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Isometries, triangles and curvature
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Exercise 1. Let M be a complete connected Riemannian manifold, and let d : M ×M → R
be the distance function induced by the Riemannian metric. We assume that f : M → M is
distance-preserving, i.e. we have d(f(x), f(y)) = d(x, y) ∀x, y ∈ M . The goal of this exercise
is to show that f has to be a Riemannian isometry – in particular, we do not need to assume
differentiability of f , but get it automatically. Show that:

(a) If c is a geodesic, then so is f ◦ c.

(b) Define the map f ′ : TpM → Tf(p)M (our candidate for the differential of f) as follows: If
c is a geodesic with c(0) = p and c′(0) = X, let

f ′(X) =
d

dt
f(c(t))|t=0.

Then we have ‖f ′(X)‖ = ‖X‖ and f ′(aX) = af ′(X) for a ∈ R.

(c) To complete the proof that f ′ is a linear map, we now show that 〈f ′(X), f ′(Y )〉 = 〈X,Y 〉.
The idea is to express 〈X,Y 〉 in terms of objects we know to be preserved, the norm and
the distance function. First show that

2
〈X,Y 〉
‖X‖‖Y ‖

=
‖X‖2 + ‖Y 2‖
‖X‖‖Y ‖

− ‖tX − tY ‖
2

‖tX‖‖tY ‖

for any t ∈ R \ {0}, then prove that

lim
t→0

‖tX − tY ‖2

‖tX‖‖tY ‖
= lim

t→0

d (exp(tX), exp(tY ))2

‖tX‖‖tY ‖
.

Conclude from this that 〈f ′(X), f ′(Y )〉 = 〈X,Y 〉 and consequently

f ′(X + Y ) = f ′(X) + f ′(Y ).

(d) f ′ is a linear isometry (for any choice of p ∈ M) and f is a smooth diffeomorphism with
differential f ′.



Exercise 2.

(a) Fix a geodesic l ⊂ H2 and a point p ∈ l. Let Ta, a ∈ R be the hyperbolic translation along l
for some fixed orientation of l, and let Rα, α ∈ R be the (counterclockwise) rotation around
p by the angle α. Show that we have the following equivalence for any choice of a, b, c ∈ R+

and α, β, γ ∈ (0, π), with α′ = π − α, β′ = π − β, γ′ = π − γ:
A hyperbolic triangle ∆ with side lengths a, b, c and corresponding opposite angles α, β, γ
exists iff the composition

Rγ′ ◦ Tb ◦Rα′ ◦ Tc ◦Rβ′ ◦ Ta
is the identity map.

(b) Prove the following hyperbolic sine and cosine identities:

cosh(c) = cosh(a) cosh(b)− sinh(a) sinh(b) cos(γ)

sinh(a)

sin(α)
=

sinh(b)

sin(β)
=

sinh(c)

sin(γ)

cosh(c) =
cos(α) cos(β) + cos(γ)

sin(α) sin(β)

Hint : Use the identity TaRγ′Tb = R−β′T−cR−α′ from (a) in the hyperboloid model.

Exercise 3. In this exercise, we give a description of curvature as the second derivative of
parallel transport along specific shrinking curves.

(a) Let M be a smooth manifold, E → M a vector bundle and ∇ a connection on E. Let
γ : [0, 1] → M be a smooth curve and s ∈ Γγ(E) a section of E along γ. For any fixed T ,
denote by Pt : Eγ(t) → Eγ(T ) the parallel transport along (the suitable segment of) γ. Show
that

∇γ̇(T )s =
d

dt

∣∣∣
t=T

Pt(s(t)).

(b) Now let M = R2, p = (0, 0) ∈ R2, and define a family of curves ct : [0, 3t]→ R2 by

ct(τ) =


(τ, 0) if τ < t,

(2t− τ, τ − t) if t ≤ τ ≤ 2t,

(0, 3t− τ) if τ > 2t.

Prove that for every ξ ∈ Ep there exists a unique section s such that

i. s(p) = ξ,

ii. ∇ ∂
∂x1

s(·, 0) = 0,

iii. ∇ ∂
∂x2
− ∂

∂x1

s = 0.

(c) In the setting above, let P∇ct : Ep → Ep be the (forwards) parallel transport along ct. Prove
that

d

dt

∣∣∣
t=0

P∇ct (ξ) = ∇ ∂
∂x2

s(p) = 0.



(d) In the same situation, prove that

d2

dt2

∣∣∣∣
t=0

P∇ct (ξ) = ∇ ∂
∂x2

∇ ∂
∂x2

s(p).

(e) Finally, prove that
d2

dt2

∣∣∣∣
t=0

P∇ct = −R
(

∂

∂x1
,
∂

∂x2

)
(p).

Here, R(X,Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ] is the curvature tensor and the derivative on

the left hand side is a derivative of linear maps P∇ct : Ep → Ep.


