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1 Introduction
When working with (multiparameter) persistence modules, it is often necessary to make some type
of tameness assumption in order to apply the methods of commutative and homological algebra,
or representation theory (see for example [CCBdS16, Les15]). In the one-parameter setting, for
example, the classification theorem for persistence modules in terms of barcodes ([CB15]) only
holds under the assumption of pointwise finite dimensionality (see for ex [Sch22, Ex. 3.3.]). In
[Mil20], the author introduced such a notion of tameness for the multiparameter setting, which
he called finite encodability in a previous version of the paper1. Roughly speaking, a persistence
module is finitely encodable if it can be obtained by pulling back a pointwise finite dimensional
persistence module defined on a finite poset. While this fairly general definition turns out to be
quite powerful, it is somewhat deficient from a homological algebra point of view. Namely, the
category of finitely encodable persistence modules over some fixed poset P is not a full abelian
subcategory of the category of arbitrary persistence modules over P ([Mil20, Ex. 4.25]). For many
applications, in particular to apply the language of amplitudes developed in [GNOW21], having
the structure of an abelian category at hand is necessary.
Here, we show that under some slightly stronger constructability assumptions abelianity may be
restored. In particular, we prove:

Theorem 1.1. Let X be the subset of the powerset of Rn generated under complement and
union by the set of topologically closed upsets which are piecewise linear (semialgebraic, finitely
subanalytic, or more generally obtained from some o-minimal structure as in [vdD98]).
Let PerM(Rn) be the category of all n-parameter persistence modules, with respect to some fixed
field, and let PerMX(Rn) be the full subcategory given by such modules which are finitely encodable
by an encoding map e : Rn → P, which has fibers in X. Then the inclusion

PerMX(Rn) ↪→ PerM(Rn)

makes PerMX(Rn) a full abelian subcategory of PerM(Rn).

We obtain this result by showing that under certain connectedness assumptions on allowable
encoding fibers, any two encodable persistence modules admit a common encoding which also
encodes all morphisms between them (Proposition 3.5). This result is of interest on its own, as it
frequently allows one to reduce a proof in the finitely encodable setting to the framework of a
finite poset (see for example the results in [GNOW21, Sec. 4]). We note that one could have taken
the alternative (albeit significantly less elementary) route, of obtaining a proof of the subanalytic
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1In the current version, the term tame is used. We chose to stick with finite encodability, as it clearly distinguishes

from other notion of tameness, such as finite presentability.
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case of Theorem 1.1 by passing to the world of sheaf theory, using results [Mil23, KS18, BP21]
(see Remark 3.19). In our case, Theorem 1.1 follows from two theorems which may be formulated
purely on the level of posets, not assuming any additional geometrical structure (Theorem 3.4
and Proposition 3.5). In particular, these apply to more general (for example discrete) scenarios
and are of independent interest.

2 Preliminaries and notation
We begin by fixing some language and notation. Aside from this, notation from [Mil20] will be
used freely.

2.1 Notation
• By Vect, we denote the category of vector spaces with respect to some fixed field F. The

specific field itself will be immaterial to the discussion, and is hence omitted from the
notation.

• Given a small category C and another category A, we denote by AC the category of functors
with source C and target A. We will mostly be interested in the particular case where C = P
is a poset (interpreted as a category with at most one morphism in every hom-set) and
A = Vect.

• Elements of VectP are called persistence modules over P .

• By an interval in a poset P we mean a set I ⊂ P with the property that q ≤ p ≤ q′ and
q, q′ ∈ I implies p ∈ I. Equivalently, an interval is a set given by the intersection between a
downset and an upset in P.

• Given two elements q ≤ q′ of a poset P, we denote by [q, q′] := {p ∈ P | q ≤ p ≤ q′}
the interval of elements lying between q and q′. We use analogous notation for half open
intervals.

• We consider Rn as a poset, by equipping it with the product poset structure derived from
the linear order on R.

• Given an interval I ⊂ P, we denote by F[I] ∈ VectP the unique persistence module with F
at every point in I, 0 everywhere else and the identity as structure morphism for pairs of
points p ≤ p′ in I.

