is the union of its simplices.
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Def: A simplicial complex K in Rd is a collection of simplices s.t.:

• (i) any face of a simplex of K is a simplex of K,

• (ii) the intersection of any two simplices of K is either empty or a
common face of both.

The underlying space of K (written |K| ⊆ Rd) is the union of its simplices.
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Def: A simplicial complex of dimension d is pure if every simplex is the face
of a d-simplex.

Def: A triangulation of a point cloud P ⊂ Rd is a pure simplicial complex K
s.t. vert(K) = P and |K| = conv(P ).
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Def: A simplicial complex of dimension d is pure if every simplex is the face
of a d-simplex.

Def: A triangulation of a point cloud P ⊂ Rd is a pure simplicial complex K
s.t. vert(K) = P and |K| = conv(P ).

Def: A triangulation of a polygonal domain Ω ⊂ Rd is a pure simplicial
complex K s.t. vert(K) = P and |K| = Ω.



Triangulations

Def: A simplicial complex of dimension d is pure if every simplex is the face
of a d-simplex.

Def: A triangulation of a point cloud P ⊂ Rd is a pure simplicial complex K
s.t. vert(K) = P and |K| = conv(P ).

Def: A triangulation of a polygonal domain Ω ⊂ Rd is a pure simplicial
complex K s.t. vert(K) = P and |K| = Ω.

Q: Triangulate



Abstract simplex and simplicial complex

Def: Let P = {p1, · · · , pn} be a (finite) set.
An abstract simplicial complex K with vertex
set P is a set of subsets of P satisfying the two
conditions:

• (i) the elements of P belong to K,

• (ii) if τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.



Abstract simplex and simplicial complex

Def: Let P = {p1, · · · , pn} be a (finite) set.
An abstract simplicial complex K with vertex
set P is a set of subsets of P satisfying the two
conditions:

• (i) the elements of P belong to K,

• (ii) if τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological
spaces (good for topological/geometrical inference) and as combinatorial ob-
jects (abstract simplicial complexes, good for computations).



Abstract simplex and simplicial complex

Def: A realization of an abstract simplicial complex K is a geometric simplicial
complex K ′ who is isomorphic to K, i.e., there exists a bijection

f : vert(K)→ vert(K ′),

such that σ ∈ K ⇐⇒ f(σ) ∈ K ′.
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Def: A realization of an abstract simplicial complex K is a geometric simplicial
complex K ′ who is isomorphic to K, i.e., there exists a bijection

f : vert(K)→ vert(K ′),

such that σ ∈ K ⇐⇒ f(σ) ∈ K ′.

Any abstract simplicial complex with n vertices can be realized in Rn.

Q: Prove it.



Abstract simplex and simplicial complex

Def: A realization of an abstract simplicial complex K is a geometric simplicial
complex K ′ who is isomorphic to K, i.e., there exists a bijection

f : vert(K)→ vert(K ′),

such that σ ∈ K ⇐⇒ f(σ) ∈ K ′.

Any abstract simplicial complex with n vertices can be realized in Rn.

Q: Prove it.

Abstract simplicial complexes and their realizations are homeomorphic.
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Nerve complex

Def: An open cover of a topological space X is a collection U = (Ui)i∈I of
open subsets Ui ⊆ X, i ∈ I where I is a set, such that X ⊆ ∪i∈IUi.

Def: Given a cover of a topological space X, U = (Ui)i∈I , its nerve is the
abstract simplicial complex C(U) whose vertex set is U and s.t.

σ = [Ui0 , Ui1 , . . . , Uik ] ∈ C(U) if and only if ∩kj=0 Uij 6= ∅.
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Nerve complex

Def: An open cover of a topological space X is a collection U = (Ui)i∈I of
open subsets Ui ⊆ X, i ∈ I where I is a set, such that X ⊆ ∪i∈IUi.

Def: Given a cover of a topological space X, U = (Ui)i∈I , its nerve is the
abstract simplicial complex C(U) whose vertex set is U and s.t.

σ = [Ui0 , Ui1 , . . . , Uik ] ∈ C(U) if and only if ∩kj=0 Uij 6= ∅.

X

U1

U2

U3 U4

U5

U1
U2

U5

U3
U4



Nerve complex

X

U1

U2

U3 U4

U5

U1
U2

U5

U3
U4

The Nerve Theorem: Let U = (Ui)i∈I be a finite open cover of a subset X
of Rd such that any intersection of the Ui’s is either empty or contractible.
Then X and C(U) are homotopy equivalent.

In particular, every convex set is contractible.

[On the imbedding of systems of
compacta in simplicial complexes,
Borsuk, Fund. Math., 1948]



Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ C(P, r) iif ∩kj=0 B(Pij , r) 6= ∅.
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Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ C(P, r) iif ∩kj=0 B(Pij , r) 6= ∅.

Q: Does the Nerve Theorem
apply to Čech complexes?
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Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and
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Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Rips complex of radius
r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ R(P, r) iif ‖Pij − Pij′ ‖ ≤ 2r, ∀1 ≤ j, j′ ≤ k.



Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ C(P, r) iif ∩kj=0 B(Pij , r) 6= ∅.

C(P, ε) R(P, ε)
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Čech and (Vietoris)-Rips complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ C(P, r) iif ∩kj=0 B(Pij , r) 6= ∅.

Pbm: Čech complexes can be quite hard to compute.

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Rips complex of radius
r > 0 is the abstract simplicial complex R(P, r) s.t. vert(R(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ R(P, r) iif ‖Pij − Pij′ ‖ ≤ 2r, ∀1 ≤ j, j′ ≤ k.

