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Motivation

Point clouds from samples of functions ., (t) : A = C, A C R
X5 (t) = |1u(t)| 710, 7] C A. (1)

Scaling ansatz for density of persistence diagram measures:
B(t, A)(b,d) = (¢/¢)2R(¢, A) (/) b, (¢/¢) " d). (2)

Alpha complexes of different radii

[Reprinted from Spitz et al., arXiv:2001.02616]

[Reprinted from Spitz et al., arXiv:2001.02616]
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Random measures and point processes

M": Space of boundedly finite measures on R"
N7 Integer-valued ones
(22, E,P): Probability space

Random measure is a measurable map 1 : (Q,&,P) — (M", B(M"))
Point process is a measurable map ¢ : (Q,&,P) — (N", B(N"))

To any realization &, w € Q, there exists countable set of atoms
{x1,x2,...} CR" such that VA € B":

E(A) = 30 0,(A) ©)

Point process simple, if a.s. all its atoms are distinct.
Point process has all finite moments, if Vk > 1, A € Bp: E[¢(A)¥] < oo.

For simple point process £ define point clouds:
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Filtered simplicial complexes and persistent homology

X C R" point cloud. Cech complexes: C,(X) := {eCX ‘ﬂxeo B(x)#0}.

Lth persistence diagram of Hg(C(X)) defined as finite multiset

Dgm,(X) := {(b,-,d,—)

He(C(X)) = €D I(bi, di) } (5)

i=1

Lemma
For & simple point process on R", D o X¢ defines point process on space of
pers. diags. 9 endowed with the Wasserstein metric W,, for any p > n, via

we | A > 6], Da: X | JDem,(X) (6)
XEDA(Xe,, (A)) =0

for all w € Q, A € Bg. Equivalently, Da o X¢ (A) : Q — Z is a random variable
for each A € Bj.
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Bounded total persistence

M: Triangulable, compact metric space. K: Simp. complex giving triangulation
¥ of M, diam(o) := maxx,yco d(9(x), 3(y)),

mesh(K) := g‘leaz((dha\m(a)7 N(r) = mesr}r]](l}rg)gr#K (7)
Degree-k total persistence of filtration of sublevel sets of f:
Persi(f) := Z pers(x)~. (8)

pers(x)>t

Proposition (Cohen-Steiner et al., Found. Comp. Math. 10(2), 2010)

Assume that size of smallest triangulation of M grows polynomially with one
over mesh, i.e. there exist Co, m, such that N(r) < Go/r™ for all r > 0. Let
0 >0and k=m+6. Then,

m+ 20
1)

pers(f) < Co Lip(f)"Amp(f)’, (9)

where Amp(f) := maxyem f(x) — minyenm f(y).

M implies bounded degree-k total persistence, if 3Cy > 0: Pers,(f) < Cpm for
every tame function f : M — R with Lip(f) < 1.

Example: Compact Riemannian n-manifolds have bounded degree-n total pers.

6/28



Ergodicity of point processes

Random measure pu stationary, if Vx € R” the probability distributions of y and
Ox . coincide ((Oxp)(A) := u(A+ x))

Stationary random measure p ergodic, if P(u € A) € {0, 1} for all Borel sets A
of M" that are invariant under translation by x for all x € R".

{A«} C Bj called a convex averaging sequence if

(i) each Ak is convex, (ii) Ax C Akq1 for all k, (iii) klim r(Ax) = oo,
— 00

(10)
where r(A) := sup{r| A contains a ball of radius r}.

Proposition (Daley & Vere-Jones 2007)

{Ax} convex averaging sequence. When random measure & on R? is stationary,
ergodic and has finite expectation measure with

m = E[£([0,1]")] = m Ax([0,1]"), (11)

then £(Ak)/An(Ak) — m almost surely as k — oco.
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Ergodicity in persistent homology

Definition
& stationary simple point process on R" with finite expectation measure, {Ax}
convex averaging sequence. Set for all k:

n—1

n(Xi) == # ) Dgm,(Xe(Ax))- (12)

£=0

Say that £ is ergodic in persistence if a.s. for any ¢ > 0 3N € N such that for
all k,1 > N,
n(Xk) . )\H(Ak)

n(X) ~ M(A) <e. (13)

Lemma
& simple point process on R"
ergodic, then & is ergodic in persistence.