• Given a functor F : C → C′ we denote by F ∗ : AC′ → AC the functor obtained by
precomposition.

• When A is a category that admits all small colimits, such as Vect, then F ∗ admits a left
adjoint

F! : AC → AC′

given by left Kan-extension. Explicitly it is given by

F!G(c′) = lim−→
F (c)→c′

G(c)

where the colimit is taken over the comma category F/c′ and functoriality is induced in the
obvious fashion.
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2.2 Finitely encodable persistence modules
To be able to perform commutative and homological algebra on VectP it is often necessary to
assume some type of finiteness condition. In this paper, we are specifically concerned with following
notion of finiteness:

Definition 2.1. [Mil20] A finite encoding of a persistence module M ∈ VectP consists of the
following data:

1. a finite poset P ′;

2. a pointwise finite dimensional persistence module M ′ ∈ VectP′
;

3. a map of posets e : P → P ′;

4. an isomorphism ϕ : M
∼−→ e∗M ′.

A persistence module M ∈ VectP is called finitely encodable, if it admits a finite encoding2.

For many purposes - not the least to turn finitely encodable modules into an abelian category
- it is necessary to enforce some additional control over what kind of encodings one allows for.

Definition 2.2. Let P be a poset. An encoding structure X on P is a subset of the powerset
of P, such that

1. X is an algebra (i.e. closed under finite unions and complements, and contains P);

2. If I ∈ X is an interval of P, then there exist upsets U, V ∈ X, such that I = U ∩ V c;

3. Every element of X is a finite union of intervals which are themselves contained in X.

Example 2.3. Consider the case P = Rn equipped with the encoding structure of staircases,
generated by upsets of the form [p, ∞) for p ∈ (R ∪ {−∞})n. Intervals of this structure are given
by finite unions of generalized cubes in Rn. We denote this encoding structure by C and call it the
staircase structure. Due to its particularly well behaved algebraic properties, it is extensively used
in [GNOW21]. More generally, one can consider the encoding structure given by finite unions of
intervals which are piecewise linear, semialgebraic or (finitely) subanalytic, or even more generally
the intervals contained in a fixed o-minimal structure on R in the sense of [vdD98]. ◁

Encoding structures allow one to restrict the considered category to persistence modules with
tamer algebraic and topological behavior.

Definition 2.4. Given an encoding structure X on a poset P, we say a persistence module
M ∈ VectP is X-encodable if it admits a finite encoding such that the encoding map e : P → P ′

has the property that every fiber of e is in X. Such an encoding is also called of class X. We
denote by PerMX(P) the full subcategory of VectP given by X-encodable P-persistence modules.

Remark 2.5. Note, that a map e : P → P ′ has fibers in an encoding structure X, if and only
if the inverse image of every upset in P ′ lies in X. This is part of the general philosophy of an
encoding structure being determined by its upsets. In fact, the first and the third defining axiom
guarantee that X is an algebra generated by upsets. While one could have taken the path of defining
encoding structure only in terms of their upsets, this makes expressing the second defining axiom
and some of its consequences somewhat tedious. Furthermore, considering the way that encoding
structures arise in practice (see Remark 2.6), it seems to be more natural to think of them in
terms of an algebra.

2In [GNOW21], these are called finitely encoded. In [Mil20], in addition to the notion of encodability, the term
tame is used.
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Remark 2.6. The second axiom of an encoding structure is not used in the main result of these
notes. It guarantees that an interval lies in X, if and only if it can be written as an intersection
of an upset and a downset in X. This has the consequence that an interval module F[I] is X-
encodable, if and only if I ∈ X. The latter property is extensively used in the classification results
of [GNOW21, Sec. 4].

A direct consequence of the intersection stability of encoding structures is that PerMX(P) is
always an additive subcategory of VectP . This follows from the following lemma also used in
[Mil20] and [GNOW21].

Lemma 2.7. Let M1, . . . , Mn be finitely encodable persistence modules over P. Then there
exist an encoding map e : P → P ′ which is part of an encoding for M1, . . . , Mn simultaneously.
Furthermore, if M1, . . . , Mn are X-encodable, for some encoding structure X on P, then e can also
be taken of class X.

