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I Elementary collapse: Remove a maximal simplex
together with a free face

I Maximal simplex: Not the proper face of any other
simplex

I Free simplex: Only the face of a unique simplex
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Example

Figure: 23088 Simplices Figure: 9520 Simplices

I Less than half of the simplices, same homotopy type,
same homology groups.

I Question: Is this a quick process?
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Preliminaries

I An (abstract) simplicial complex K is a collection of
subsets of a non-empty finite set X, such that for every
subset A in K , all the subsets of A are in K .

I A map f : K → L between simplicial complexes is called
a simplicial map, if it always maps a simplex in K to a
simplex in L.

I A sequence of simplicial complexes

{K1
f1−→ K2

f2−→ . . .
fn−1−−→ Kn}

connected through simplicial inclusion maps fi is called
a (simplicial) filtration. We often write {Ki , fi} for
such a filtration.
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I Computing simplicial homology over field coeffiecients
for all Ki , yields a persistence module

{Hp(K1)
f1,p−−→ Hp(K2)

f2,p−−→ . . .
fn−1,p−−−→ Hp(Kn)}

in every degree p.

I Let X be a finte metric space and let ε > 0. The
Vietoris-Rips complex of X at scale ε is defined as the
set

VRε(X ) := {σ ⊂ X |d(x , y) ≤ 2ε for all x , y ∈ σ}.
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Definition

I A simplex in K is called maximal in K, if it is not a
proper face of any simplex in K.

I Let τ be a maximal simplex in K and suppose σ is a
proper face of τ in K .
If σ is not a proper face of any simplex in K other than
τ , then σ is called free (in K ).

I The set K ′ = K − {τ, σ} is a simplicial complex.
I The associated polyhedra |K ′| and |K | are homotopy

equivalent.
I J. H. C. Whitehead, Simplicial Spaces, Nuclei and

m-groups, Proceedings of the London mathematical
society 2 (1939), no. 1, 243-327.

I M. M. Cohen, A Course in Simple-Homotopy Theory,
Graduate Texts in Mathematics, Vol. 10,
Springer-Verlag, New York, 1973.
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Introduction

Preliminaries

Simplicial
Collapses

Computational
Experiments

Definition

I A simplex in K is called maximal in K, if it is not a
proper face of any simplex in K.

I Let τ be a maximal simplex in K and suppose σ is a
proper face of τ in K .
If σ is not a proper face of any simplex in K other than
τ , then σ is called free (in K ).

I The set K ′ = K − {τ, σ} is a simplicial complex.

I The associated polyhedra |K ′| and |K | are homotopy
equivalent.

I J. H. C. Whitehead, Simplicial Spaces, Nuclei and
m-groups, Proceedings of the London mathematical
society 2 (1939), no. 1, 243-327.

I M. M. Cohen, A Course in Simple-Homotopy Theory,
Graduate Texts in Mathematics, Vol. 10,
Springer-Verlag, New York, 1973.



Journal Club on
Topological Data

Analysis

Tim Mäder
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Introduction

Preliminaries

Simplicial
Collapses

Computational
Experiments

I The deformation retraction associated with the removal
of σ and τ as before can be realized as follows:

H : |τ | × I → |τ |
((x1, . . . , xn), t) 7→ (1− t)(x1, . . . , xn)

+ t(x1 −min
i

xi , . . . , xn −min
i

xi )

with simplices τ and σ parametrised as subsets of Rn

|τ | = {(x1, . . . , xn) ∈ Rn|xi ≥ 0,
n∑

i=1

xi ≤ 1},

|σ| = {(x1, . . . , xn) ∈ Rn|xi ≥ 0,
n∑

i=1

xi = 1}.
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Definition

I We say K ′ has been obtained from K by an elementary
collapse (of τ using its free face σ).

I A simplicial complex K collapses (simplicially) to a
subcomplex L ⊂ K , if L can be obtained by a finite
sequence of elementary collapses. In that case we write
K ↘ L.

We need some notation to formulate a class of collapses that
are easy to identify algorithmically.
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Star, Link, Simplicial Cone

I Let σ be a simplex in K . The closed star of σ in K ,
denoted as stK (σ) is defined as

stK (σ) := {τ ∈ K |τ ∪ σ ∈ K}.

I The link of σ in K , lkK (σ) is defined as

lkK (σ) := {τ ∈ stK (σ)|τ ∩ σ = ∅}.

I The open star of σ in K , denoted as st◦K (σ) is defined
as

st◦K (σ) := stK (σ)\lkK (σ).

I Let L be a subcomplex of K and let v be a vertex in K
but not in L. Then the set

vL := {τ |τ ∈ L or τ = σ ∪ v for σ ∈ L} ∪ {v}

is called a simplicial cone.
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Introduction

Preliminaries

Simplicial
Collapses

Computational
Experiments

Definition

I A simplex σ in K is called a dominated if the link of σ
in K is a simplicial cone, i.e. if there exists a vertex
v /∈ σ and a subcomplex L of K , such that lkK (σ) = vL.

