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Mapper in applications

Two types of applications:

e clustering principle: identify statistically relevant sub-

populations through patterns (flares, loops)

e feature selection




Mapper in applications

3d shapes classification

[Singh, Mémoli, Carlsson 2007]
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Mapper in applications
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Mapper in applications
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Mapper in the continuous setting

Input:
- topological space X

- continuous function f: X — Y

- cover Z of im(f) by open intervals: im(f) C (J; .71

Method:
o Compute pullback cover U of X: U = {f~1(I)}1er

e Refine U4 by separating each of its elements into its various con-
nected components in X — connected cover V

e The Mapper is the nerve of V:
- 1 vertex per element V € V
- 1 edge per intersection VNV’ £0, V.,V €V
- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi#£0, Vo, -, VL €V



Mapper in practice

Input:
- point cloud P C X with metric dp
- continuous function f : P — Y

- cover Z of im(f) by open intervals: imf C J; ., 1

Method: e Compute neighborhood graph G = (P, F)
o Compute pullback cover U of P: U = {f~1(I)}1ez

e Refine U4 by separating each of its elements into its various con-
nected components in G — connected cover V

e The Mapper is the nerve of V: (intersections materialized

- 1 vertex per element V € V by data pOintS)
- 1 edge per intersection VNV’ £0, V.,V €V
- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi#£0, Vo, -, VL €V



Mapper in practice

Mapper
M (G,Z)

G = d-neighborhood graph




Choice of parameters

Parameters:
lens | filter

- function f: P - R -
- cover Z of im(f) by open intervals

- neighborhood size ¢ \

T range scale

geometric scale



Choice of parameters

Parameters:

lens | filter
-functionf:P%]R{¢ ’

- cover Z of im(f) by open intervals

- neighborhood size ¢ \

T range scale

geometric scale

— uniform cover Z:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)




Choice of parameters

— In practice: trial-and-error

high-dimensional data sets*»**. This is performed automatically within the

software, by deploying an ensemble machine learning algorithm that iterates
through overlapping subject bins of different sizes that resample the metric space
(with replacement), thereby using a combination of the metric location and
similarity of subjects in the network topology. |After performing millions of

iterations, the algorithm returns the most stable, consensus vote for the resultin

‘solden network’ (Reeb graph), representing the multidimensional data shape'*

Nielson et al.: Topological Data Analysis for Discovery in Preclinical Spinal Cord
Injury and Traumatic Brain Injury, Nature, 2015




Choice of parameters




9 A
50 — ‘
SheS-c

45 -
40 —
35
30 A
25
20

15

10 -




Reeb Graph

Reeb graph ~ Mapper with extremely small resolution




Reeb Graph

Mapper ~ pixelized Reeb graph
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Reeb Graph

= f(y) and z,y belong to same cc of f~'({f(x)}) ]

Ry(X) = X/ ~
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Reeb Graph

T~ 1y <= [ f(z) = f(y) and z,y belong to same cc of f~'({f(z)}) ]

Ri(X):= X/~

Prop: R;(X) is a graph when
(X, f) is Morse or of Morse type



Graph Descriptor

Dg f provides a bag-of-features descriptor for R s (X):

Ordg f <— downward branches Extof <— trunks (cc)

Rellf <— upward branches Extlf +— loops

e ordinary / relative

m extended



Graph Descriptor

Dg f provides a bag-of-features descriptor for R (X):

Ordg f <— downward branches Extof <— trunks (cc)

Rellf <— upward branches Extlf +— loops

.. and distance to diagonal measures the (in-)stability e ordinary / relative

of each feature w.r.t. perturbations of (X, f) m extended



Graph Descriptor

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

e ordinary / relative

m extended
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Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]
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Graph Descriptor

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

Ord: appears/dies in sublevels

e ordinary / relative

Rel: appears/dies in superlevels

Ext: appears in sublevels, dies in superlevels ® extended



Graph Stratification

Reeb graph is a telescope (stratified space)

Y() X [CL_l,CL()] U¢_1 X() X {CLQ} U¢O Yl X [ag,al] U¢o X1 X {@1} U¢1

~

a_1q ao aq

Idea: deform the Reeb graph so that it becomes the Mapper and track
the changes in the persistence diagram



Operation 1: Merge M,

(Yic1 X [ai—1,a:]) Uy, _y (Xi X {ai}) Up; .. Uy, (Xj X {a;}) Ug; (Y X [aj,a;j41])




Operation 2: Split Sp,.