Proof. We prove the case n = 2, the general case is completely analogous. Furthermore, we
prove the second statement as it implies the earlier for the special case where X is the encoding
structure of all upsets in P. Choose X-encoding maps e1 : P → P1, e2 : P → P2 and encoding
modules M ′

1 ∈ VectP1 , M ′
2 ∈ VectP2 . Now, set e : P → P1 × P2 to the map induced by the

universal property of the product and M ′′
1 := π∗

1M ′
1, M ′′

2 := π∗
2M ′

2, where πi denotes the respective
projection to Pi. We obtain,

Mi
∼= e∗

i M ′
i = (πi ◦ e)∗M ′′

i
∼= e∗M ′′

i ,

for i = 1, 2. Since the fibers of e are given by intersection of fibers of e1 and e2, e again defines an
X-encoding.

Using the addivity of the pullback functors, we immediately obtain from this:

Corollary 2.8. Let X be an encoding stucture on a poset P. Then PerMX(P) is a full additive
subcategory of VectP .

3 Connective encoding structures and abelianity of PerMX(P)
For many intents and purposes - for example to apply the framework developed in [GNOW21] -
it is desirable for PerMX(P) to be a full abelian subcategory of VectP . However, the question
of when this is the case is somewhat more subtle then the question of addivity, even when one
restricts to nice enough encoding structures, such as the PL one. Consider, for example, the
following morphism of persistence modules described similarly in [Mil20, Ex. 4.25].

Example 3.1. Let ∇ = {(x, y) ∈ R2 | x + y = 2} be the antidiagonal in R2, shifted by (1, 1). Let
U = {(x, y) ∈ R2 | x + y ≥ 2} be the upset of points above (or equal to) ∇. Next, consider the
map of piecewise linearly encoded persistence modules F[U ]2 → F[∇] given by 0 outside of ∇,
and by multiplication by the 1 × 2 matrix (y, −x) at (x, y) ∈ ∇. Note that this indeed defines a
morphism of persistence modules, as there are no nontrivial commutativity conditions to verify
here. The kernel of this map is given by F2 strictly above ∇, and by the origin line going through
(x, y) at (x, y) ∈ ∇. Note that this module can not be finitely encoded, since at every point u
strictly above ∇ there are infinitely many different images coming from transition maps starting
at ∇ and ending in u. ◁

Philosophically speaking, the problem with the last example is that the set ∇, while perfectly
tame as a topological space, is highly disconnected when considered as a poset (compare Defini-
tion 3.2 to make this precise). A certain amount of control over the path components (in a poset
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sense) of intervals generated by the encoding structure is required to obtain the necessary control
over morphisms.

Definition 3.2. Let P be a poset. We say P is ≤-connected if it is connected as a category,
that is, if for every p, p′ ∈ P there exists a finite zigzag

p ≶ p1 ≶ · · · ≶ pk ≶ p′.

The maximal ≤-connected subsets of P are called its ≤-connected components. We say that
an encoding structure X on P is connective, if every interval I in X has only finitely many
≤-connected components and these are also elements of X.

Theorem 3.4 below states that for connective encoding structures the category PerMX(P) is
indeed abelian. From the defining property of an interval, it is immediate that:

Lemma 3.3. The ≤-connected components of an interval I ⊂ P are themselves intervals of P.

An easy elementary verification shows that the cubical structure C on Rn is connective. More
generally, one may show that under the additional assumption of being topologically closed (or
open), all of the examples of Example 2.3 are connective, which is the content of Corollary 3.17.
We may now state one of the main results, which states that connectivity guarantees abelianity of
PerMX(P).

Theorem 3.4. Let X be a connective algebra on the poset P. Then the category PerMX(P) is a
full abelian subcategory of VectP .

Proof. This is a special case of Proposition 3.5 below. Indeed, Theorem 3.4 follows from the
following easily verified fact of homological algebra: Let B be a full additive subcategory of an
abelian category A. Then, B is an abelian subcategory of A, if and only if every morphism in B is
contained in some full abelian subcategory C of A, such that C ⊂ B.

The following proposition guarantees that when X is connective, then essentially all finite
computations in PerMX(P) may instead be performed in VectP′

over some finite poset P ′.