Good news is that Rips and Čech complexes are related:

Prop: R(P, r/2) ⊆ C(P, r) ⊆ R(P, r).

Q: Prove it.



Storing simplicial complexes

We want to store simplicial complexes with a data structure that allows to
perform standard operations (insertion of a simplex, checking if a simplex is
present, etc) in a fast and easy way.

[The Simplex Tree: An Efficient Data Struc-
ture for General Simplicial Complexes, Boisson-
nat, Maria, Algorithmica, 2014]



Storing simplicial complexes
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Idea: store sorted simplices in a prefix tree (also called trie).
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Storing simplicial complexes

We want to store simplicial complexes with a data structure that allows to
perform standard operations (insertion of a simplex, checking if a simplex is
present, etc) in a fast and easy way.

Idea: store sorted simplices in a prefix tree (also called trie).

1

2 3

1 2 3

2 3 3

3This is called the simplex tree.

It allows to store all simplices explicitly without storing all adjacency relations,
while maintaining low complexity for basic operations.

[The Simplex Tree: An Efficient Data Struc-
ture for General Simplicial Complexes, Boisson-
nat, Maria, Algorithmica, 2014]
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Storing simplicial complexes

We want to store simplicial complexes with a data structure that allows to
perform standard operations (insertion of a simplex, checking if a simplex is
present, etc) in a fast and easy way.

Q: build the simplex tree of

Number of nodes in simplex tree = number of simplices

Depth of simplex tree = 1 + dimension of complex

[The Simplex Tree: An Efficient Data Struc-
ture for General Simplicial Complexes, Boisson-
nat, Maria, Algorithmica, 2014]



Storing simplicial complexes

We want to store simplicial complexes with a data structure that allows to
perform standard operations (insertion of a simplex, checking if a simplex is
present, etc) in a fast and easy way.

Unfortunately, the simplex tree also has redundancies.

[The Simplex Tree: An Efficient Data Struc-
ture for General Simplicial Complexes, Boisson-
nat, Maria, Algorithmica, 2014]
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We want to store simplicial complexes with a data structure that allows to
perform standard operations (insertion of a simplex, checking if a simplex is
present, etc) in a fast and easy way.

Unfortunately, the simplex tree also has redundancies.

[The Simplex Tree: An Efficient Data Struc-
ture for General Simplicial Complexes, Boisson-
nat, Maria, Algorithmica, 2014]
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An invariant fit for computation

Pb 2: Looking for homotopy equivalences/homeomorphisms/isotopies is
extremely difficult. Are there mathematical quantities that are invariant to

homotopy equivalences and easy to compute?

A: The holes, encoded in the homology groups Hk, k ∈ N
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inside of a tetrahedron)?



The homology groups

Q: How to characterize a hole in a simplicial complex?

A: A hole (in 1D) is a path whose first and end points are the same, a loop.

v0 v1

v2
v3

v4

v5

The sequence of 1-dimensional simplices [v0, v1],
[v1, v2], [v2, v3], [v3, v4], [v4, v5], [v5, v0] is a hole

But what about higher dimensional holes (like the
inside of a tetrahedron)?

A: A hole in dimension d is a simplicial complex in which each (d−1)-simplex
appears an even number of times.

No natural ordering for the
tetrahedron faces



The homology groups

Def: A d-chain is a formal sum of d-simplices with coefficients in Z/2Z.

C = [v0, v1] + [v1, v2] + [v2, v3] + [v3, v4] + [v4, v5] + [v5, v0].
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Def: A d-chain is a formal sum of d-simplices with coefficients in Z/2Z.
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Def: The boundary of a d-simplex is the chain made of its (d− 1)-simplices.



The homology groups

Def: A d-chain is a formal sum of d-simplices with coefficients in Z/2Z.

C = [v0, v1] + [v1, v2] + [v2, v3] + [v3, v4] + [v4, v5] + [v5, v0].

Def: The boundary of a d-simplex is the chain made of its (d− 1)-simplices.

∂n[v1, . . . , vn+1] =
∑n+1
i=1 [v1, . . . , vi−1, vi+1, . . . , vn+1]



The homology groups
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= [v0] + [v0] = 0.

Def: A d-cycle is a d-chain C s.t. ∂C = 0.

Pb: Cycles are not holes!!
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The homology groups

Lemma: ∂n−1 ◦ ∂n = 0.

Def: Two cycles are the same (homologous) if ’their difference is in im(∂)’:

= +

= ∂( )

C ∼ C ′ ⇐⇒ C + C ′ ∈ im(∂)

Q: Prove it.

Hk = {[C] : C ∈ Zk}

[C] = {C ′ : C ∼ C ′}
where



The homology groups

Hk is a group (vector space) in which each element is an equivalence class of
cycles associated to the same hole.

Def: The dimension of Hk is called the Betti number βk.

Minimum number of (classes of) cyles needed to create a basis, i.e., to be
able to write any cycle as a linear combination of cycles in the basis.

β0 counts the connected components, β1 counts the loops, β2 counts the
cavities, and so on...
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The homology groups

Hk is a group (vector space) in which each element is an equivalence class of
cycles associated to the same hole.

Def: The dimension of Hk is called the Betti number βk.