(Yie1 X [ai—1,a5]) Uy, _y (X X {ai}) Ug, (Yi X [as, ait1])

'

(Yic1 X |ai—1,a; — €]) U o= (X x {a;i —€}) Uiq (X5 X [a; — €,a; + €]) Uia
1—1

(Xi x{ai+€}) U a;+c (Yi X [ai + € aiya])




Operation 3: Shift Sh,, .

(Yie1 X [ai—1,a:]) Uy, _y (Xi X {ai}) Ug, (Yi X [a;, ait1])

'

(Yic1 X [ai—1,ai +€]) Uy, _; (Xi X {ai +€}) Ug, (Y X |a; + €, ait1])
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Formula Reeb graph — Mapper

Let 7 be the cover of im(f)

- M7z is the union of all My, and My, , . forl €l

- Spz is the union of all Sp. z with € small

- Shz is the union of all She, g4+ and She, — with €1, €5 small

- M7 is the union of all M;,_for I € Z
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Formula Reeb graph — Mapper

Let 7 be the cover of im(f)

Mf(X, I) — Mé O Sh] O sz O MI(Rf(X))
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Descriptor for Mapper

Def: DgM/(X,Z) := Ordf \ Q2" URelf \ QF°' UExtf \ QF*

Thm: DgM((X,Z) provides a bag-of-features descriptor for M (X, 7):

Ordg «—— downward branches

Rely «— upward branches

Extg <— trunks (cc)

Ext, «— loops




Descriptor for Mapper

Let Z minimal cover of Inf CR. For [ € Z, let I=1- LUTUIT

OI‘d U Q
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Descriptor for Mapper

Let / C R interval

QFf ={(z,y) eR* |z <yel}
Qr ={(z,y) eR’ |y <z eI}







Structure of Mapper

Def: DgM/(X,Z) := Ordf \ Q2" URelf \ QF°' UExtf \ QF*

Thm: DgM((X,Z) provides a bag-of-features descriptor for M (X, 7):

Ordg «—— downward branches

Rely «— upward branches

Extg <— trunks (cc)

Ext, «— loops

Cor: DgM(X,7) = Dg f whenever the resolution r of Z is smaller than
the smallest distance from Dg f \ A to the diagonal A.



Stability of Mapper

Def: DgM/(X,Z) := Ordf \ Q2" URelf \ QF°' UExtf \ QF*

Thm: DgM((X,Z) provides a bag-of-features descriptor for M (X, 7):

Ordy <— downward branches Extg <— trunks (cc)
Rely «— upward branches Ext; <— loops
.—
.. and distance to staircase boundary mea- ?
sures (in-)stability of each feature w.r.t.
perturbations of (X, f,7) e










Stability of Mapper

Def: dz(DgM;(X,Z), DgM;(X,T)) := inf,, costz(m)

costz(m)
4
LA
B o

)

\

m: DgM(X,Z) «— DgM (X, T)




Stability of Mapper
Def: dz(DgM;(X,Z), DgM;(X,Z)) := inf,, costz(m)

Thm: For any functions f, f' : X — R of Morse type,

dz(DgMy(X,Z), DgMy(X,Z)) < [If = f'lles

costz(m)
4
LA
B o

)

\

m: DgM(X,Z) «— DgM (X, T)




Stability of Mapper
Def: dz(DgM;(X,Z), DgM;(X,Z)) := inf,, costz(m)

Thm: For any functions f, f' : X — R of Morse type,

dz(DgMy(X,Z), DgMp (X, 1)) < [If — f'lles
costz(m)

Extensions to:

e perturbations of X r e

e perturbations of Z

)

\

m: DgM(X,Z) «— DgM (X, T)




Mapper in practice

Input:
- point cloud P C X with metric dp
- continuous function f: P —- R

- cover Z of im(f) by open intervals: imf C J; ., 1

Method: e Compute neighborhood graph G = (P, F)
o Compute pullback cover U of P: U = {f~1(I)}1ez

e Refine U4 by separating each of its elements into its various con-
nected components in G — connected cover V

e The Mapper is the nerve of V: (intersections materialized

- 1 vertex per element V € V by data pOintS)
- 1 edge per intersection VNV’ £0, V.,V €V
- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi#£0, Vo, -, VL €V



Mapper in practice

Mapper
1\/[},5(Xn7 7)

(GGs = o-neighborhood graph




Statistics for Mapper
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Questions:

e Statistical properties of the estimator M},(;(f(n,I) ?

e Convergence to the ground truth R¢(X) in dg? Deviation bounds?