having all finite moments. If £ is stationary and
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Persistence diagram measures

& simple point process, A € By, define for all w € Q:
= S b (14)
xEDa(Xe,, (A)
Defines a point process p.(A) on A :={(b,d) |0 < b< d < o0}.
Persistence diagram measure: p. : Q x By — N(A).
If they exist, its first moment measures define p(A) := E[p.,(A)].
Persistence diagram expectation measure: p : By — R(A), A+ p(A)

Lemma

& simple stationary and ergodic point process on R" having all finite moments.
Then the corresponding persistence diagram expectation measure exists.
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Geometric quantities
Number of persistent homology classes:
ne(A) = [ (A = pu(A)(B) (15)
Expectation: n(A) := [, p(A)(dx) = p(A)(A)

Let g > 0. Degree-q persistence:

1/q
oo (A) = / pers(x)qu(A)(dx)} (16)

{ 1
n.(A)
Expectation: 14(A) := [ﬁ S5 pers(x)? p(A)(dx)] v

Maximum death:

dmax,w (A) := max{d | (b, d) € Da(X,(A))} = pan;o [/ d(x)” pu(A dx)] /e
(17)
Expectation: dmax(A) := limp o0 [ [ d(x)”p(A)(dx)}l/P
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Geometric quantities

Proposition
p persistence diagram expectation measure, A € Bj. Find

0(A) = E[n.(A)],  dmax(A) = E[dmax.e.(A)]- (18)

If p(A) is boundedly finite, then n(A) < co. If supp(p(A)) C A is bounded,
then dmax(A) < 0.

Proposition

¢ stationary, ergodic simple point process on R" having all finite moments, p
persistence diagram expectation measure from £, {Ax} convex averaging
sequence, ¢ > 0. Find for all ¢ > 0 and k suff. large:

[lg(A) = Ellg,o (A <€ (19)

Let A € Bj. If p(A) is boundedly finite and supp(p(A)) C A is bounded, then
[4(A) < oo for all g > 0.
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Functional summaries
Problem: Persistence diagrams do not naturally lead to statistical goals!
F(T): Collection of functions on compact metric space T, f : T — R

Functional summary F is a map from the space of persistence diagrams to such
a collection of functions, F : 9 — F(T)

F additive, if for any two persistence diagrams D, E € 2:
F(D+ E) = F(D)+ F(E) as sum of multisets

F uniformly bounded, if a constant U < oo exists, such that
sup sup|f(s)| < U (20)

feim(F)s€T

Proposition (Berry et al., arXiv:1804.01618)

F uniformly bounded functional summary, D; € 9 for i € N, sampled from a
probability space (2,B(2),Py), fi := F(D;). If im(F) equicontinuous, then
a.s. forn — oo

sup % Z fi(s) — E[F(D)(s)]| — O. (21)
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Functional summaries and persistence diagram measures

For additive func. summary A, s € T:

ADa(Xe, (AN)(s) = > A({X})(5)=/A({X})(S)pw(A)(dX)-
xEDa(Xe,, (A)) a
(22)

— Persistence diagram measures show up.
Proposition

Assume that pers. diag. expectation measure p exists. Then, for any functional
summary F € Z(K), s € K, A € B} have

UF{X} ) P (AN dx} /f{x} (5) P(A)(dx). (23)
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Intensive functional summaries

& stationary, ergodic simple point process on R", F : 9 — % (T) functional
summary.

Inspired by statistical mechanics:

F E-intensive, if for any convex averaging sequence {Ax}, € > 0 and k
sufficiently large:
Jlim [|F(D)) = F(De)l[oo < ¢, (24)

|| llos: sup-norm, Dy := ;=5 Dgm,(Xe., (Ax))-
Lemma
A € o/ (K) additive functional summary, £ stationary, ergodic simple point

process on R", Dy as before. Then, A(Di)/A:(Ak) a.s. defines a {-intensive
functional summary.

= Intuition for ergodicity on level of persistence diagrams.

Corollary
A(Dx)/n(Dx) is a &-intensive functional summary
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Intensive functional summaries

Proposition

& stationary, ergodic simple point process on R", F a &-intensive functional
summary, {Ax} convex averaging sequence. Pick samples w; € Q, i € N,
according to the probability distribution P, define

n—1

Dy := |_J Dgm,(Xe., (Ax))- (25)
£=0

Then for any j € N, € > 0 and sufficiently large k find a.s.:

sup | lim ]-"(D,,j)(s)—ngw%iF(Dk,;)(s) <e (26)

scK |I—o0

— For intensive functional summaries ensemble-average and infinite-volume
average converge to each other.
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Self-similar scaling

Inspiration: How to describe behavior as it typically appears in
quantum-physical time evolutions in persistent-homological quantities?

