The self-similar evolution of stationary point processes via persistent homology

Daniel Spitz

Journal Club on Topological Data Analysis

December 8th, 2020

Based on: DS, Anna Wienhard, arXiv:2012.05751

Motivation

Point clouds from samples of functions $\psi_{\omega}(t) : \Lambda \to \mathbb{C}, \Lambda \subset \mathbb{R}^2$:

$$X_{ar{
u},\omega}(t) := |\psi_\omega(t)|^{-1} [0,ar{
u}] \subset \Lambda.$$
 (1)

Scaling ansatz for density of persistence diagram measures:

$$\tilde{\mathfrak{p}}(t,\Lambda)(b,d) = (t/t')^{-\eta_2} \tilde{\mathfrak{p}}(t',\Lambda)((t/t')^{-\eta_1}b,(t/t')^{-\eta_1'}d). \tag{2}$$

[Reprinted from Spitz et al., arXiv:2001.02616]

[Reprinted from Spitz et al., arXiv:2001.02616]

Found $\eta_2/\eta_1 \simeq 4$ in n = 2. Recent simulations show $\eta_2/\eta_1 \simeq 5$ in n = 3. Geometric explanation?

Persistence diagrams as point processes

Functional summaries

Self-similar scaling in time

Strong law of large numbers for persistent Betti numbers

Persistence diagrams as point processes

Functional summaries

Self-similar scaling in time

Strong law of large numbers for persistent Betti numbers

Random measures and point processes

 \mathcal{M}^n : Space of boundedly finite measures on \mathbb{R}^n \mathcal{N}^n : Integer-valued ones $(\Omega, \mathcal{E}, \mathbb{P})$: Probability space

Random measure is a measurable map $\mu : (\Omega, \mathcal{E}, \mathbb{P}) \to (\mathcal{M}^n, \mathcal{B}(\mathcal{M}^n))$ Point process is a measurable map $\xi : (\Omega, \mathcal{E}, \mathbb{P}) \to (\mathcal{N}^n, \mathcal{B}(\mathcal{N}^n))$

To any realization ξ_{ω} , $\omega \in \Omega$, there exists countable set of *atoms* $\{x_1, x_2, \ldots\} \subset \mathbb{R}^n$ such that $\forall A \in \mathcal{B}^n$:

$$\xi_{\omega}(A) = \sum_{i} \delta_{x_{i}}(A).$$
(3)

Point process *simple*, if a.s. all its atoms are distinct. Point process *has all finite moments*, if $\forall k \ge 1, A \in \mathcal{B}_{p}^{n}$: $\mathbb{E}[\xi(A)^{k}] < \infty$.

For simple point process ξ define point clouds:

$$X_{\xi_{\omega}}(A) = \left\{ x_i \mid \xi_{\omega}(A) = \sum_i \delta_{x_i}(A) \right\}.$$
 (4)

Filtered simplicial complexes and persistent homology

 $X \subset \mathbb{R}^n$ point cloud. Čech complexes: Č_r(X) := { $\sigma \subseteq X \mid \bigcap_{x \in \sigma} B_r(x) \neq \emptyset$ }. <u> ℓ th persistence diagram of H_{\ell}(C(X)) defined as finite multiset</u>

$$\mathsf{Dgm}_{\ell}(X) := \left\{ (b_i, d_i) \; \middle| \; H_{\ell}(\mathcal{C}(X)) \cong \bigoplus_{i=1}^k I(b_i, d_i) \right\}.$$
(5)

Lemma

For ξ simple point process on \mathbb{R}^n , $D \circ X_{\xi}$ defines point process on space of pers. diags. \mathscr{D} endowed with the Wasserstein metric W_p , for any p > n, via

$$\omega \mapsto \left(A \mapsto \sum_{x \in D_A(X_{\xi_\omega}(A))} \delta_x \right), \qquad D_A : X \mapsto \bigcup_{\ell=0}^{n-1} \mathsf{Dgm}_\ell(X) \tag{6}$$

for all $\omega \in \Omega$, $A \in \mathcal{B}_b^n$. Equivalently, $D_A \circ X_{\xi}(A) : \Omega \to \mathscr{D}$ is a random variable for each $A \in \mathcal{B}_b^n$.