s



Statistics for Mapper

;é;,/@
A
o *® ° Ej
° O
/\‘ ® * o @@u @Y
. ° ~ * b
n points sampled . X, °
. . . ( :
i.i.d. according to u. | « % % o
° . o ®.q ®
o o
+ cover Z « .
«— ®
7

A

Let M 5(X,,,Z) denote M ((Gs,7)

1. Link between R(X) and My 5(X,,V)?

a. support — d-neighborhood graph b. Reeb graph — Mapper
X — G(s(Xn)

AN AN

2. Link between My 5(X,,Z) and M$ (X, Z)?

intersections given by metric graph — intersections given by points



Statistics for Mapper
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Statistics for Mapper
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support — 0-neighborhood graph

Thm: If 4d5 (X, X,,) < § < min {3rch(X), 2p(X)}
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Statistics for Mapper
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1. Link between R¢(X) and My 5(X,,Z)7
support — 0-neighborhood graph
Thm: If 4d5 (X, X,,) < § < min {3rch(X), 2p(X)}

AN

d5(DgRy(X), DgRy(Gs(X,))) < 20(5)

Reeb graph — Mapper

A A

Thm: dB(Dng(G(s(Xn)),Dngjg(Xn,I)) <r

SR R OO
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1. Link between R¢(X) and My 5(X,,Z)7

w: modulus of continuity of f

w:d — sup{|f(z) — f(y)| : d(z,y) <}
rch: reach of X.

p: radius of convexity of X: largest r s.t. geodesic balls of
radius r are convex.

dg: Hausdorff distance.



Statistics for Mapper

The distance function to a compact M C R?, dj; : R? — R is defined by:

du(x) = inf o —p

The Hausdorff distance between two compact sets M, M’ C R? is:

dpg (M, M') = sup [y (z) — dp ()]
rER



Statistics for Mapper

Pyv(z) =1y € M : du(z) = ||z — yll}

Def: The medial axis of M:

M(M) ={z € R* : [T ()] > 2}




Statistics for Mapper

rch(M)

Def: The reach of M, rch(M) is the smallest distance from M (M) to M:

reh(M) = inf du(y)
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2. Link between My 5(Xy,Z) and M$ 5(X,,,Z)?

Intersections given by metric graph — intersections given by points

Thm: If there are no intersection-crossing edges, then

A

My 5( X, T) = M3 (X0, T)



Statistics for Mapper
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X, is random = dp (X, X,,) is random
Hyp: 4 is (a, b)-standard
w(B(x,r)) > min{l,ar’} for all z € X and r > 0

Then it is known that, for n sufficiently large, one
has with high probability:

. 1/b
dH(X,Xn) S (QIOg’I’L)

an

SR R OO
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Thm: If u is (a,b)-standard and f is c-Lipschitz then for:
1/b
2logn 1 1 dn,
5n:4( aqu ) ,gnE(g,ﬁ),rn:Cg—n, one has Ve > 0

. 5 logn 1/
sup E [dB (Dng,C;n (X, Z(gn, ™)), Dng(X))] <C ( ) |
neP n

where C' depends only on a, b, c.

More generally: 7, = w(d,)/gn



A A,
./\‘ .0.
n points sampled |, Xn
i.i.d. according to u. |
7 + cover 1L c °.

AN

SR R OO

Moreover, the estimator Dg F(X,,) is minimax optimal (up to a logn
factor) on the space P of (a,b)-standard probability measures on X.

Thm: For any estimator R, one has:

sup E [dB (Dg R, Deg Rf(X))}
pneP

where C depends only on a, b.

Consequence of Le Cam’s lemma
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More generally: 7, = w(d,)/gn
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— subsampling to tune §,: let 8 > 0 and take s(n) = 1og($)1+6

5, = dp(X5™ ) X,)) where X5 is a subset of X,, of size s(n)




— subsampling to tune §,: let 8 > 0 and take s(n) =

n

10g(n)1+5

5, = dp(X5™ ) X,)) where X5 is a subset of X,, of size s(n)

Thm: If y is (a,b)-standard and f is c-Lipschitz, then for:

60 = A (Xn'™, X0), g € (5, 5), T = 22,

EE%E [dB (Dnga (Xns Z(gn, ), Dng(X))} < C(

where C' depends only on a, b, c.
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] ° N * @@
n points sampled |, Xn ° 5
" = . ° n :
I.1.d. according to . o ® ®
g ,u ° . . ° I(gn7 'rn) ®@\®,®
° ° : ¢
< o
/ $

one has Ve > 0

log(n)?+F

n

>1/b



;%/@
A A
o * % e, ®
° UGN
— ° * ° @@w UO
] ° N : i @
n points sampled |, Xn : 5
. . . Y n \ ®
I.1.d. according to . o® o
g ,u ° . . ° I(gn7 'rn) @\@‘@@
° ° : ¢
‘ o
/

Ex : PCA filter

II; : orthonormal projection onto first principal direction of the covariance op-
erator

II; : orthonormal projection onto first principal direction of the empirical co-
variance operator

Using [Biau et. al. 2012]:

n

E {dB (RHl(X)’Mlz\ll()?n),cgn()?n’z(gn’Tﬂ)))} < ((1og(n))2+5>1/b y 1
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Thm: If p is (a,b)-standard and f is c-Lipschitz, then for:

5n:dH(X;(N)7Xn),gn€ (%, %),Tn:%1 one has Ve > 0

. g log(n)>+7\ "/
sup E [dB (Dng’(Sn (Xn,Z(gn,Tn)), Dng(X))] <C ( ) :
pneP n

where C' depends only on a, b, c.

Get confidence region with E [d(-,-)] = | P(d(-,-) > a)do



Multivariate case: filter-based pseudometric

Def: [Dey Mémoli Wang SoCG 2017]:
The filter-based pseudometric df : M x M — R is defined as

df (33, CE,) — inf,yep(x,x/) diamy (f o ’y),

where I'(z, z") denotes the set of all continuous paths v : [0,1] — M such that
v(0) = x and v(1) = 2’, and diamy denotes the diameter of a subset of Y

Def:
The Gromov-Hausdorff metric dou between (M, dy), (M',ds/) is defined as

1.
dGH(M7 M/) — §1nfc Sup(w,x’),(y,y’)EC‘df(x7y) - df/(aj,7y/)‘7

where C' denotes the set of all correspondences between M and M’ (subsets of
M x M’ s.t. projections onto M and M’ are surjective)
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V [dGH(Mf,Rf) < 71 >0.95

Question:

How to assess distance confidence?
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Thm: [C. Michel Preprint 2020]
If © and f#u are (a,b)-standard, then for 5n as before. one has:

A O n2 B 1/b
: [dGH(M}"Sn(X”’I)aRf(X))} <5-E[res(ZT)] + Cw <1 g(n) i > |

where C depends only on a, b, and res denotes the resolution of the cover Z, i.e., the
diameter of its elements

Moreover, using covers with hypercubes or K-means, or quantized Distance-
to-Measure [Brecheteau Levrard Bernouilli 2020] allows to bound E [res(Z)].
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Thm: [C. Michel Preprint 2020]

If w(u) < cu” for some ¢ > 0,7 € (0,1), and for a cover Z given by thickening
a K-means partition in R”:

_ KD
E [res(Z)] < K~ (7276469 (_

v/ (2b+47)
v)



Experiments 85% confidence intervals
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Experiments 85% confidence intervals
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Experiments 85% confidence intervals




Experiments Chromosome conformation capture
[C. Rabadan Abel 2018]
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Experiments Chromosome conformation capture
[C. Rabadan Abel 2018]

f near band f mitotic_band

Formal identification of cell cycle with 95% confidence



Experiments Spinal cord data Joint work with Rizvi Rabadan 2020

Cervical (C1 - C7) Section Specific
SPLiT-Seq and scATAC-Seq

Thoracic (T1-T12) Topological Representation of
scRNA-Seq and scATAC-Seq

Statistics, Alignment and
Cross Modality Integration
Lumbar (L1 - L5) Transcriptional Imputation

Sacral (S1-S5)

[Va lidation by in situ Sequencing ]

Coccygeal




Experiments Spinal cord data Joint work with Rizvi Rabadan 2020
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Experiments Spinal cord data Joint work with Rizvi Rabadan 2020
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Experiments Spinal cord data Joint work with Rizvi Rabadan 2020

Gene expression (SPLiTseq) and gene accessibility (ATACseq) of
single cells of one healthy individual for 3 sections of spinal cord

Transcription Start Site

Distal Enhancer Enhancer Silencer Promoter I Exon Intron

Distal Enhancer Enhancer

Promoter

Closed Chromatin Open Chromatin



Experiments Machine learning classifier

Filter = confidence of Random Forest classifier (in R?)
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Experiments Machine learning classifier

Filter = confidence of Random Forest classifier (in R°)
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Thanks!!