Proposition 3.5. Let X be a connective encoding structure on a poset P, and M0, . . . , Mn a finite
set of X-encodable persistence modules. Then there exists a common X-encoding map e : P → P ′

of M0, · · · , Mn such that e∗ : VectP′
→ VectP is fully faithful.

In particular, since e∗ is exact, the essential image I = e∗(VectP′

fin) is a full abelian subcategory of
VectP such that M0, . . . , Mn ∈ I ⊂ PerMX(P).

Before we provide a proof, note that Proposition 3.5 does in particular provide a recipe on
how to compute finite limits and colimits in PerMX(P). To prove Proposition 3.5, we first need
to investigate when the functor e∗ is fully faithful.

Proposition 3.6. Let e : P → P ′ be a map of posets such that:

1. The relation ≤ on P ′ is generated under transitivity by the images of the relations in P
under e;

2. All fibers of e are ≤-connected.

Then the functor e∗ : VectP′
→ VectP is fully faithful.
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Proof. Recall that the counit of the adjunction e! ⊣ e∗ is given pointwise by the natural morphism

ε : lim−→
q∈e−1(−∞,q′]

Me(q) → Mq′ .

For each pair M, N ∈ CP′ , precomposing with ε fits into the commutative diagram

HomVectP′ (M, N) HomVectP (e∗M, e∗N)

HomVectP′ (e!e
∗M, N)

e∗

ε∗
∼ .

In particular, it suffices to show that, under the assumptions, ε is an isomorphism. To see this, note
first that the requirement on generation of all relations in particular implies that e is surjective.
Moreover, at any point q′ ∈ P ′, the existence of an element q ∈ e−1(q′) guarantees the existence
of a section of εq′ , given by the structure morphism

Me(q) = Mq′ → lim−→
p∈e−1(−∞,q′]

Me(p) .

Hence, it remains to show that ε is (pointwise) injective. Let q′ ∈ P ′. Consider the subdiagram
of the diagram indexed over e−1(−∞, q′] that is given by restricting to e−1(q′). This is now a
constant Mq′ -valued diagram over a connected category. In particular, the natural map

lim−→
q∈e−1{q′}

Me(q) → Mq′

is an isomorphism. The latter map fits into the commutative triangle

lim−→q∈e−1{q′} Me(q) Mq′

lim−→q∈e−1(−∞,q′] Me(q)

εq′ .

Hence, if we can show that

lim−→
q∈e−1{q′}

Me(q) → lim−→
p∈e−1(−∞,q′]

Me(p) (1)

is surjective, then εq′ is injective, and we are done. Consider any generator of the colimit on the
right, given by the equivalence class of some v ∈ Me(p) with e(p) ≤ q′. By the first assumption,
the relation e(p) ≤ q′ is obtained from some sequence

p0 ≤ p̃1; p1 ≤ p̃2; . . . ; pk−1 ≤ p̃k

such that e(pi) = e(p̃i), e(p) = e(p0) and e(p̃k) = q′. Assume we have shown that v has the same
equivalence class as some element ṽl ∈ Mp̃l

, for some l ≤ k. By the connecteness assumption
on the fibers, there exists a zigzag from p̃l to pl. As the diagram is given by isomorphisms (the
identity) on each fiber, ṽl is identified with some vl ∈ Mpl

along this zigzag. The latter is identified
with some ṽl+1 ∈ Mp̃l+1 by the relation pl ≤ p̃l+1. By induction, v is ultimately identified with
some element in Me(q), for q in the fiber of q′. In particular, its equivalence class lies in the image
of the colimit of the diagram restricted to e−1(q′), showing the surjectivity of the map in (1) and
thus the required injectivity of εq′ .
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Next, we show that in case of a connective encoding structure X, any X-encoding can be
replaced by an encoding fulfilling the requirements of Proposition 3.6.
Lemma 3.7. Let e : P → P ′ be a map of posets such that each of its fibers has finitely many
≤-components. Then e admits a factorization

P P ′

P̂

e

ê

where ê is a map fulfilling the requirements of Proposition 3.6. Further, ê can be taken so that its
fibers are precisely the ≤-connected components of the fibers of e. In particular, if e is a X-encoding
map where X is a connective encoding structure, then ê is also an X-encoding map.

