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1 Introduction

In the last talk we have seen the definition of a crystallographic group of dimension n Γ as a discrete group of
isometries of the Euclidean space En which is cocompact. Furthermore, we characterized them by means of
their subgroups of translation T (Γ).
During this talk we will try to extend the classification of these groups, deriving two additional theorems

due to Bieberbach. First, we will show that for each dimension there are (up to isomorphism) only finitely
many crystallographic groups. Afterwards, we will then derive that even the isomorphisms between groups
of the same dimension are rather special in the sense that they are induced by conjugation with a fixed affine
transformation of En.

The numbering of the lemmas and the theorems corresponds to the one in [1].

2 Finiteness

We will begin with some preliminary results necessary for the finiteness theorem. The main ingredients
concern the connection between lattices in Rn and certain vector subspaces.

Lemma 2. Let Br(a) ⊂ En be an open ball around a ∈ En with radius r > 0. Then we have

Vol(Br(a)) = cnr
n,

where cn is a constant independent of a and r.

Proof. Translating the ball to the origin and using spherical coordinates, we see that cn is just given by

cn =
1

n
Vol(Sn−1),

where Sn−1 denotes the (n− 1)-dimensional sphere.

Definition. A lattice L ≤ Rn is called full scale if all nonzero vectors of L have norm at least 1.
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Lemma 3. Let L ≤ Rn be a full scale lattice and for each r ≥ 0, let N(r) be the number of v ∈ L, such that
|v| ≤ r. Then we have

N(r) ≤ (2r + 1)n.

Proof. All the vectors have at least distance 1 from each other, as L is full scale. Hence, taking a ball with
radius 1

2 around each point with norm not greater than r, we see that these balls do not overlap. Additionally,
all the balls are contained in the larger ball Br+ 1

2
(0). Comparing (with the help of Lemma 2) the volumes of

the added up small balls and the large ball, we yield

N(r)

(
1

2

)n

≤
(
r +

1

2

)n

which proves the assumption.

Lemma 4. Let (v1, . . . , vn) be a basis for Rn. Then for each x ∈ Rn there exist k1, . . . , kn ∈ Z such that∣∣∣∣∣x−
n∑

i=1

kivi

∣∣∣∣∣ ≤ 1

2

n∑
i=1

|vi|

holds.

Proof. Since the vi form a basis there exist ti ∈ R, such that x =
∑

i tivi. We set

ki :=

{
⌊ti⌋ if ti − ⌊ti⌋ ≤ 1

2 ,

⌈ti⌉ else.

Lemma 5. Let V ⊂ Rn be a linear subspace with normalized basis v1, . . . , vm, where the basis lies in a full
scale lattice L ≤ Rn. If a vector u ∈ L lies not in V , then its V ⊥component w has norm

|w| > (m+ 3)−n.

Proof. Assume on the contrary that u ∈ L \V has a V ⊥-component w with norm 0 < |w| ≤ (m+ 3)−n. Set
k = (m + 3)n. Then k|w| ≤ 1 and so all lu, l ∈ {0, . . . , k}, have distance at most 1 from V . By Lemma 4,
we can add suitable integral linear combinations of v1, . . . , vn, such that their V -components have norm at
most m

2 . By definition the V ⊥-components will not change by this. Additionally, since w ̸= 0, these updated
vectors will still be distinct. Hence, we have found k + 1 distinct vectors in L whose norms are less or equal
to r = (m2 ) + 1. Using Lemma 3, we get

(m+ 3)n + 1 = k + 1 ≤ N(r) ≤ (2r + 1)n = (m+ 3)n,

which is a contradiction. Therefore, |w| > (m+ 3)n needs to hold.

Definition. An n-dimensional crystallographic group Γ is called normalized if its lattice L(Γ) is full scale and
contains n linearly independent unit vectors.
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Lemma 6. Let Γ be an n-dimensional crystallographic group. Then Γ is isomorphic to a normalized n-
dimensional crystallographic group.

Proof. By rescaling Γ, which is an isomorphism, we can assume that the shortest nonzero vector in L(Γ) is
a unit vector. We now proceed by induction and assume that L(Γ) is full scale and contains m < n linearly
independent unit vectors v1, . . . , vm. We try to construct a Γ′ which is isomorphic to Γ and whose lattice is
also full scale and contains one additional linearly independent unit vector.
Consider V = ⟨v1, . . . , vm⟩R. The point group Π of Γ acts on Rn and on L(Γ). We have to consider two

cases. First, we assume that Π does not leave V invariant. In this case there must exist an A ∈ Π ⊂ O(n)
and an i ≤ m, such that Avi /∈ V . However, Avi ∈ L(Γ) and hence, setting vm+1 = Avi and Γ′ = Γ we are
done.
Now assume that Π leaves V invariant. In this case it also leaves V ⊥ invariant. For all t > 0 we define

αt ∈ Aut(Rn) by

αt(u) = v + tw,

where u = v + w ∈ Rn, v ∈ V and w ∈ V ⊥. Let a+A ∈ Γ. As A leaves V an V ⊥ invariant, we have

αt(a+A)α−1
t = αt(a) +A.

