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Mapper (hyper-)graphs
[Singh, Mémoli, Carlsson 2007]



Mapper (hyper-)graphs

visualize topology on
the data directly

[Singh, Mémoli, Carlsson 2007]



Two types of applications:

• clustering

• feature selection

principle: identify statistically relevant sub-
populations through patterns (flares, loops)

flares

loops

Mapper in applications



3d shapes classification
[Singh, Mémoli, Carlsson 2007]

Mapper in applications



breast cancer subtype identification
[Nicolau et al. 2011]

Mapper in applications



recovery from spinal cord injuries
[Nielson et al. 2015]

Mapper in applications



protein folding pathways
[Yao et al. 2009]

Mapper in applications



[Rucco et al. 2014]

diagnosis of
pulmonary embolism

Mapper in applications



Formal identification of cell cycle

Mapper in applications



Formal identification of cell cycle

Mapper in applications

Genomic analysis of spinal cord
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Mapper in the continuous setting

Input:

- continuous function f : X → Y

- cover I of im(f) by open intervals: im(f) ⊆
⋃
I∈I I

• Compute pullback cover U of X: U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various con-
nected components in X

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

- topological space X

→ connected cover V

(Y = R in this talk)



serves as a proxy for the geometry of the underlying space

Mapper in practice

Input:

• Compute pullback cover U of P : U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various con-
nected components in G

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

- point cloud P ⊆ X with metric dP

• Compute neighborhood graph G = (P,E)

(intersections materialized
by data points)

- continuous function f : P → Y

- cover I of im(f) by open intervals: imf ⊆
⋃
I∈I I

→ connected cover V

(Y = R in this talk)



Mapper in practice

X

f

Y = R

I

V

Mapper

δ

G = δ-neighborhood graph

Mf (G, I)



Choice of parameters

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

lens | filter



Choice of parameters

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

→ uniform cover I:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

r

g = 30%

I

R

lens | filter



Choice of parameters

→ in practice: trial-and-error

Nielson et al.: Topological Data Analysis for Discovery in Preclinical Spinal Cord
Injury and Traumatic Brain Injury, Nature, 2015
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Reeb Graph

Reeb graph ∼ Mapper with extremely small resolution

R
fX



R

Mapper ∼ pixelized Reeb graph

R

Reeb Graph



Reeb Graph

x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Rf (X) := X/ ∼

R
fX
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Reeb Graph

x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Rf (X) := X/ ∼

X
f //

π

��

R

Rf (X)

f̃

<<
R

fX f̃

Prop: Rf (X) is a graph when
(X, f) is Morse or of Morse type



Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Dg f̃ provides a bag-of-features descriptor for Rf (X):

Ord0f̃ ←→ downward branches

Rel1f̃ ←→ upward branches

Ext0f̃ ←→ trunks (cc)

Ext1f̃ ←→ loops

ordinary / relative

extended
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Dg f̃ provides a bag-of-features descriptor for Rf (X):

Ord0f̃ ←→ downward branches

Rel1f̃ ←→ upward branches

Ext0f̃ ←→ trunks (cc)

Ext1f̃ ←→ loops

ordinary / relative

extended

... and distance to diagonal measures the (in-)stability
of each feature w.r.t. perturbations of (X, f)
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0

Ord+
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Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

ordinary / relative

extended

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family
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Graph Descriptor

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

ordinary / relative

extended

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

Ord: appears/dies in sublevels

Rel: appears/dies in superlevels

Ext: appears in sublevels, dies in superlevels



Graph Stratification

Reeb graph is a telescope (stratified space)

a−1 a0 a1

Y0

Y1

X0 X1

Y0 × [a−1, a0] ∪ψ−1
X0 × {a0} ∪φ0

Y1 × [a0, a1] ∪ψ0
X1 × {a1} ∪φ1

...

φ0
ψ0 φ1

f̃

Idea: deform the Reeb graph so that it becomes the Mapper and track
the changes in the persistence diagram



Operation 1: Merge Ma,b

a

a

b

b

(Yi−1 × [ai−1, ā]) ∪fi−1 (f̃−1([a, b])× {ā}) ∪gj (Yj × [ā, aj+1])

(Yi−1× [ai−1, ai])∪ψi−1 (Xi×{ai})∪φi ...∪ψj−1 (Xj ×{aj})∪φj (Yj × [aj , aj+1])

ā

ā



Operation 2: Split Spai,ε
(Yi−1 × [ai−1, ai]) ∪ψi−1 (Xi × {ai}) ∪φi (Yi × [ai, ai+1])