Q: What are the Betti numbers of:

The whole point of homology groups and Betti numbers is that they satisfy:

Hk(X) 6∼ Hk(Y ) =⇒ X 6∼ Y

sphere: β0 = 1, β1 = 0, β2 = 1,
torus: β0 = 1, β1 = 2, β2 = 1
cube: β = 1, β1 = 5, β2 = 0
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Computation with filtrations and matrix reduction

Algorithms to compute the homology groups of a simplicial complex work by
decomposing the simplicial complex, with a so-called filtration.

Def: A filtered simplicial complex S is a family {Sa}a∈R of subcomplexes of
some fixed simplicial complex S s.t. Sa ⊆ Sb for any a ≤ b.

Def: Let f be a real valued function defined on the vertices of K. For
σ = [v0, . . . , vk] ∈ K, let f(σ) = maxi=0,...,k f(vi), and order the simplices
of K in increasing order w.r.t. the function f values (and break ties with
dimension in case some simplices have the same function value).

Q: Show that this is a filtration.
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Homology can be computed by using the fact
that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

The Betti number is equal to the number of
bars that are still alive when the full complex
is reached in the filtration
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Homology can be computed by using the fact
that each simplex is either:

positive, i.e., it creates a new homology class

negative, i.e., it destroys an homology class

Q: Do the same for the homology of the cube.
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1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗
5 ∗
6 ∗
7

1 2 3 4 5 6 7

1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

simplicial filtration

Output: boundary matrix

Input:

some positive-negative simplices are paired

unpaired simplices provide homology basis: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Computation with filtrations and matrix reduction



cubic worst-case time, near linear in practice because the boundary matrices tend to remain sparse

simplicial filtration

Output: boundary matrix

Input:

reduced to column-echelon form

Computation with filtrations and matrix reduction

Q: Complexity?



adapted from [Bunch, Hopcroft 1974] → subcubic worst-case time, very complicated + very large constants ⇒ not implemented in practice

cubic worst-case time, near linear in practice because the boundary matrices tend to remain sparse

simplicial filtration

Output: boundary matrix

Input:

PLU factorization:

• Gaussian elimination

• fast matrix multiplication (divide-and-conquer)

reduced to column-echelon form

• random projections?

Computation with filtrations and matrix reduction

Q: Complexity?



cubic worst-case time, near linear in practice because the boundary matrices tend to remain sparse

simplicial filtration

Output: boundary matrix

Input:

PLU factorization:

• Gaussian elimination

reduced to column-echelon form

- PLEX / JavaPLEX (http://appliedtopology.github.io/javaplex/)

- Dionysus (http://www.mrzv.org/software/dionysus/)

- Perseus (http://www.sas.upenn.edu/~vnanda/perseus/)

- Gudhi (http://gudhi.gforge.inria.fr/)

- PHAT (https://bitbucket.org/phat-code/phat)

- DIPHA (https://github.com/DIPHA/dipha/)

- CTL (https://github.com/appliedtopology/ctl)

Computation with filtrations and matrix reduction

Q: Complexity?



Computation with filtrations and matrix reduction

Q: Triangulate and compute homology of dunce cap:
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Problems with homology

First, the algorithm for computing homol-
ogy contains much more information than
the mere homology of the last complex in
the filtration.

Indeed, it contains the homology of all the
subcomplexes in the filtration.

This is very interesting in the sense that
data can be analyzed at multiple scales.

Persistent homology aims at encoding the homology of the com-
plex at all possible scales into a compact descriptor.
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Persistent homology

What is persistent homology?

persistence

∞

⊆ ⊆
Persistence diagram

→ a mathematical framework for encoding the evolution of the homology of
filtrations of simplicial complexes (it also works for general filtered spaces).

→ formalized by H. Edelsbrunner et al. (2002) and G. Carlsson et al. (2005)
with wide developments during the last decade.



Persistent homology

What is persistent homology?

persistence

∞

⊆ ⊆
Persistence diagram

→ multiscale topological information.

→ barcodes/persistence diagrams can be efficiently computed.

→ stability properties.
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R

R

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

• finite set of intervals (barcode) encodes births/deaths of homology classes

f

Example: persistence of sublevel sets of function
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R

R

α

β

∞

• input: filtration = nested family of sublevel-sets f−1((−∞, t]) for t ranging over R
• track the evolution of the topology (homology) throughout the family

• finite set of intervals (barcode) encodes births/deaths of homology classes

f

• alternate representation as a
(multi-) set of points in the
plane (persistence diagram).

Example: persistence of sublevel sets of function
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Example: persistence of Čech complexes
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3 pillars of persistence theory:

• decomposition theorems (barcode existence)

• persistence algorithm (barcode calculation)

• stability theorem (barcode stability)

Example: persistence of Čech complexes



Note: for simplicity I am indexing the family over the integers, but in fact it can be indexed over any subset of the reals.

the functor is parametrized by a field of coefficients, omitted in the notations

F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 · · ·

(homology functor)

topological level

algebraic level

Filtration:

Mathematical foundations

H∗(F1)→ H∗(F2)→ H∗(F3)→ H∗(F4)→ · · ·

Def: A persistence module is a sequence of vector spaces connected with
linear maps:

H∗(F1)→ H∗(F2)→ H∗(F3)→ H∗(F4)→ H∗(F5)→ · · ·



k
( 1

0 )
// k2 ( 0 1 ) // k

Example:

(degree-1 homology)

⊆ ⊆ ⊆ ⊆

Mathematical foundations



k
( 1

0 )
// k2 ( 0 1 ) // k

Example:

(degree-1 homology)

⊆ ⊆ ⊆ ⊆

Mathematical foundations

( 0
1 )
// k2



k
( 1

0 )
// k2 ( 0 1 ) // k

Example:

(degree-1 homology)
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forward means that all arrows i→ j satisfy i ≤ j, with the relation i ≤ j ≤ kĩ ≤ k

There is a natural way to extend path quivers with consistent orientations to arbitrary index sets in R
Note: the stars indicate limits from below or above, depending on whether the interval b, d is open, closed, or half-open.