Bounded total persistence

M: Triangulable, compact metric space. K: Simp. complex giving triangulation ϑ of M, diam $(\sigma) := \max_{x,y \in \sigma} d(\vartheta(x), \vartheta(y))$,

$$\operatorname{mesh}(K) := \max_{\sigma \in K} \operatorname{diam}(\sigma), \qquad N(r) := \min_{\operatorname{mesh}(K) \le r} \#K \tag{7}$$

Degree-k total persistence of filtration of sublevel sets of f:

$$\operatorname{Pers}_{k}(f) := \sum_{\operatorname{pers}(x) > t} \operatorname{pers}(x)^{k}.$$
(8)

Proposition (Cohen-Steiner *et al.*, Found. Comp. Math. 10(2), 2010) Assume that size of smallest triangulation of M grows polynomially with one over mesh, i.e. there exist C_0 , m, such that $N(r) \leq C_0/r^m$ for all r > 0. Let $\delta > 0$ and $k = m + \delta$. Then,

$$pers(f) \leq rac{m+2\delta}{\delta} C_0 \operatorname{Lip}(f)^m \operatorname{Amp}(f)^{\delta},$$
 (9)

where $\operatorname{Amp}(f) := \max_{x \in M} f(x) - \min_{y \in M} f(y)$.

M implies bounded degree-*k* total persistence, if $\exists C_M > 0$: $\operatorname{Pers}_k(f) \leq C_M$ for every tame function $f : M \to \mathbb{R}$ with $\operatorname{Lip}(f) \leq 1$.

Example: Compact Riemannian *n*-manifolds have bounded degree-*n* total pers.

Ergodicity of point processes

Random measure μ stationary, if $\forall x \in \mathbb{R}^n$ the probability distributions of μ and $\theta_x \mu$ coincide $((\theta_x \mu)(A) := \mu(A + x))$

Stationary random measure μ ergodic, if $\mathbb{P}(\mu \in \mathcal{A}) \in \{0, 1\}$ for all Borel sets \mathcal{A} of \mathcal{M}^n that are invariant under translation by x for all $x \in \mathbb{R}^n$.

 $\{A_k\} \subset \mathcal{B}_b^n$ called a *convex averaging sequence* if

(i) each A_k is convex, (ii) $A_k \subseteq A_{k+1}$ for all k, (iii) $\lim_{k \to \infty} r(A_k) = \infty$, (10)

where $r(A) := \sup\{r \mid A \text{ contains a ball of radius } r\}$.

Proposition (Daley & Vere-Jones 2007) $\{A_k\}$ convex averaging sequence. When random measure ξ on \mathbb{R}^d is stationary, ergodic and has finite expectation measure with

$$m = \mathbb{E}[\xi([0,1]^n)] = m \lambda_n([0,1]^n),$$
(11)

then $\xi(A_k)/\lambda_n(A_k) \to m$ almost surely as $k \to \infty$.

Ergodicity in persistent homology

Definition

 ξ stationary simple point process on \mathbb{R}^n with finite expectation measure, $\{A_k\}$ convex averaging sequence. Set for all k:

$$n(X_k) := \# \bigcup_{\ell=0}^{n-1} \text{Dgm}_{\ell}(X_{\xi}(A_k)).$$
(12)

Say that ξ is ergodic in persistence if a.s. for any $\epsilon > 0 \exists N \in \mathbb{N}$ such that for all $k, l \ge N$,

$$\left|\frac{n(X_k)}{n(X_l)} - \frac{\lambda_n(A_k)}{\lambda_n(A_l)}\right| < \epsilon.$$
(13)

Lemma

 ξ simple point process on \mathbb{R}^n having all finite moments. If ξ is stationary and ergodic, then ξ is ergodic in persistence.

Persistence diagram measures

 ξ simple point process, $A \in \mathcal{B}_b^n$, define for all $\omega \in \Omega$:

$$\rho_{\omega}(A) := \sum_{x \in D_A(X_{\xi_{\omega}}(A))} \delta_x.$$
(14)

Defines a point process $\rho(A)$ on $\Delta := \{(b, d) | 0 \le b < d \le \infty\}$.

Persistence diagram measure: $\rho_{\cdot}: \Omega \times \mathcal{B}^n_b \to \mathcal{N}(\Delta)$.

If they exist, its first moment measures define $\mathfrak{p}(A) := \mathbb{E}[\rho_{\omega}(A)]$.

Persistence diagram expectation measure: $\mathfrak{p} : \mathcal{B}_b^n \to \mathcal{R}(\Delta), A \mapsto \mathfrak{p}(A)$

Lemma

 ξ simple stationary and ergodic point process on \mathbb{R}^n having all finite moments. Then the corresponding persistence diagram expectation measure exists.