(Yi−1 × [ai−1, ai − ε]) ∪ψai−εi−1

(Xi × {ai − ε}) ∪id (Xi × [ai − ε, ai + ε]) ∪id

(Xi × {ai + ε}) ∪
φ
ai+ε
i

(Yi × [ai + ε, ai+1])

ai

ai

ai − ε

ai − ε

ai + ε

ai + ε



Operation 3: Shift Shai,ε
(Yi−1 × [ai−1, ai]) ∪ψi−1 (Xi × {ai}) ∪φi (Yi × [ai, ai+1])

(Yi−1 × [ai−1, ai + ε]) ∪ψi−1 (Xi × {ai + ε}) ∪φi (Yi × [ai + ε, ai+1])

ai

aj

ai + ε1

aj + ε2

ai + ε1

ai
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- SpI is the union of all Spε,ā with ε small

- ShI is the union of all Shε1,ā+ε and Shε2,ā−ε with ε1, ε2 small

- M ′I is the union of all MIk for I ∈ I



Formula Reeb graph → Mapper

Let I be the cover of im(f)

- MI is the union of all MIk and MIk,k+1
for I ∈ I

I1 I1,2
I2 I2,3

I3 I3,4
I4

I

- SpI is the union of all Spε,ā with ε small

- ShI is the union of all Shε1,ā+ε and Shε2,ā−ε with ε1, ε2 small

Mf(X, I) =M ′
I ◦ ShI ◦ SpI ◦MI(Rf(X))

- M ′I is the union of all MIk for I ∈ I



Formula Reeb graph → Mapper

Let I be the cover of im(f)

Mf(X, I) =M ′
I ◦ ShI ◦ SpI ◦MI(Rf(X))



Formula Reeb graph → Mapper

Let I be the cover of im(f)

Mf(X, I) =M ′
I ◦ ShI ◦ SpI ◦MI(Rf(X))

I1

I2
I1,2
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QExt
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Descriptor for Mapper

Def: Dg Mf (X, I) := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I
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QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

Let I minimal cover of Imf ⊆ R. For I ∈ I, let I = I− t Ĩ t I+

QOrd
I =

⋃
I∈I

Q+

Ĩ∪I+

QRel
I =

⋃
I∈I

Q−
I−∪Ĩ

QExt
I =

⋃
I,J∈I
I∩J 6=∅

Q−I∪J



Descriptor for Mapper

Let I ⊆ R interval

Q+
I = {(x, y) ∈ R2 | x ≤ y ∈ I}

Q−I = {(x, y) ∈ R2 | y < x ∈ I}

I

Q+
I

Q−I

R





Def: Dg Mf (X, I) := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Thm: Dg Mf (X, I) provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches

Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)

Ext1 ←→ loops

Cor: Dg Mf (X, I) = Dg f̃ whenever the resolution r of I is smaller than
the smallest distance from Dg f̃ \∆ to the diagonal ∆.

Structure of Mapper



Stability of Mapper

Def: Dg Mf (X, I) := Ordf̃ \QOrd
I ∪ Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Thm: Dg Mf (X, I) provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches

Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)

Ext1 ←→ loops

... and distance to staircase boundary mea-
sures (in-)stability of each feature w.r.t.
perturbations of (X, f, I)







Dg Mf (X, I) Dg Mf ′ (X, I)←→m :

costI(m)

Stability of Mapper

Def: dI(Dg Mf (X, I), Dg Mf (X, I)) := infm costI(m)



Dg Mf (X, I) Dg Mf ′ (X, I)←→m :

Thm: For any functions f, f ′ : X → R of Morse type,

dI(Dg Mf (X, I), Dg Mf ′(X, I)) ≤ ‖f − f ′‖∞
costI(m)

Stability of Mapper

Def: dI(Dg Mf (X, I), Dg Mf (X, I)) := infm costI(m)



Dg Mf (X, I) Dg Mf ′ (X, I)←→m :

Thm: For any functions f, f ′ : X → R of Morse type,

dI(Dg Mf (X, I), Dg Mf ′(X, I)) ≤ ‖f − f ′‖∞
costI(m)

Extensions to:

• perturbations of X

• perturbations of I

Stability of Mapper

Def: dI(Dg Mf (X, I), Dg Mf (X, I)) := infm costI(m)



serves as a proxy for the geometry of the underlying space

Mapper in practice

Input:

• Compute pullback cover U of P : U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various con-
nected components in G

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

- point cloud P ⊆ X with metric dP

• Compute neighborhood graph G = (P,E)

(intersections materialized
by data points)

- continuous function f : P → R
- cover I of im(f) by open intervals: imf ⊆

⋃
I∈I I

→ connected cover V



Mapper in practice

X

f

R

I

V

Mapper

δ

Gδ = δ-neighborhood graph

M•f,δ(X̂n, I)



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Questions:

• Statistical properties of the estimator M•f,δ(X̂n, I) ?