Thm: Let M be a persistence module over an index set T ⊆ R. Then, M
decomposes as a direct sum of interval modules kdb,dc:

0
0 // · · · 0 // 0

0 // k
1 // · · · 1 // k

0 // 0
0 // · · · 0 // 0︸ ︷︷ ︸

t<db,dc
︸ ︷︷ ︸

db, dc
︸ ︷︷ ︸

t>db,dc

(the barcode is a complete descriptor of the algebraic structure of M)

M '
⊕
j∈J

kdbj ,djc

Mathematical foundations [The structure and stability of per-
sistence modules, Chazal, de Silva,
Glisse, Oudot, Springer, 2016].
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Mathematical foundations

in the following cases:

• T is finite,

• M is pointwise finite-dimensional (pfd), i.e., every space Mt has finite
dimension.

Moreover, when it exists, the decomposition is unique up to isomorphism and
permutation of the terms [Azumaya 1950].

[The structure and stability of per-
sistence modules, Chazal, de Silva,
Glisse, Oudot, Springer, 2016].
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unpaired simplices give infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)

reduced to column-echelon form

Good news: the algorithm is the same!
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Persistent homology



X

R

f

∞

Thm: For any pfd functions f, g : X → R and
homological dimension k,

db(Df , Dg) ≤ ‖f − g‖∞,

where ‖f − g‖∞ = supx |f(x)− g(x)|.

g

Stability properties



Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0.

∆(2)
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Stability properties



Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0.

- cost of a matched pair (a, b) ∈M : cp(a, b) := ‖a− b‖p∞,

- cost of an unmatched point c ∈ A tB: cp(c) := ‖c− c̄‖p∞,

- cost of M :

cp(M) :=

( ∑
(a, b) matched

cp(a, b) +
∑

c unmatched

cp(c)

)1/p

Given a partial matching M : D ↔ D′:

a
bz

z̄

∆(2)

Stability properties



Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0.

- cost of a matched pair (a, b) ∈M : cp(a, b) := ‖a− b‖p∞,

- cost of an unmatched point c ∈ A tB: cp(c) := ‖c− c̄‖p∞,

- cost of M :

cp(M) :=

( ∑
(a, b) matched

cp(a, b) +
∑

c unmatched

cp(c)

)1/p

Given a partial matching M : D ↔ D′:

a
bz

z̄

∆(2)

Def: p-th diagram distance (extended metric):

dp(D,D
′) := inf

M :D↔D′
cp(M)

Def: bottleneck distance:

db(D,D
′) = d∞(D,D′) := lim

p→∞
dp(D,D

′)

Stability properties



Stability properties for point clouds

Def: The Hausdorff distance between two subspaces X,Y of a common metric
space (Z, d) is:

dH(X,Y ) = max{supy∈Y d(y,X), supx∈Xd(x, Y )}
= max{supy∈Y infx∈Xd(y, x), supx∈X infy∈Y d(x, y)}

dH(X,Y ) = max{a, b}



Stability properties for point clouds

Def: The Hausdorff distance between two subspaces X,Y of a common metric
space (Z, d) is:

dH(X,Y ) = max{supy∈Y d(y,X), supx∈Xd(x, Y )}
= max{supy∈Y infx∈Xd(y, x), supx∈X infy∈Y d(x, y)}

Q: Show that dH(X,Y ) = inf{ε > 0 : Xε ⊆ Y and Y ε ⊆ X}, where
Xε = {z : ∃x ∈ X s.t. d(x, z) ≤ ε}.

Ex: Given a sampling X̂n ⊆ X, dH(X̂n, X) is a measure of sampling quality
(cf class 3 for Mapper parameters).



Stability properties for point clouds

Def: The Hausdorff distance between two subspaces X,Y of a common metric
space (Z, d) is:

dH(X,Y ) = max{supy∈Y d(y,X), supx∈Xd(x, Y )}
= max{supy∈Y infx∈Xd(y, x), supx∈X infy∈Y d(x, y)}

Def: The Gromov-Hausdorff distance between metric spaces (X, dX), (Y, dY )
is the Hausdorff distance of the best common isometric embedding:

dGH((X, dX), (Y, dY )) = infγ dH(γ(X), γ(Y )),

where d(γ(x), γ(x′)) = dX(x, x′) and d(γ(y), γ(y′)) = dX(y, y′).



Stability properties for point clouds

Def: The Gromov-Hausdorff distance between metric spaces (X, dX), (Y, dY )
is metric distortion of the best correspondence:

dGH((X, dX), (Y, dY )) = infC sup(x,y),(x′,y′)∈C |dX(x, x′)− dY (y, y′)|,

where C ⊆ X × Y s.t. ∀x, ∃yx ∈ Y s.t. (x, yx) ∈ C (and vice-versa).

Def: The Hausdorff distance between two subspaces X,Y of a common metric
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Stability properties for point clouds

Def: The Gromov-Hausdorff distance between metric spaces (X, dX), (Y, dY )
is metric distortion of the best correspondence:

dGH((X, dX), (Y, dY )) = infC sup(x,y),(x′,y′)∈C |dX(x, x′)− dY (y, y′)|,

where C ⊆ X × Y s.t. ∀x, ∃yx ∈ Y s.t. (x, yx) ∈ C (and vice-versa).