(p(t))ec(7o,71) family of persistence diagram expectation measures,
0< To < Ti. For t € (To, T1), A € B set p(t, A) := p(t)(A), {A«} convex
averaging sequence.

(0(t))ee(ro, 1) Scales self-similarly between times To and T1 with exponents
n,m2 €R, if for all t,t € (To, T1), B € B(A), k suff. large:

p(t, A)(B) = (t/t')"p(t', A)((t/t') ™ B), (27)
where kKB := {(kb, kd) | (b, d) € B} for k € [0, c0).

Intuition based on pers. hom. with length scales as filtration parameter: Any
persistence length scale blows up as a power-law t", find e.g.:

n(t, Ac) = (t/t") " "n(t’, Ar), (28a)
lo(t, Ak) = (t/t) "4 (t, Ax), (28b)
Omax(t; Ak) = (t/t') ™ Omax(t’, Ax). (28¢)
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Packing relation

Can we find a relation between the occurring exponents based on geometrical
arguments?

Based on notion of bounded total persistence obtain:

Lemma (Packing lemma)

& simple point process on R", p persistence diagram measure computed from &.
Then there exists ¢ > 0, s.t. forany 6 >0, w € Q and A € Bj:

c(n+26) dmnaxw(A)°
é /n+6,w (/4)’7+'5 '

ne(A) < (29)

Theorem (Packing relation)

(&(t))te(mo,m) family of stationary, ergodic simple point processes on R" having
all finite moments, (p(t)): family of persistence diagram expectation measures
computed from (£(t)):. Assume that the family scales self-similarly between Ty
and Ty with exponents 11,1 € R. Then, if the interval (To, T1) is sufficiently
extended find a.s.:

2 = nn1. (30)

—> Confirms exponents found in numerical simulations.
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Example: Poisson process with power-law scaling intensity

Point processes (£(t))ecfo,00) 0N R” form time-dependent Poisson process, if
there exists 7 : [0, 00) — (0,00), s.t. V't € [0, 00),
(i) E[E(t, A)] = v (2)An(A),
(ii) for every m € N and all pairwise disjoint Borel sets Ay, ..
random variables £(t, A1), ...,&(t, Am) are independent.

.y Am € B" the

Proposition
(&(t))tefo,00) time-dependent Poisson process with intensity function

v(t) =yt "™, (31)

Y >0 and m > 0, {Ax} convex averaging sequence. Then the family
(p(t, Ac)/An(Ak)): converges vaguely for k — oo to a family of Radon measures
(B(t)) which scales self-similarly between 0 and co with exponents n1 and nn.
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Strong law of large numbers

For the example of the time-dependent Poisson process needed to show the
following generalization to the same results for cubes [Hiraoka, Shirai, Trinh,
Ann. Appl. Prob. 28(5), 2018].

Theorem (Strong law of large numbers for persistent Betti numbers)

& simple point process on R" having all finite moments, {Ax} convex averaging
sequence. If € is stationary, then for any 0 < r <s < co and { € 7 there exists

r,s

a constant B(Z , S.t.

BB (CX] ., ars
o (Ad) — By for k — oo. (32)
Additionally, if £ is ergodic, then a.s.
gys(C(Xk)) Ar,s
A — B, for k — oco. (33)

Proof is lengthy, using techniques from convex and integral geometry.
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Conclusions

» Theory of point processes well-suited to describe persistent homology in a
probabilistic setting.

» Ergodicity, functional summaries and persistence diagram measures lead to
diverse geometric quantities with well-defined expectations.

» Self-similar scaling approach yields interesting insights into geometry
(packing relation).

» Strong law of large numbers for persistent Betti numbers generalized to
arbitrary convex averaging sequences.
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Further questions

» Can the packing relation be extended to non-ergodic point processes and
their persistent homology?

» Do point processes exist, for which correlations do not reveal self-similar
scaling but persistence diagram measures do?

» Can we generalize the results to weighted simplicial complexes?
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