• Convergence to the ground truth Rf (X) in dB? Deviation bounds?

f
+ cover I

M•f,δ(X̂n, I)

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

Let Mf,δ(X̂n, I) denote Mf (Gδ, I)

1. Link between Rf (X) and Mf,δ(X̂n,V)?

2. Link between Mf,δ(X̂n, I) and M•f,δ(X̂n, I)?

X → Gδ(X̂n)

intersections given by metric graph → intersections given by points

support → δ-neighborhood graph Reeb graph → Mappera. b.

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

1. Link between Rf (X) and Mf,δ(X̂n, I)?

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

support → δ-neighborhood graph

Thm: If 4dH(X, X̂n) ≤ δ ≤ min
{

1
4 rch(X), 1

4ρ(X)
}

dB(Dg Rf (X),Dg Rf (Gδ(X̂n))) ≤ 2ω(δ)

1. Link between Rf (X) and Mf,δ(X̂n, I)?

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

support → δ-neighborhood graph

Thm: If 4dH(X, X̂n) ≤ δ ≤ min
{

1
4 rch(X), 1

4ρ(X)
}

dB(Dg Rf (X),Dg Rf (Gδ(X̂n))) ≤ 2ω(δ)

Reeb graph → Mapper

Thm: dB(Dg Rf (Gδ(X̂n)),Dg Mf,δ(X̂n, I)) ≤ r

1. Link between Rf (X) and Mf,δ(X̂n, I)?

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

1. Link between Rf (X) and Mf,δ(X̂n, I)?

ω: modulus of continuity of f

ω : δ 7→ sup{|f(x)− f(y)| : d(x, y) ≤ δ}
rch: reach of X.

ρ: radius of convexity of X: largest r s.t. geodesic balls of
radius r are convex.

dH : Hausdorff distance.

Statistics for Mapper



Statistics for Mapper

The distance function to a compact M ⊂ Rd, dM : Rd → R+ is defined by:

dM (x) = inf
p∈M
‖x− p‖

The Hausdorff distance between two compact sets M,M ′ ⊂ Rd is:

dH(M,M ′) = sup
x∈Rd

|dM (x)− dM ′(x)|

dH(M,M ′)

M

M ′



Statistics for Mapper

M
x

ΓM (x)

ΓM (x) = {y ∈M : dM (x) = ‖x− y‖}

Def: The medial axis of M :

M(M) = {x ∈ Rd : |ΓM (x)| ≥ 2}



Statistics for Mapper

M

M(M)

rch(M)

Def: The reach of M , rch(M) is the smallest distance from M(M) to M :

rch(M) = inf
y∈M(M)

dM (y)



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

2. Link between Mf,δ(X̂n, I) and M•f,δ(X̂n, I)?

intersections given by metric graph → intersections given by points

Thm: If there are no intersection-crossing edges, then

Mf,δ(X̂n, I) = M•f,δ(X̂n, I)

Statistics for Mapper



Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

X̂n is random ⇒ dH(X, X̂n) is random

Hyp: µ is (a, b)-standard

µ(B(x, r)) ≥ min{1, arb} for all x ∈ X and r > 0

Then it is known that, for n sufficiently large, one
has with high probability:

dH(X, X̂n) ≤
(

2logn
an

)1/b

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Thm: If µ is (a, b)-standard and f is c-Lipschitz then for:

sup
µ∈P

E
[
dB

(
Dg M•f,δn (X̂n, I(gn, rn)), Dg Rf (X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b, c.

f
+ cover I

δn = 4
(

2 logn
an

)1/b

, gn ∈
(

1
3 ,

1
2

)
, rn = cδn

gn
, one has ∀ε > 0

More generally: rn = ω(δn)/gn
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X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

f
+ cover I

Moreover, the estimator DgF(X̂n) is minimax optimal (up to a log n
factor) on the space P of (a, b)-standard probability measures on X.

Thm: For any estimator R̂, one has:

sup
µ∈P

E
[
dB

(
Dg R̂, Dg Rf (X)

)]
≥ C

(
1

n

)1/b

,

where C depends only on a, b.

Consequence of Le Cam’s lemma

Statistics for Mapper



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Thm: If µ is (a, b)-standard and f is c-Lipschitz then for:

sup
µ∈P

E
[
dB

(
Dg M•f,δn (X̂n, I(gn, rn)), Dg Rf (X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b, c.

f
+ cover I

δn = 4
(

2 logn
an

)1/b

, gn ∈
(

1
3 ,

1
2

)
, rn = cδn

gn
, one has ∀ε > 0

More generally: rn = ω(δn)/gn
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X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)

→ subsampling to tune δn: let β > 0 and take s(n) = n
log(n)1+β

δn

δn := dH(X̂
s(n)
n , X̂n) where X̂

s(n)
n is a subset of X̂n of size s(n)
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X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)

→ subsampling to tune δn: let β > 0 and take s(n) = n
log(n)1+β

δn

Thm: If µ is (a, b)-standard and f is c-Lipschitz, then for:

sup
µ∈P

E
[
dB

(
Dg M•f,δn (X̂n, I(gn, rn)), Dg Rf (X)

)]
≤ C

(
log(n)2+β

n

)1/b

,

where C depends only on a, b, c.