Def: The Hausdorff distance between two subspaces X,Y of a common metric
space (Z, d) is:

dH(X,Y ) = max{supy∈Y d(y,X), supx∈Xd(x, Y )}
= max{supy∈Y infx∈Xd(y, x), supx∈X infy∈Y d(x, y)}

Thm: If X and Y are common subspaces of a common metric space (Z, d),
then

Q: Prove it.

db(DCech(X), DCech(Y )) ≤ dH(X,Y ).



Stability properties for point clouds

Thm: If X and Y are pre-compact metric spaces, then

Rem: This result also holds for Čech and other families of filtrations (particular
case of a more general theorem).

[Persistence stability for geometric
complexes, Chazal, de Silva, Oudot,
Geom. Dedicata, 2013].

db(DRips(X), DRips(Y )) ≤ dGH(X,Y ).



Application: non rigid shape classification

camel
cat
elephant
face
head
horse

∞ ∞ ∞ ∞

MDS using bottleneck distance.

• Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

• Compare diagrams of sampled shapes instead of shapes themselves.

[Gromov-Hausdorff Stable Signatures for
Shapes using Persistence, Chazal et al.,
Symp. Geom. Process., 2009]



Limitations

→ Vietoris-Rips (or Čech, witness) filtrations become quickly prohibitively large
as the size of the data increases: O(|X|d), making the practical computation of
persistence almost impossible.

Thm: If X and Y are pre-compact metric spaces, then

db(DRips(X), DRips(Y )) ≤ dGH(X,Y ).
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→ Persistence diagrams of Vietoris-Rips (as well as Čech, witness,..) filtrations and
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Clustering and 0-dimensional Persistent Homology

Clustering: A partition of data into groups of similar observations. The
observations in each group (cluster) are similar to each other and dissimilar
to observations from other groups.

Input: a finite set of observations: point cloud embedded in an Euclidean
space (with coordinates) or a more general metric space (pairwise dis-
tance/similarity) matrix.

Goal: partition the data into a relevant family of subsets (clusters).
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The (in)stability of dendograms

Let dD(x, y) = height of lowest common ancestor of x, y in dendrogram D.

Thm: dGH((X, dD), ((Y, dD)) ≤ dGH((X, dX), (Y, dY )).
ultrametric!

[Characterization, Stability and Convergence
of Hierarchical Clustering Methods, Carlsson,
Mémoli, J. Machine Learning Research, 2010]



The (in)stability of dendograms

Let dD(x, y) = height of lowest common ancestor of x, y in dendrogram D.

Thm: dGH((X, dD), ((Y, dD)) ≤ dGH((X, dX), (Y, dY )).

This is actually not true for complete and average clustering!

ultrametric!

[Characterization, Stability and Convergence
of Hierarchical Clustering Methods, Carlsson,
Mémoli, J. Machine Learning Research, 2010]
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of the trees.
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of the trees.

(For Euclidean data), single linkage clustering keeps track of the evolution of
the connected components of the distance function to the data.

However, the ’merging times’ remain stable.



The (in)stability of dendograms

Small perturbations on the input data may lead to wide change in the structure
of the trees. Persistent homology!

(For Euclidean data), single linkage clustering keeps track of the evolution of
the connected components of the distance function to the data.

However, the ’merging times’ remain stable.



Mode seeking clustering

• Data points are sampled according to some (unknown) probability density.

• Clusters = basins of attractions of the density.

Two approaches:

• Iterative, such as, e.g., Mean Shift.

• Graph-based, such as, e.g.,

[Mean shift: a robust approach toward feature
space analysis, Comaniciu et al., IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2002]

[A Graph-Theoretic Approach to Nonparametric
Cluster Analysis, Koontz et al., IEEE Trans. on
Computers, 1976].



The Koonz, Narendra and Fukunaga algorithm (1976)
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Density estimation



The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

Neighborhood
graph



The Koonz, Narendra and Fukunaga algorithm (1976)

Density estimation

Neighborhood
graph

Discrete approximation of
the gradient; for each ver-
tex v, a gradient edge is
selected among the edges
adjacent to v.



The Koonz, Narendra and Fukunaga algorithm (1976)

Input: neighborhood graph G with n vertices (the data points) and a n-
dimensional vector f̂ (density estimate)

Sort the vertex indices {1, 2, . . . , n} in decreasing order: f̂(1) ≥ · · · ≥ f̂(n);
Initialize a union-find data structure U and two vectors g, r of size n;

for i = 1 to n do
Let N be the set of neighbors of i in G that have indices higher than i;
if N = ∅

Create a new entry e in U and attach vertex i to it: U .MakeSet(i);
r(e)← i // r(e) stores the root vertex associated with the entry e

else
g(i)← argmaxj∈N f̂(j) // g(i) stores the approximate gradient at vertex i

ei ← U .Find(g(i));
Attach vertex i to the entry ei: U .Union(i, ei);

Output: the collection of entries e in U

The algorithm:



The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

As many clusters as local maxima of density estimate → sensitivity to noise!
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Drawbacks:

As many clusters as local maxima of density estimate → sensitivity to noise!

The choice of the neighborhood graph results in wide changes in the output.



The Koonz, Narendra and Fukunaga algorithm (1976)

Drawbacks:

Approaches to overcome these issues:

Smooth out the density estimate (e.g. mean-shift)... But how to choose the
smoothing parameter?

Merge clusters with 0-dimensional persistent homology!