Geometric quantities

Number of persistent homology classes:

$$n_{\omega}(A) := \int_{\Delta} \rho_{\omega}(A)(\mathsf{d}x) = \rho_{\omega}(A)(\Delta)$$
(15)

Expectation: $\mathfrak{n}(A) := \int_{\Delta} \mathfrak{p}(A)(dx) = \mathfrak{p}(A)(\Delta)$

Let q > 0. Degree-q persistence:

$$I_{q,\omega}(A) := \left[\frac{1}{n_{\omega}(A)} \int_{\Delta} \operatorname{pers}(x)^{q} \rho_{\omega}(A)(\mathsf{d}x)\right]^{1/q}$$
(16)

Expectation: $l_q(A) := \left[\frac{1}{n(A)} \int_{\Delta} \operatorname{pers}(x)^q \mathfrak{p}(A)(dx)\right]^{1/q'}$

Maximum death:

$$d_{\max,\omega}(A) := \max\{d \mid (b,d) \in D_A(X_{\rho_\omega}(A))\} = \lim_{\rho \to \infty} \left[\int_{\Delta} d(x)^{\rho} \rho_{\omega}(A) (dx) \right]^{1/\rho}$$

$$(17)$$
Expectation: $\mathfrak{d}_{\max}(A) := \lim_{\rho \to \infty} \left[\int_{\Delta} d(x)^{\rho} \mathfrak{p}(A) (dx) \right]^{1/\rho}$

Geometric quantities

Proposition

 $\mathfrak p$ persistence diagram expectation measure, $A\in \mathcal B_b^n.$ Find

$$\mathfrak{n}(A) = \mathbb{E}[n_{\omega}(A)], \qquad \mathfrak{d}_{\max}(A) = \mathbb{E}[d_{\max,\omega}(A)]. \tag{18}$$

If $\mathfrak{p}(A)$ is boundedly finite, then $\mathfrak{n}(A) < \infty$. If $\operatorname{supp}(\mathfrak{p}(A)) \subset \Delta$ is bounded, then $\mathfrak{d}_{\max}(A) < \infty$.

Proposition

 ξ stationary, ergodic simple point process on \mathbb{R}^n having all finite moments, \mathfrak{p} persistence diagram expectation measure from ξ , $\{A_k\}$ convex averaging sequence, $\epsilon > 0$. Find for all q > 0 and k suff. large:

$$|\mathfrak{l}_q(A_k) - \mathbb{E}[I_{q,\omega}(A_k)]| < \epsilon.$$
(19)

Let $A \in \mathcal{B}_b^n$. If $\mathfrak{p}(A)$ is boundedly finite and $\operatorname{supp}(\mathfrak{p}(A)) \subset \Delta$ is bounded, then $\mathfrak{l}_q(A) < \infty$ for all q > 0.

Persistence diagrams as point processes

Functional summaries

Self-similar scaling in time

Strong law of large numbers for persistent Betti numbers

Functional summaries

Problem: Persistence diagrams do not naturally lead to statistical goals!

 $\mathscr{F}(T)$: Collection of functions on compact metric space $T, f: T \to \mathbb{R}$

Functional summary F is a map from the space of persistence diagrams to such a collection of functions, $F : \mathscr{D} \to \mathscr{F}(T)$

F additive, if for any two persistence diagrams $D, E \in \mathcal{D}$: $\mathcal{F}(D + E) = \mathcal{F}(D) + \mathcal{F}(E)$ as sum of multisets

F uniformly bounded, if a constant $U < \infty$ exists, such that

$$\sup_{f \in im(F)} \sup_{s \in T} |f(s)| \le U$$
(20)

Proposition (Berry et al., arXiv:1804.01618)

F uniformly bounded functional summary, $D_i \in \mathscr{D}$ for $i \in \mathbb{N}$, sampled from a probability space $(\mathscr{D}, \mathcal{B}(\mathscr{D}), \mathbb{P}_{\mathscr{D}})$, $f_i := F(D_i)$. If im(F) equicontinuous, then a.s. for $n \to \infty$

$$\sup_{s\in T} \left| \frac{1}{m} \sum_{i=1}^{m} f_i(s) - \mathbb{E}[F(D)(s)] \right| \to 0.$$
(21)

Functional summaries and persistence diagram measures

For additive func. summary \mathcal{A} , $s \in T$:

$$\mathcal{A}(D_A(X_{\xi_\omega}(A)))(s) = \sum_{x \in D_A(X_{\xi_\omega}(A))} \mathcal{A}(\{x\})(s) = \int_{\Delta} \mathcal{A}(\{x\})(s) \,\rho_\omega(A)(\mathrm{d}x).$$
(22)

 \implies Persistence diagram measures show up.