Proof. We take P̂ to be the set given by the ≤-components of the fibers of e. We take the partial
order on P̂ to be the one generated by the following relations: For I ⊂ φ−1(p′) and J ⊂ φ−1(q′),
we set I ≲ J if and only if there exists p ∈ I and q ∈ J fulfilling i′ ≤ j′. To show that this indeed
induces a partial ordering on P̂, i.e. that anti-symmetry is fulfilled, we need to show that ≲
admits no cycles. So, suppose we are given a sequence in P

p0 ≤ p̃1; p1 ≤ p̃2; . . . ; pk ≤ p̃0

such that, for 0 ≤ l ≤ k, p̃l and pl lie in the path component of the fiber of e(pl) = e(p̃l),
respectively. By applying e and using anti-symmetry on P ′, we obtain that all of the pl and p̃l lie
in the same fiber. As pl and p̃l lie in the same path component, we can complete the sequence
by filling in zigzags in the respective path components in between pl and p̃l. This gives a zigzag
between p0 and p̃0 lying entirely in the same fiber, showing all of the pl and p̃l indeed belong to
the same component. Then, by construction, the map ê : P → P̂ given by sending each element
to the respective component of the fiber it is contained in, defines a map of partially ordered sets,
fulfilling the conditions of Proposition 3.6, with the dashed factorization map just being given by
sending each component I ⊂ e−1(q) to q.

We now have all the tools necessary to the proof of Proposition 3.5:

Proof of Proposition 3.5. By Lemma 2.7, we may choose a common encoding map e′ : P → P ′,
for M0, . . . , Mn of class X. Now, apply Lemma 3.7 to e′, to obtain an X-encoding map ê, fulfilling
the requirements of Proposition 3.6. Since, ê factors through e′, it still encodes M0, . . . , Mn.

3.1 Examples of connective encoding structures
In this subsection, we show that connective encoding structures on Rn are ubiquitous, and arise
naturally by also taking the topology of Rn into account. More precisely we prove Corollary 3.17
which states that closed PL, semialgebraic, or more generally upsets in some o-minimal structure
on Rn generate a connective encoding structure. Theorem 1.1 then follows from Corollary 3.17
together with Theorem 3.4. Let us begin by taking a look at how connective components in the ≤
sense interact with connective components in the topological sense.
Definition 3.8. If P is a poset equipped with the structure of a topological space, we say P is
locally ≤-connected if it admits a neighborhood basis by ≤-connected sets.
Lemma 3.9. Let P be a poset equipped with the structure of a topological space. If P is locally ≤-
connected, then the topological connected components of P refine the ≤-connected components of P.
Conversely, if P is such that every interval [p, q] is topologically connected, then the ≤-components
refine the topological components of P.
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In particular, for the case of the topological poset Rn we obtain:

Corollary 3.10. Let I = U ∩ D be the intersection of an upset and a downset in Rn, one of
which is open. Then the topological connected components of I and the ≤-connected components
of I agree.

Proof. We prove the case when U is open. For v ∈ I, consider a vector ε > 0 such that the
ε-cube around v in the maximum norm, Cε, lies in U . Then every u ∈ Cε ∩ D ⊂ I lies above
v − ε(1, . . . , 1) ∈ I. In particular, Cε ∩ D is a ≤-connected neighborhood of v in I. These sets form
a neighborhood basis of I, showing that I is locally ≤-connected. By Lemma 3.9, the statement
follows.

Notation 3.11. Given an encoding structure X on Rn, we denote by X the subalgebra generated
by such upsets in X which are topologically closed.

The goal is to show that for most scenarios of interest X is a connective encoding structure.
To do so, let us introduce some more notation.

Notation 3.12. Let S ⊂ Rn. We denote by S the set of limit points of sequences (xk)k∈N, xk → x,
with xk ≥ x and xk ∈ S. Furthermore, we denote S̃ := ((Sc))c.

Next, let us list some of the elementary properties of the operation (−), which we are going to
use to investigate when the closed upsets of an encoding structure again generate an encoding
structure.

