

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 22.11.2016

Exercise sheet 5 - short

Submanifolds and constant curvature

Not to be handed in, will be discussed on November 30th

Exercise 1. Suppose M, N are smooth manifolds and $f: M \to N$ a smooth map. Prove that the graph

$$\Gamma(f) = \{(x, y) \in M \times N \mid y = f(x)\} \subset M \times N$$

is a closed submanifold of $M \times N$.

Exercise 2. Let $p, q \ge 1$ be integers.

- a) Do the manifolds $S^q \times S^p$ admit constant curvature metrics? *Hint/Remark*: To prove that some spaces are not diffeomorphic (or even homeomorphic), you can use results from algebraic topology.
- b) Do the manifolds $\mathbb{C}P^q$ admit constant curvature metrics? *Remark*: You might need to use some slightly more advanced algebraic topology for this exercise.

Exercise 3. Let M be a Riemannian manifold and $\Gamma \subset \text{Isom}(M)$ a set of isometries. Prove that every connected component of the fixed point set

$$Fix(\Gamma) = \{ x \in M \mid \phi(x) = x \ \forall \phi \in \Gamma \}$$

is a totally geodesic submanifold.