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Definition
A filtered chain complex is a finite sequence of chain com-
plexes and inclusions between them.
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Decomposition of filtered chain complexes

LetneN,s € [0,00) and e € [s, o0].
The interval sphere " [s, s) is the filtered chain complex given
by:

S
Theorem

Every filtered chain complex decomposes uniquely up to isomor-
phism into a finite direct sum of interval spheres.

— applying homology, we get the persistence diagram of the
associated persistence module
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Let X be a filtered chain complex. There is a finite collection of
interval spheres {I" [s;, s;)}i=1,..m» and an epimorphism

p: ® 1" [si,5) = X

¢ uniquely defines ¢;: 1" [s;, s;) — X. Each ¢; can be
identified with x; = ((pl) g (D€ X, * »with a degree and an
entrance time function:

deg (x;) = nj+1 ent (x;) = s;

Definition

The set G = {x1,..., x;,} is called a set of generators of X. If G
is minimal degreewise, then it is called a quasi-minimal set of
generators.
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Generators

The simplices of a filtered simplicial complexes form a quasi-
minimal set of generators.

Consider the interval sphere I” [s,e). A quasi-minimal set of
generators ofitis G = {x;s, x. }, with deg (x;) = n, deg (x,) = n+1.

Consider the interval sphere I" [s, ). A quasi-minimal set of
generators of it is G = {x;}, with deg (x;) = n.

i=s—¢ i=s i=s+e
0 0 0 e on+l
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Standard persistence algorithm

Let X be a filtered chain complex with quasi-minimal set of
generators {x, ..., X, }, totally ordered first by entrance time.
Let D be its boundary matrix.

For the j-th column of D, low (j) denotes the row index of the
lowest element of such row. If column j is zero, set low (j) = 0.

Definition

A matrix C is called column reduced if low (j) # low (j’) for
all non-zero columns j # j’. The element C]? is called a
column pivot (of C) if i = low (j).

Theorem

The column pivot pairing of a reduced boundary matrix
provides the barcode decomposition of the associated persistent
module.
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Two time optimisations of the standard persistence algorithm
are the clear and compress.

CLEAR: A generator that gives birth to an homological class
cannot kill one.

COMPRESS: A generator that kills an homological class cannot
give birth to one.

column operations on row operations on
coboundary matrix = boundary matrix
with clear with compress
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Dualisation of the standard persistence algorithm

Let X be a filtered chain complex with quasi-minimal set of
generators {xi, ..., X;, }, totally ordered first by entrance time.
Let D be its boundary matrix.

For the i-th row of D, left (i) denotes the column index of the
leftmost element of such row. If row i is zero, set left (i) = 0.

Definition

A matrix R is called row reduced if left (i) # left (i’) for all
non-zero rows i # i’. The element R]l: is called a row pivot (of
R)if j =left (i).

Theorem
The row pivot pairing of a reduced boundary matrix provides
the barcode decomposition of the associated persistent module.
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Let X be a filtered Vietoris-Rips complex, whose quasi-minimal
set of generators is ordered first by degree. Let v be the number
of generators in degree 0 and N the maximal non-trivial degree
of X.

The number of columns to be processed is:

A Bl

N—— N—— N——
dim(C"X) dim(B"*1X) dim(Z"X)

Using the clear optimisation, this decreases to:
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Algorithm for filtered chain complexes

Decomposition into interval spheres

Input: Totally ordered quasi-minimal set of generators {x, ...

Output: List of interval spheres

List=0

D = BOUNDARY MATRIX(x, ..., Xn)

while exists non-zero rowi in D do
Xi, Xj = PAIR(D, i)
Append 19¢8(9) [ent (x;) , ent (x;)) to List
SPLIT(xi, x]', D)

for all indices i of remaining rows in D do

| Append 1989 [ent (x;), o) to List

Return List

,xm}

15
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SPLIT
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Xi, Xj
Output: Reduced boundary matrix D
1 for k with Df # 0 do
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5 Delete column i from D
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Algorithm for filtered chain complexes

SPLIT

Input: Boundary matrix D, pair of splittable generators
Xi, Xj
Output: Reduced boundary matrix D
1 for k with Df # 0 do
2 | Add to the k-th row the i-th row multiplied by
o
3 Delete row j from D — COMPRESS

4 Delete row i and column j from D
5 Delete column i from D = CLEAR
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compress, and produces the barcode decomposition as a
byproduct

e "Novel" algorithm to retrieve the barcode decomposition

using row operations, dualising the standard persistence
algorithm
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Thank you for your attention!
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