Lemma 3.13. The following properties of the operations (−) and (̃−) hold:

(i) If U is an upset of Rn , then U = U , the topological closure of U , and U is again an upset.

(ii) If D is a downsets of Rn, then D̃ = D̊, the topological interior of D, and D̊ is again a
downset.

(iii) If U, V ⊂ Rn are upsets and V is closed, then U ∩ V c = U ∩ V c.

(iv) If U, V ⊂ Rn are upsets, then ˜(U ∩ V c) = U ∩ (̃V c).

Proof. To see that Property (i) holds, let (xk)k∈N be a sequence in U which converges to x ∈ Rn.
By replacing xk with sup(xk, x), we may without loss of generality assume that xk ≥ x, for all
k ∈ N. This shows that U may indeed be described as in the statement of the lemma. Now, let
x ∈ U and y ∈ Rn such that x ≤ y. Then, for any sequence (xk)k∈N in U converging to x from
above, the sequence (xk + (y − x))k∈N also lies in U and converges to y, which shows that U is
indeed an upset.
The second property follows from the first by taking complements. For Property (iii), note first
that as V c is a downset, we have (V c) = V c. Hence, it follows that

U ∩ V c ⊂ U ∩ V c = U ∩ V c.

Since V c is open, any sequence in U converging to x ∈ V c ultimately lies in V c, which shows

U ∩ V c ⊂ U ∩ V c.

Finally, to prove Property (iv), we may equivalently show that

U c ∪ V = U c ∪ V .

This is immediate, from the fact (−) commutes with unions together with U c being a downset.
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As an immediate consequence, we obtain:

Lemma 3.14. Let S = (U1 ∩V c
1 )∪· · ·∪ (Un ∩V c

n ) with Ui, Vi ⊂ Rn upsets, which are topologically
closed. Then the equalities

S = S = S̃

hold.

Proof. The second equality is immediate from Properties (i) and (iii) of Lemma 3.13, together
with commutativity with unions. For the first equality, the nontrivial part is showing that S ⊂ S̃.
Since (̃−) preserves inclusions, it suffices to show

Ui ∩ V c
i ⊂ ˜(Ui ∩ V c

i )

and we may further reduce to the case where n = 1. The latter is immediate from properties
Properties (ii) and (iv) of Lemma 3.13.

Furthermore, we are going to make use of the following property of (−) and (̃−).

Lemma 3.15. Suppose that S ⊂ Rn is such that S = S = S̃ and let

S = S1 ⊔ · · · ⊔ Sn

be a decomposition into sets which is ≤-disconnected, i.e. there are no relations xi ≤ xj, for
xi ∈ Sj , xj ∈ Sj and i ̸= j. Then, for each j ∈ {1, . . . , n}, the equalities

Sj = Sj = S̃j

hold.

Proof. Suppose that i is such that there exists an x ∈ Si with x /∈ Si. Since Si ⊂ S = S, it follows
that x ∈ Sj for some j ̸= i. Consquently, there exists a sequence (xk)k∈N in Si, with xk ≥ x. This
stands in contradiction with the incomparability assumption between Si and Sj . Similarly, assume
that x ∈ Si, but x /∈ S̃j . Then, by definition there exists a sequence (xk)k∈N with xk ∈ (Si)c

and xk ≥ x, converging to x. However, since S̃ = S and x ∈ S, xk has to be contained in S
for k sufficiently large. In particular, this implies that at least some Sj with i ̸= j contains an
xk, for some k sufficiently large. Again, this stands in in contradiction to the ≤-disjointness
assumption.

We may then show the following proposition, which guarantees that the encoding structures we
are mainly interested in, such as the PL, semialgebraic and more general o-minimal ones behave
well with restricting to closed upsets.

Proposition 3.16. In the situation of Notation 3.11, suppose that X is closed under taking
topological closure of upsets. Then X is again an encoding structure. The intervals in X are
precisely the intervals I ∈ X, for which I = I = Ĩ. In particular, the upsets in X are precisely the
closed upsets in X.