As many clusters as local maxima of density estimate → sensitivity to noise!

The choice of the neighborhood graph results in wide changes in the output.
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to −∞, instead of the sublevel-sets filtration.

• Persistence is defined in the same way

0-dimensional PH of density
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α

β

Given a probability density f :

α

β

−∞

• Consider the superlevel-sets filtration f−1([t,+∞)) for t from +∞
to −∞, instead of the sublevel-sets filtration.

• Persistence is defined in the same way

+∞

+∞

0-dimensional PH of density



Rd

R

−∞ +∞

+∞

Stability theorem ⇒ db(Df , Df̂ ) ≤ ‖f − f̂‖∞.

Given an estimator f̂ :

0-dimensional PH of density



Transition: here is how we apply persistence in our context.• Density estimator f̂ defines an order on the point cloud

(sort data points by decreasing estimated density values)

Persistence-based clustering [Persistence-Based Clustering in Rie-
mannian Manifolds, Chazal, Oudot,
Skraba, Guibas, J. ACM, 2013]
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• Extend order to the graph edges → upper-star filtration

(f̂([u, v]) = min{f̂(u), f̂(v)})
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Transition: here is how we apply persistence in our context.• Density estimator f̂ defines an order on the point cloud

(sort data points by decreasing estimated density values)

• Extend order to the graph edges → upper-star filtration

(f̂([u, v]) = min{f̂(u), f̂(v)})

• Compute the 0-dimensional persistence diagram of this filtration

(apply 0-dimensional persistence algorithm → union-find data structure)

0

-∞
0

Persistence-based clustering [Persistence-Based Clustering in Rie-
mannian Manifolds, Chazal, Oudot,
Skraba, Guibas, J. ACM, 2013]
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Transition: here is how we apply persistence in our context.• Density estimator f̂ defines an order on the point cloud

(sort data points by decreasing estimated density values)

• Extend order to the graph edges → upper-star filtration

(f̂([u, v]) = min{f̂(u), f̂(v)})

• Compute the 0-dimensional persistence diagram of this filtration

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters



These peaks are born from the noise in the estimator plus the use of a neighborhood graph. Their prominences are small and so they are identified as topological noise in the PD.

0

-∞
0

topological

noise

Transition: here is how we apply persistence in our context.• Density estimator f̂ defines an order on the point cloud

(sort data points by decreasing estimated density values)

• Extend order to the graph edges → upper-star filtration

(f̂([u, v]) = min{f̂(u), f̂(v)})

• Compute the 0-dimensional persistence diagram of this filtration

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters



These peaks are born from the disconnectness of the neighborhood graph in low-density areas. They have small heights (hence appear lately in the diagram) and their clusters last forever as independent connected components. They are identified as background noise in the diagram.

0

-∞
0 background noise

Transition: here is how we apply persistence in our context.• Density estimator f̂ defines an order on the point cloud

(sort data points by decreasing estimated density values)

• Extend order to the graph edges → upper-star filtration

(f̂([u, v]) = min{f̂(u), f̂(v)})

• Compute the 0-dimensional persistence diagram of this filtration

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters



These peaks correspond to the peaks of the underlying density function, even though they may not lie at the same locations in space.

0

-∞
0

6 prominent

peaks

Transition: here is how we apply persistence in our context.• Density estimator f̂ defines an order on the point cloud

(sort data points by decreasing estimated density values)

• Extend order to the graph edges → upper-star filtration

(f̂([u, v]) = min{f̂(u), f̂(v)})

• Compute the 0-dimensional persistence diagram of this filtration

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters



Any prominence threshold τ within the range of the prominence gap will separate the relevant peaks from the topological and background noise.

0

-∞ τ0

pr
om

in
en
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p

Transition: here is how we apply persistence in our context.• Density estimator f̂ defines an order on the point cloud

(sort data points by decreasing estimated density values)

• Extend order to the graph edges → upper-star filtration

(f̂([u, v]) = min{f̂(u), f̂(v)})

• Compute the 0-dimensional persistence diagram of this filtration

(apply 0-dimensional persistence algorithm → union-find data structure)

Estimating the correct number of clusters



Hypotheses:

• f : Rd → R a c-Lipschitz probability density function,

• P ⊂ Rd a finite set of n points sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator such that η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η
5c

.

Estimating the correct number of clusters



the sectional curvature of X arise when the Bishop-Gunther inequality is invoked to lower-bound the volumes of geodesic balls

For any choice of τ such that 2(cδ + η) < τ < Π− 3(cδ + η),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1− e−Ω(n).

Hypotheses:

• f : Rd → R a c-Lipschitz probability density function,

• P ⊂ Rd a finite set of n points sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator such that η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η
5c

.

Conclusion:

(the Ω notation hides factors depending on c, δ)
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the sectional curvature of X arise when the Bishop-Gunther inequality is invoked to lower-bound the volumes of geodesic balls

For any choice of τ such that 2(cδ + η) < τ < Π− 3(cδ + η),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1− e−Ω(n).

