

MATHEMATISCHES INSTITUT

Vorlesung Geometry of Manifolds Heidelberg, 23.5.2017

EXERCISE SHEET 2

## Hyperbolic, flat and elliptic manifolds

To be handed in by Friday, June 2nd, 2pm

**Exercise 1** (Area of hyperbolic polygons). (i) Let  $\Delta$  be any hyperbolic triangle in  $\mathbb{H}^2$  with angles  $\alpha, \beta, \gamma \geq 0$ , i.e.  $\alpha + \beta + \gamma < \pi$ . Show that the hyperbolic area of  $\Delta$  is given by

$$\operatorname{Area}(\Delta) = \pi - (\alpha + \beta + \gamma).$$

*Hint: Prove the formula first for triangles having one vertex at*  $\infty$ *.* 

(ii) Prove that a hyperbolic polygon P with inner angles  $\alpha_1, \ldots, \alpha_n$  has area

$$\operatorname{Area}(P) = (n-2)\pi - \sum_{i=1}^{n} \alpha_i$$

**Exercise 2** (Fundamental domain of  $PSL(2,\mathbb{Z})$ ). The subgroup  $\Gamma := PSL(2,\mathbb{Z})$  of  $PSL(2,\mathbb{R})$  acts on the upper half plane  $\mathbb{H}^2$  via Möbius transformations.

(i) Show:

 $\Gamma$  is generated by the matrices

$$S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

- (ii) Is the action properly discontinuous? Is it free?
- (iii) Show that a fundamental domain of  $\Gamma$  is given by the polygon

$$D := \left\{ z \in \mathbb{H}^2 \mid |\operatorname{Re}(z)| \le \frac{1}{2}, |z| \ge 1 \right\}.$$

*Hint:* Show that D is the Dirichlet domain D(2i).

(iv) What is the hyperbolic area of D?

## Don't forget to turn me around!

**Exercise 3** (Triangle groups). For a triple a, b, c > 0 of integers satisfying

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1$$

let  $\Delta$  be a hyperbolic triangle with angles  $\frac{\pi}{a}, \frac{\pi}{b}, \frac{\pi}{c}$ . We denote by  $\rho_a, \rho_b, \rho_c$  the hyperbolic reflections along the corresponding sides of  $\Delta$ . Let  $\Gamma := \Gamma(a, b, c)$  be the *triangle group* generated by these reflections. Clearly,  $\Gamma$  is a subgroup of the group of hyperbolic isometries. By reflecting iteratively  $\Delta$  along its sides we get a tesselation of the hyperbolic plane with isometric triangles.

- (i) Show that the action of  $\Gamma$  is properly discontinuous but not free.
- (ii) What is a fundamental domain of this action?
- **Exercise 4** (Flat manifolds in dimension 2). (i) Prove that every closed flat orientable surface is a torus.
  - (ii) Show that the Klein bottle is a closed flat surface that is not orientable.
- (iii) Show that the Klein bottle is covered by the torus. What is the degree of this covering?

**Exercise 5** (Elliptic manifolds in even dimension). Let M be an elliptic manifold, i.e.

$$M = S^n / \Gamma$$

where  $\Gamma \leq \text{Isom}(S^n)$  acts properly discontinuously and freely on  $S^n$ . Show that if n is an even number then

$$M = S^n$$
 or  $M = \mathbb{RP}^n$ .

**Exercise 6** (Elliptic manifolds in dimension 3). Let p, q > 1 be coprime integers and set  $\theta := e^{\frac{2\pi i}{p}}$ . We identify  $\mathbb{R}^4$  with  $\mathbb{C}^2$  and see  $S^3$  as

$$S^3 = \left\{ (w, z) \in \mathbb{C}^2 \ \big| \ |w|^2 + |z|^2 = 1 \right\}.$$

Define the map  $f(w, z) := (\theta w, \theta^q z)$  and let  $\Gamma := \langle f \rangle$ . Show:

- (i) f is an isometry of  $S^3$ .
- (ii)  $L(p,q) := S^3/\Gamma$  is an elliptic manifold.

The elliptic manifold L(p,q) we constructed this way is known as *lens space*.