Proposition

Assume that pers. diag. expectation measure \mathfrak{p} exists. Then, for any functional summary $\mathcal{F} \in \mathscr{F}(K)$, $s \in K$, $A \in \mathcal{B}_b^n$ have

$$\mathbb{E}\left[\int_{\Delta} \mathcal{F}(\{x\})(s) \,\rho_{\omega}(A)(\mathsf{d}x)\right] = \int_{\Delta} \mathcal{F}(\{x\})(s) \,\mathfrak{p}(A)(\mathsf{d}x). \tag{23}$$

Intensive functional summaries

 ξ stationary, ergodic simple point process on \mathbb{R}^n , $\mathcal{F} : \mathscr{D} \to \mathscr{F}(\mathcal{T})$ functional summary.

Inspired by statistical mechanics:

 \mathcal{F} ξ -intensive, if for any convex averaging sequence $\{A_k\}$, $\epsilon > 0$ and k sufficiently large:

$$\lim_{d\to\infty} ||\mathcal{F}(D_l) - \mathcal{F}(D_k)||_{\infty} < \epsilon,$$
(24)

 $||\cdot||_{\infty}$: sup-norm, $D_k := \bigcup_{\ell=0}^{n-1} \operatorname{Dgm}_{\ell}(X_{\xi_{\omega}}(A_k)).$

Lemma

 $\mathcal{A} \in \mathscr{A}(K)$ additive functional summary, ξ stationary, ergodic simple point process on \mathbb{R}^n , D_k as before. Then, $\mathcal{A}(D_k)/\lambda_n(A_k)$ a.s. defines a ξ -intensive functional summary.

 \implies Intuition for ergodicity on level of persistence diagrams.

Corollary $A(D_k)/n(D_k)$ is a ξ -intensive functional summary

Intensive functional summaries

Proposition

 ξ stationary, ergodic simple point process on \mathbb{R}^n , \mathcal{F} a ξ -intensive functional summary, $\{A_k\}$ convex averaging sequence. Pick samples $\omega_i \in \Omega$, $i \in \mathbb{N}$, according to the probability distribution \mathbb{P} , define

$$D_{k,i} := \bigcup_{\ell=0}^{n-1} \operatorname{Dgm}_{\ell}(X_{\xi_{\omega_i}}(A_k)).$$
(25)

Then for any $j \in \mathbb{N}$, $\epsilon > 0$ and sufficiently large k find a.s.:

$$\sup_{s\in K}\left|\lim_{l\to\infty}\mathcal{F}(D_{l,j})(s)-\lim_{m\to\infty}\frac{1}{m}\sum_{i=1}^m\mathcal{F}(D_{k,i})(s)\right|<\epsilon.$$
 (26)

 \implies For intensive functional summaries ensemble-average and infinite-volume average converge to each other.

Persistence diagrams as point processes

Functional summaries

Self-similar scaling in time

Strong law of large numbers for persistent Betti numbers

Self-similar scaling

Inspiration: How to describe behavior as it typically appears in quantum-physical time evolutions in persistent-homological quantities?

 $(\mathfrak{p}(t))_{t \in (T_0, T_1)}$ family of persistence diagram expectation measures, $0 < T_0 < T_1$. For $t \in (T_0, T_1)$, $A \in \mathcal{B}_b^n$ set $\mathfrak{p}(t, A) := \mathfrak{p}(t)(A)$, $\{A_k\}$ convex averaging sequence.

 $(\mathfrak{p}(t))_{t \in (T_0, T_1)}$ scales self-similarly between times T_0 and T_1 with exponents $\eta_1, \eta_2 \in \mathbb{R}$, if for all $t, t' \in (T_0, T_1)$, $B \in \mathcal{B}(\Delta)$, k suff. large:

$$\mathfrak{p}(t,A_k)(B) = (t/t')^{-\eta_2} \mathfrak{p}(t',A_k)((t/t')^{-\eta_1}B), \tag{27}$$

where $\kappa B := \{(\kappa b, \kappa d) | (b, d) \in B\}$ for $\kappa \in [0, \infty)$.

Intuition based on pers. hom. with length scales as filtration parameter: Any persistence length scale blows up as a power-law t^{η_1} , find e.g.:

$$\mathfrak{n}(t,A_k) = (t/t')^{-\eta_2} \mathfrak{n}(t',A_k), \qquad (28a)$$

$$\mathfrak{l}_q(t,A_k) = (t/t')^{\eta_1} \mathfrak{l}_q(t',A_k), \qquad (28b)$$

 $\mathfrak{d}_{\max}(t,A_k) = (t/t')^{\eta_1} \mathfrak{d}_{\max}(t',A_k). \tag{28c}$

Packing relation

Can we find a relation between the occurring exponents based on geometrical arguments?