δn := dH(X̂
s(n)
n , X̂n) where X̂

s(n)
n is a subset of X̂n of size s(n)

Statistics for Mapper

δn = dH(X̂
s(n)
n , X̂n), gn ∈

(
1
3 ,

1
2

)
, rn = cδn

gn
, one has ∀ε > 0



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)
δn

Ex : PCA filter
Π1 : orthonormal projection onto first principal direction of the covariance op-
erator
Π̂1 : orthonormal projection onto first principal direction of the empirical co-
variance operator
Using [Biau et. al. 2012]:

E
[
dB

(
RΠ1

(X ),M•
Π̂1(X̂n),δn

(X̂n, I(gn, rn))
)]

.

(
(log(n))2+β

n

)1/b

∨ 1√
n
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X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)
δn

Statistics for Mapper

Thm: If µ is (a, b)-standard and f is c-Lipschitz, then for:

sup
µ∈P

E
[
dB

(
Dg M•f,δn (X̂n, I(gn, rn)), Dg Rf (X)

)]
≤ C

(
log(n)2+β

n

)1/b

,

where C depends only on a, b, c.

δn = dH(X̂
s(n)
n , X̂n), gn ∈

(
1
3 ,

1
2

)
, rn = cδn

gn
, one has ∀ε > 0

Get confidence region with E [d(·, ·)] =
∫
α
P(d(·, ·) ≥ α)dα



Multivariate case: filter-based pseudometric

Def: [Dey Mémoli Wang SoCG 2017]:
The filter-based pseudometric df : M ×M → R is defined as

df (x, x′) = infγ∈Γ(x,x′) diamY (f ◦ γ),

where Γ(x, x′) denotes the set of all continuous paths γ : [0, 1] → M such that
γ(0) = x and γ(1) = x′, and diamY denotes the diameter of a subset of Y

Def:
The Gromov-Hausdorff metric dGH between (M,df ), (M ′, df ′) is defined as

dGH(M,M ′) =
1

2
infC sup(x,x′),(y,y′)∈C |df (x, y)− df ′(x′, y′)|,

where C denotes the set of all correspondences between M and M ′ (subsets of
M ×M ′ s.t. projections onto M and M ′ are surjective)



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

δn

Statistics for Mapper in general

Question:

How to assess distance confidence?

E [dGH(Mf ,Rf) ≤ ?] ≥ 0.95

I



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

δn

Statistics for Mapper in general

Thm: [C. Michel Preprint 2020]

If µ and f#µ are (a, b)-standard, then for δn as before, one has:

E
[
dGH(M•f,δn (X̂n, I),Rf (X))

]
≤ 5 · E [res(I)] +Cω

(
log(n)2+β

n

)1/b

,

where C depends only on a, b, and res denotes the resolution of the cover I, i.e., the
diameter of its elements

I

Moreover, using covers with hypercubes or K-means, or quantized Distance-
to-Measure [Brecheteau Levrard Bernouilli 2020] allows to bound E [res(I)].



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

δn

Statistics for Mapper in general

I

Thm: [C. Michel Preprint 2020]

If w(u) ≤ cuγ for some c > 0, γ ∈ (0, 1), and for a cover I given by thickening
a K-means partition in RD:

E [res(I)] ≤ K−(2γ2)/(2γb+b2) +

(
KD

n

)γ/(2b+4γ)
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Chromosome conformation capture
[C. Rabadan Abel 2018]

Experiments



Chromosome conformation capture

Formal identification of cell cycle with 95% confidence

[C. Rabadan Abel 2018]

Experiments



Experiments Joint work with Rizvi Rabadan 2020Spinal cord data



Experiments Joint work with Rizvi Rabadan 2020Spinal cord data



Experiments Joint work with Rizvi Rabadan 2020Spinal cord data



Gene expression (SPLiTseq) and gene accessibility (ATACseq) of
single cells of one healthy individual for 3 sections of spinal cord

Experiments Joint work with Rizvi Rabadan 2020Spinal cord data



Machine learning classifier

Filter = confidence of Random Forest classifier (in R3)

Experiments



Machine learning classifier

Sitting

Standing

Walking up

Walking

Walking down

Intermediate
between laying

and sitting

Laying

Filter = confidence of Random Forest classifier (in R6)

Experiments
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