In that case we say σ is dominated by the vertex v and
write σ ≺ v .

I A free simplex σ in K is dominated by v = τ\σ where τ
is the maximal coface:
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Definition

I A simplex σ in K is called a dominated if the link of σ
in K is a simplicial cone, i.e. if there exists a vertex
v /∈ σ and a subcomplex L of K , such that
lkK (σ) = vL. In that case we say σ is dominated by the
vertex v and write σ ≺ v .

I Detecting dominated simplices in a complex can trigger
a sequence of elementary collapses:
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Lemma

Let K be a simplicial complex and let σ be a simplex of K .
If the link of σ is a cone, then there is a sequence of
elementary collapses from K to K\st◦K (σ).

I A cone vL is collapsable to its apex v by sequentially
removing pairs of simplices of the form (α ∪ {v}, α)
with v /∈ α ⊂ L and α ∪ {v} maximal.

I For lkK (σ) = vL in K, these collapses can be associated
with the removal of pairs (σ ∪ α∪ {v}, σ ∪ α) in K that
define elementary collapses.
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Lemma 1

A simplex σ ∈ K is dominated by a vertex v ∈ K , v /∈ σ, if
and only if all the maximal simplices of K that contain σ
also contain v .

I Identifiying dominated simplices requires knowledge
about maximal simplices in K .
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Flag Complex and Neighborhood

I A complex K is a flag or a clique complex if, when a
subset of its vertices form a clique (i.e. any pair of
vertices is joined by an edge), they span a simplex

I For a vertex v ∈ K the open neighborhood and the
closed neighborhood are defined as
NK (v) := {u|[u, v ] ∈ K} and NK [v ] := NK (v) ∪ {v}
respectively.

I The open and closed neighborhoods of a k-simplex
σ = [v1, . . . , vk ] in K are defined as
NK (σ) :=

⋂
vi∈σ

NK (vi ) and NK [σ] :=
⋂

vi∈σ
NK [vi ]
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Lemma 2

Let σ be a simplex of a flag complex K . Then σ will be
dominated by a vertex v ∈ K if and only if NK [σ] ⊆ NK [v ].

Proof.

”⇐ ” :

o Let τ be a maximal simplex, s.t. σ ⊂ τ .

o For any vertex x ∈ τ we have x ∈ NK [σ] ⊆ NK [v ].

o Because K is a flag complex and τ is maximal, v must
lie in τ . With Lemma 1 we conclude that σ ≺ v .

”⇒ ” :

o σ ≺ v
Lemma1
====⇒ all maximal simplices that contain σ also

contain v . This implies NK [σ] ⊆ NK [v ].
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contain v . This implies NK [σ] ⊆ NK [v ].
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Introduction

Preliminaries

Simplicial
Collapses

Computational
Experiments

Theorem

Let f : K → L be a simplicial map between two complexes K
and L and let K ′ ⊂ K and L′ ⊂ L be subcomplexes of K and
L such that K ↘ K ′ and L↘ L′. Then there exists a map
f ′ : K ′ → L′, induced by f , such that the persistence of
f∗ : Hp(K )→ Hp(L) and f ′∗ : Hp(K ′)→ Hp(L′) are the same
for any integer p ≥ 0.

Proof

|K | |L| Hp(|K |) Hp(|L|)

 

|K ′| |L′| Hp(|K ′|) Hp(|L′|)

|f |

|rK | |rL|

|f |∗

|rK |∗ |rL|∗

|f ′|

|iK | |iL|

|f ′|∗

|iK |∗ |iL|∗
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I Advantages of using flag complexes:

o Complex is fully determined by the 1-skeleton
o Dominated edges can easily be recognized on the

1-skeleton
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Edge Collapse Algorithm

I Let {K1 → K2 → · · · → Kn} be a filtration of flag
complexes and let {G1 → G2 → · · · → Gn} be the
associated filtration of 1-skeleta.

I Assume Gi = {e1, . . . , ei} and Gi+1 = Gi ∪ {ei+1}.
I Iterate over all edges in increasing order and check if an

edge ei is dominated in Gi or not:

o If non-dominated → include ei in a collection of edges
E c with filtration index i

o Iterate through edges in Gi in reverse order and search
for new non-dominated edges ej , j < i .

o If ej non-dominated → include ej in E c with filtration
index i .
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Discussion

I Efficient computation (of persistent homology) is a
balance between making as few as possible computation
steps and being frugal with memory (RAM)

o Reduction can be especially useful for high-dim.
homology and to avoid exhausting the RAM.

o If the homological information is mostly concentrated in
lower dimensions the reduction might be less effective

I Complexity of edge collapse: O(nnck
2)

I Questions and other remarks?
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