Based on notion of bounded total persistence obtain:

Lemma (Packing lemma)

 ξ simple point process on \mathbb{R}^n , ρ persistence diagram measure computed from ξ . Then there exists c > 0, s.t. for any $\delta > 0$, $\omega \in \Omega$ and $A \in \mathcal{B}_b^n$:

$$n_{\omega}(A) \leq \frac{c\left(n+2\delta\right)}{\delta} \frac{d_{\max,\omega}(A)^{\delta}}{l_{n+\delta,\omega}(A)^{n+\delta}}.$$
(29)

Theorem (Packing relation)

 $(\xi(t))_{t \in (T_0,T_1)}$ family of stationary, ergodic simple point processes on \mathbb{R}^n having all finite moments, $(\mathfrak{p}(t))_t$ family of persistence diagram expectation measures computed from $(\xi(t))_t$. Assume that the family scales self-similarly between T_0 and T_1 with exponents $\eta_1, \eta_2 \in \mathbb{R}$. Then, if the interval (T_0, T_1) is sufficiently extended find a.s.:

$$\eta_2 = n\eta_1. \tag{30}$$

 \implies Confirms exponents found in numerical simulations.

Example: Poisson process with power-law scaling intensity

Point processes $(\xi(t))_{t\in[0,\infty)}$ on \mathbb{R}^n form *time-dependent Poisson process*, if there exists $\gamma: [0,\infty) \to (0,\infty)$, s.t. $\forall t \in [0,\infty)$,

- (i) $\mathbb{E}[\xi(t, A)] = \gamma(t)\lambda_n(A)$,
- (ii) for every $m \in \mathbb{N}$ and all pairwise disjoint Borel sets $A_1, \ldots, A_m \in \mathcal{B}^n$ the random variables $\xi(t, A_1), \ldots, \xi(t, A_m)$ are independent.

Proposition

 $(\xi(t))_{t \in [0,\infty)}$ time-dependent Poisson process with intensity function

$$\gamma(t) = \gamma_0 t^{-n\eta_1},\tag{31}$$

 $\gamma_0 > 0$ and $\eta_1 \ge 0$, $\{A_k\}$ convex averaging sequence. Then the family $(\mathfrak{p}(t, A_k)/\lambda_n(A_k))_t$ converges vaguely for $k \to \infty$ to a family of Radon measures $(\mathfrak{P}(t))$ which scales self-similarly between 0 and ∞ with exponents η_1 and $n\eta_1$.

Persistence diagrams as point processes

Functional summaries

Self-similar scaling in time

Strong law of large numbers for persistent Betti numbers

Strong law of large numbers

For the example of the time-dependent Poisson process needed to show the following generalization to the same results for cubes [Hiraoka, Shirai, Trinh, Ann. Appl. Prob. 28(5), 2018].

Theorem (Strong law of large numbers for persistent Betti numbers) ξ simple point process on \mathbb{R}^n having all finite moments, $\{A_k\}$ convex averaging sequence. If ξ is stationary, then for any $0 \le r \le s < \infty$ and $\ell \in \mathbb{Z}$ there exists a constant $\hat{\beta}_{\ell}^{r,s}$, s.t.

$$\frac{\mathbb{E}[\beta_{\ell}^{r,s}(\mathcal{C}(X_k))]}{\lambda_n(A_k)} \to \hat{\beta}_{\ell}^{r,s} \qquad \text{for } k \to \infty.$$
(32)

Additionally, if ξ is ergodic, then a.s.

$$\frac{\beta_{\ell}^{r,s}(\mathcal{C}(X_k))}{\lambda_n(A_k)} \to \hat{\beta}_{\ell}^{r,s} \qquad for \ k \to \infty.$$
(33)

Proof is lengthy, using techniques from convex and integral geometry.

Persistence diagrams as point processes

Functional summaries

Self-similar scaling in time

Strong law of large numbers for persistent Betti numbers

Conclusions

- Theory of point processes well-suited to describe persistent homology in a probabilistic setting.
- Ergodicity, functional summaries and persistence diagram measures lead to diverse geometric quantities with well-defined expectations.
- Self-similar scaling approach yields interesting insights into geometry (packing relation).
- Strong law of large numbers for persistent Betti numbers generalized to arbitrary convex averaging sequences.

Further questions

- Can the packing relation be extended to non-ergodic point processes and their persistent homology?
- Do point processes exist, for which correlations do not reveal self-similar scaling but persistence diagram measures do?
- Can we generalize the results to weighted simplicial complexes?