Conclusion:

(the Ω notation hides factors depending on c, δ)

2(cδ + η)
-∞0

0 Π

Π

Df Df̂

Π− 3(cδ + η)

2(cδ + η)

Π− 3(cδ + η)

-∞0

Estimating the correct number of clusters
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• degree-0 persistence algo. builds a hierarchy of the peaks of f̂ (merge tree)

• given a fixed threshold τ ≥ 0, only merge those clusters of prominence < τ

0 ≤ τ ≤ α− β

• merge clusters according to the hierarchy (merge each cluster into its parent)
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β

γ

δ

• degree-0 persistence algo. builds a hierarchy of the peaks of f̂ (merge tree)

• given a fixed threshold τ ≥ 0, only merge those clusters of prominence < τ

γ − δ < τ ≤ +∞

p

q

s

• merge clusters according to the hierarchy (merge each cluster into its parent)

Merging clusters



for i = 1 to n do
Let N be the set of neighbors of i in G that have indices lower than i;
if N = ∅ // vertex i is a peak of f̂ within G

Create a new entry e in U and attach vertex i to it: U .MakeSet(i);
r(e)← i // r(e) stores the root vertex associated with the entry e

else // vertex i is not a peak of f̂ within G

g(i)← argmaxj∈N f̂(j) // g(i) stores the approximate gradient at vertex i

ei ← U .Find(g(i));
Attach vertex i to the entry ei: U .Union(i, ei);
for j ∈ N do

e← U .Find(j);

if e 6= ei and min{f̂(r(e)), f̂(r(ei))} < f̂(i) + τ
U .Union(e, ei);

r(e ∪ ei)← argmax{r(e), r(ei)}f̂ ;
ei ← e ∪ ei;

Sort the vertex indices {1, 2, . . . , n} so that f̂(1) ≥ · · · ≥ f̂(n);
Initialize a union-find data structure U and two vectors g, r of size n;

Input: simple graph G with n vertices, n-dimensional vector f̂ , real parameter τ ≥ 0.

Output: the collection of entries e of U such that f̂(r(e)) ≥ τ .

graph-based

hill-climbing

(1976)

with persistence

cluster merges

(2013)

Pseudo-code



→ Running time: O(n log n+ (n+m)α(n))

Given a neighborhood graph with n vertices (with density values) and m edges:

→ Space complexity: O(n+m)

→ Main memory usage: O(n)

1. the algorithm sorts the vertices by decreasing density values,

2. the algorithm makes a single pass through the vertex set, creating the span-
ning forest and merging clusters on the fly using a union-find data structure.

Complexity



Synthetic Data
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Experimental results
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Synthetic Data

Experimental results



It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Note: the PD is plotted on a log/log scale, to avoid scaling effects. So actual differences in prominence are orders of magnitude, as the next view shows.

Biological Data
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Alanine-Dipeptide conformations (R21)
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Common belief: 6 metastable states

PD shows anywhere between 4 and 7 clusters

Experimental results



It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Biological Data

Alanine-Dipeptide conformations (R21)

RMSD distance (non-Euclidean)

Common belief: 6 metastable states

PD shows anywhere between 4 and 7 clusters
1 2 3 4 5 6 7 80
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Number of clusters
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MetastabilityRank Prominence

1 +∞ 0.99982
2 3827 1.91865
3 1334 2.8813
4 557 3.76217
5 85 4.73838
6 32 5.65553
7 26 6.50757
8 7.2 6.8193
9 3.0 -

10 2.2 -

Measures of metastability confirm this insight

Experimental results [Topological methods for exploring low-density states in biomolecular fold-
ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,
Carlsson, J. Chem. Phys., 2009]



For reference on the sdata set and spectral approach, please refer to the following paper

It is known that the energy of a conformation depends mainly on two specific bound angles, so the data can be projected down almost isometrically into the 2-d flat torus (Ramachandran plot), which we only use for visualization purposes.

Biological Data

Alanine-Dipeptide conformations (R21)

RMSD distance (non-Euclidean)

[Topological methods for exploring low-density states in biomolecular fold-
ing pathways, Yao, Sun, Huang, Bowman, Singh, Lesnick, Guibas, Pande,
Carlsson, J. Chem. Phys., 2009]

Note: Spectral Clustering takes a
week of tweaking, while ToMATo
runs out-of-the-box in a few minutes

Experimental results



The segments are shown in fake colors, for a clearer visualization. Note the presence of black points: these are not a cluster per se, but were discarded from the point cloud as outliers during the density estimation step: this improved the result quite a bit. → advice: for image segmentation, perform a preliminary outliers detection and removal for better results down the road.

This operation is very fast. The output clusters are sensitive to the location in the image, thus the different colors on the two eyes and two cheeks.

This observation suggests that the correct number of segments in the image is usually not readily available, which follows the general idea that image segmentation is an ill-posed problem.

Image Segmentation
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2

Density is estimated in 3D color space (Luv)

Neighborhood graph is built in image domain

Distribution of prominences does not usually
show a clear unique gap

Still, relationship between choice of τ and
number of obtained clusters remains explicit

Experimental results



Application to non-rigid shape segmentation

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

Problem: some part of clusters are unstable → dirty segments

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]



Application to non-rigid shape segmentation

Problem: some part of clusters are unstable → dirty segments

Idea:
- Run the persistence based algorithm several times on random perturbations of f
(size bounded by the “persistence” gap).
- Partial stability of clusters allows to establish correspondences between clusters
across the different runs → for any x ∈ X, a vector giving the probability for x to
belong to each cluster.

[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]



Application to non-rigid shape segmentation
[Persistence-Based Segmentation of Deformable Shapes,
Skraba, Ovsjanikov, Chazal, Guibas, Proc. CVPR 2010]



Other applications: classification, object recognition

[Persistence-based structural recognition, Li,
Ovsjanikov, Chazal, Proc. CVPR, 2014]

Examples:

- Hand gesture recognition

- Persistence-based pooling for shape recognition [Persistence-based Pooling for Shape Pose Recogni-
tion, Bonis, Ovsjanikov, Oudot, Chazal, 2015]



https://drive.google.com/drive/folders/

1oUpXXv-NWdcqDB0HjHv7jDvVaCObTJA2?usp=sharing

Projects:

https://gudhi.inria.fr/python/latest/index.html

Gudhi:

Thanks!