Proof. The only involved part of the proof is showing that any interval

I = (U1 ∩ V c
1 ) ∪ · · · ∪ (Un ∩ V c

n ),

with Ui, Vi ∈ X closed upsets of Rn, may again be written in the form U ′ ∩ V ′c, with U ′, V ′ ∈ X
closed upsets. Since X is an encoding structure, we may write

I = U ∩ V c,
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for upsets U, V ∈ X. We claim that
I = U ∩ V

c
,

holds, which finishes the first part of the proof, by the assumption that X is closed under taking
topological closures of upsets. Now, to see that I = U ∩ V

c, note first that there are inclusions

Ĩ ⊂ U ∩ (̃V c) ⊂ I.

By Lemma 3.14 we have Ĩ = I. and hence

I = U ∩ (̃V c).

Consequently, we may assume without loss of generality that V = V , i.e. by Property (i) of
Lemma 3.13, that V is closed. Thus, we may now apply Property (iii) of Lemma 3.13 together
with Lemma 3.14, to obtain

I = I = U ∩ V c,

as was to be shown. Note, that the only two properties used to write I in the form I = U ∩ V
c

were that I = I = Ĩ. This yields the characterization of intervals in X in the statement of the
proposition.

We may now combine Proposition 3.16 with Corollary 3.10 and Lemma 3.15 to show the
following result:

Corollary 3.17. If X is any encoding structure on Rn, which is closed under taking closures of
upsets, and is such that any of its intervals has only finitely many topological components and
these are again in X, then X is a connective encoding structure.

Proof. By Proposition 3.16, X does indeed form an encoding structure. Now, if I ∈ X is an interval,
then by assumption we may write I as a topologically disjoint union I = I1 ⊔ · · · ⊔ In with Ij

elements of X, which are topologically connected. Since, by Proposition 3.16, I is the intersection
of a closed upset with an open downset, Corollary 3.10 implies that I is locally ≤-connected and
hence the Ij are also the ≤-connected components of I. In particular, Lemma 3.3, the Ij are
again intervals. It remains to show that they are indeed elements of X. This now follows by the
characterization of intervals of Proposition 3.16 together with Lemma 3.15.

Remark 3.18. In particular, the assumptions of Corollary 3.17 are fulfilled, when X is given by
the set of finite unions of PL or semialgebraic intervals (or alternatively any encoding structure
derived from an o-minimal structure in the sense of [vdD98]). Indeed, in these scenarios the
number of topological components of each interval is finite and they are again of the respective class
(see [vdD98, Prop. 2.18]). Furthermore, since any interval [a, b] ⊂ Rn is connected, it follows that
the topological components of any interval are themselves intervals.

Now, Theorem 1.1 is simply the combination of Corollary 3.17 together with Theorem 3.4.

Remark 3.19. Note first that instead of working with closed sets, in the definition of X, one may
just as well work with open ones, and obtains a corresponding version of Corollary 3.17.
One may use this, to rephrase the results of this paper in terms of alternative descriptions of
persistence modules, and their categories of observables. For the remainder of this remark, fix some
encoding structure X on Rn which is closed under taking interiors of upsets, and denote by

˜
X the

encoding structure generated by the open upsets of X. While there are some details to be verified,
conjecturally the following relationship between the observable perspective introduced in [BP21]
and sheaf theoretic models for persistence modules (see [KS18]) should hold. The subanalytic case
is discussed in [Mil23].
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1. Only allowing for open subsets in X essentially amounts to passing to a specific subcategory
of γ-sheaves, as defined in [KS18]. Namely, to those γ-sheaves which are constructible with
respect to a finite stratification of Rn by elements of X.

2. Consequently, under the equivalence between γ-sheaves and the observable category of [BP21],
PerM

˜
X(Rn) should be equivalent to the full subcategory of the observable category of per-

sistence modules which are X-encodable, i.e. isomorphic to an object in PerMX(Rn) in the
observable category.

3. Finally, in the language of sheaves the category PerM
˜
X(Rn) should correspond to the category

of sheaves which are constructible with respect to a finite stratification by elements of X,
and have microsupport in the negative polar cone γo,a, where γ denotes the positive cone
Rn

≥0 ⊂ Rn (following the notation of [KS18]).

Hence, an alternative proof of Theorem 1.1 should follow by verifying the abelianity of the final
category in this list.
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