

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 10.1.2017

EXERCISE SHEET 8

Happy New Year!

Not to be handed in, will be discussed on January 18th

Exercise 1.

- (a) Let N be a surface of genus 2 and let $M = N \times S^1$ be the product manifold. Show that M does not carry a metric of negative curvature.
- (b) Let $T^m = S^1 \times \ldots \times S^1$ be the *m*-torus with $m \ge 2$. Show that T^m does not carry a metric of negative curvature.

Exercise 2. Let M be a compact Riemannian manifold with negative sectional curvature K < 0. Show that the fundamental group $\pi_1(M)$ is not abelian.

Hint: Let \widetilde{M} be the universal cover of M and $\text{Deck}(\widetilde{M})$ the group of deck transformations. Show that if M is a complete Riemannian manifold with $K \leq 0$ and there exists a geodesic invariant under the elements of $\text{Deck}(\widetilde{M})$, then M is not compact.

Exercise 3. In this exercise we want to prove a refinement of Preissman's Theorem. We need a definition first:

Definition. A group G is called *solvable* if there is a sequence of subgroups

$$\{1\} = G_0 < G_1 < \ldots < G_{k-1} < G_k = G$$

such that

- $G_{j-1} \leq G_j$ is normal
- G_j/G_{j-1} is abelian

for all $j = 1, \ldots, k$.

Let M be a compact Riemannian manifold with K < 0 and let H be a non-trivial solvable subgroup of $\pi_1(M)$. Show that

- (a) H is infinite cyclic,
- (b) $\pi_1(M)$ does not have a cyclic subgroup of finite index.