The Distance To Measure (DTM)
[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]



The Distance To Measure (DTM)

Preliminary distance function to a measure P : let u ∈]0, 1[ be a positive
mass, and P a probability measure on Rd :

δP,u(x) = inf{r > 0 : P (B(x, r)) ≥ u}

x
δP,u(x)

Supp(P )

u

[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]
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Preliminary distance function to a measure P : let u ∈]0, 1[ be a positive
mass, and P a probability measure on Rd :

δP,u(x) = inf{r > 0 : P (B(x, r)) ≥ u}

δP,u is the smallest distance needed
to capture a mass of at least u.
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Supp(P )
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The Distance To Measure (DTM)

Preliminary distance function to a measure P : let u ∈]0, 1[ be a positive
mass, and P a probability measure on Rd :

δP,u(x) = inf{r > 0 : P (B(x, r)) ≥ u}

δP,u is the smallest distance needed
to capture a mass of at least u.

δP,u is the quantile function at u of
the r.v. ‖x−X‖ where X ∼ P .

x
δP,u(x)

Supp(P )

u

[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]



The Distance To Measure (DTM)

Preliminary distance function to a measure P : let u ∈]0, 1[ be a positive
mass, and P a probability measure on Rd :

δP,u(x) = inf{r > 0 : P (B(x, r)) ≥ u}

Def: Given a probability measure P on
Rd and m > 0, the distance function
to the measure P (DTM) is defined by

dP,m : x ∈ R 7→
(

1
m

∫m
0
δ2
P,u(x)du

)1/2x
δP,u(x)

Supp(P )

u

[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]



The Distance To Measure (DTM)

Preliminary distance function to a measure P : let u ∈]0, 1[ be a positive
mass, and P a probability measure on Rd :

δP,u(x) = inf{r > 0 : P (B(x, r)) ≥ u}

Def: Given a probability measure P on
Rd and m > 0, the distance function
to the measure P (DTM) is defined by

dP,m : x ∈ R 7→
(

1
m

∫m
0
δ2
P,u(x)du

)1/2
The DTM is robust, i.e., stable under
Wasserstein perturbations:

‖dP,m − dQ,m‖∞ ≤
1√
m
W2(P,Q)

x
δP,u(x)

Supp(P )

u

[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]



The Distance To Measure (DTM)

Def: Let X1, . . . , Xn sampled according to P and let Pn be the empirical
measure. Then

dPn,k/n(x) =
1

k

k∑
i=1

‖x−X(i)‖2,

where ‖X(1) − x‖ ≤ ‖X(2) − x‖ ≤ · · · ≤ ‖X(k) − x‖ ≤ · · · ≤ ‖X(n) − x‖.

[Geometric inference for probability mea-
sures, Chazal, Cohen-Steiner, Mérigot,
Found. Comput. Math., 2011]



The Wasserstein distance

Let (X, d) be a metric space and let µ, ν be probability measures on X with finite
p-moments (p ≥ 1). The Wasserstein distance Wp(µ, ν) quantifies the optimal
cost of pushing µ onto ν, the cost of moving a small mass dx from x to y being
d(x, y)pdx.

• Transport plan: Π a probability measure
on X × X s.t. Π(A × Rd) = µ(A) and
Π(Rd ×B) = ν(B) for any borelian sets
A,B ⊆ X.

• Cost of a transport plan:

C(Π) =

(∫
X×X

d(x, y)pdΠ(x, y)

) 1
p

• Wp(µ, ν) = infΠ C(Π).



The Wasserstein distance

Ex: If P = {p1, . . . , pn} is a point cloud, and P ′ =
{p1, . . . , pn−k−1, o1, . . . , ok} with d(oi, P ) = R, then

dH(P, P ′) ≥ R but W2(µP , µP ′) ≤
√
k

n
(R+ diam(P ))



DTM-based filtrations

Def: Let V be a point cloud (in a metric space). The DTM-based complex
W (V ) is the filtered simplicial complex indexed by R whose vertex set is V
and whose other simplices are defined with

σ = [p0, p1 . . . , pk] ∈W (V, α) ⇐⇒ ∩ki=0B(pi, rpi(α)) 6= ∅

where rp(α) = 0 if α ≤ dPn,k/n(p) and |αq − dPn,k/n(p)q|1/q otherwise.

[DTM-based filtrations, Anai et al.,
Symp. Comp. Geom., 2019]
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Def: Let V be a point cloud (in a metric space). The DTM-based complex
W (V ) is the filtered simplicial complex indexed by R whose vertex set is V
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DTM-based filtrations

Def: Let V be a point cloud (in a metric space). The DTM-based complex
W (V ) is the filtered simplicial complex indexed by R whose vertex set is V
and whose other simplices are defined with

σ = [p0, p1 . . . , pk] ∈W (V, α) ⇐⇒ ∩ki=0B(pi, rpi(α)) 6= ∅

where rp(α) = 0 if α ≤ dPn,k/n(p) and |αq − dPn,k/n(p)q|1/q otherwise.

Rips Rips DTM-based

Thm: db(W (X),W (Y )) ≤√
n
kW2(X,Y )+21/qdH(X,Y ).

[DTM-based filtrations, Anai et al.,
Symp. Comp. Geom., 2019]