Now, Γt = αtΓα
−1
t is a discrete group of isometries ofEn and T (Γt) = αtT (Γ)α

−1
t by the previous argument.

Thus, T (Γt) is of finite index in Γt and has rank n. Therefore, Γt is a crystallographic group of dimension n.
Looking at L(Γt), we see the relation

L(Γt) = αt(L(Γ)).

Let u ∈ L(Γ) \ V and write u = v + w as above. Then for 0 < t ≤ |w|−1(m + 3)−n, we have that
v + tw ∈ L(Γt) \ V and |tw| ≤ (m+ 3)−n. By Lemma 5 this means that L(Γt) is not full scale. So there
exists a t > 0 such that L(Γt) is not full scale. However, L(Γ1) = L(Γ) is full scale. So choose

s := inf{t > 0 | (Γt) is full scale}.

Then we have 0 < s ≤ 1. For fixed uwe know that αt(u) is a continuous function with regard to t, thus from
|αt(u)| ≥ 1 for all t > s follows |αs(u)| ≥ 1. Hence, L(Γs) is full scale.

Let u0 ∈ L(Γs)\V be the shortest element. We claim that u0 is a unit vector. Assume on the contrary that
u0 were not a unit vector, i. e. |u0| > 1. We write u0 = v0 + w0 as before and see that for all u ∈ L(Γs) \ V ,
we have

|v|2 + |w2 ≥ |v0|2 + |w0|2

Setting t = |u0|−1 and acting with αt on L(Γs) (leading to L(Γst)), we yield

|αt(u)|2 = |v + tw|2

= |v|2 + t2|w|2

≥ |v|2 + t2(|v0|2 + |w0|2 − |v|2)
= |v|2(1− t2) + t2|u0|2

≥ t2|u0|2 = 1.
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Since the vectors in L(Γs) ∩ V are not changed and they were full scale before, it follows that L(Γst) is full
scale. However, st < s which is a contradiction to the minimality of s. Hence u0 is a unit vector. Setting
vm+1 = u0 and choosing Γ′ = Γs finishes the induction step.

Proposition 1. Let A ≤ B be two free abelian groups of finite rank. Then A and B have the same rank if and
only if B

/
A is finite.

Proof. We consider the short exact sequence

0 → A → B → B
/
A → 0.

We know that Q is a flat Z-module, so tensoring with it leaves the sequence exact and we obtain

0 → A⊗Q → B ⊗Q → B
/
A ⊗Q → 0.

First, let us assume that A and B have the same rank. After tensoring with Q this means that the Q-vector
spaces A⊗Q and B ⊗Q have the same dimension. Since the sequence stays exact, the first map is injective
and thus, using the dimension formula, it is also a bijection. Again as the sequence needs to be exact, this
means that B

/
A ⊗Q vanishes. This implies that B

/
A is only torsion and hence finite.

If we assume now that B
/
A is finite, then again B

/
A⊗Q vanishes and the other twoQ-vector spaces are

isomorphic. Hence, they have the same dimension, which implies that the ranks of A and B must coincide.

Theorem (7.5.3, Bieberbach’s theorem 2). There are only finitely many isomorphism classes of n-dimensional
crystallographic groups for each n ∈ N.

Proof. By Lemma 6, we can reduce to the case of normalized crystallographic groups. Let Γ be such a group.
Then L(Γ) contains n linearly independent vectorsw1, . . . , wn. Set for each i, τi := wi+I the corresponding
elements in T (Γ) and let H = ⟨τ1, . . . , τn⟩Z ≤ T (Γ). Then H and T (Γ) have the same rank and by Proposi-
tion 1 H has finite index in T (Γ). Now, T (Γ) has finite index in Γ. Hence, H has finite index in Γ. We can
choose representatives τi := wi+Ai, i = n+1, . . . ,m, where by conjugation with elements ofH the wi can
be chosen with norm not greater than n

2 (c. f. Lemma 4).Thus every element Φ ∈ Γ can be uniquely written
as

Φ =

(
n∑

i=1

aiτi + I

)
τp,

where ai ∈ Z and p ∈ {(n + 1, . . . ,m)}. We call this the normal form of Φ. Since it is unique there are for
each i, j = 1, . . . ,m unique integers cijk and f(i, j) > n such that

τiτj =

(
n∑

k=1

cijkτk + I

)
τf(i,j). (1)

These integers completely determine Γ since one can find the normal form of a product ΦΨ by inductively
applying the above formula. In addition, if there is another normalized, n-dimensional crystallographic group
Γ′ with identical integers. Then Γ and Γ′ are already isomorphic. This follows from the observation that we
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can define the isomorphism on the normal form of the elements. Using the multiplication formula shows that
it is really a group homomorphism. The bijectivity stems from the fact that the cijk and f(i, j) coincide.

Hence our problem has reduced to showing, that there are only finitely many possible choices for the cijk
and f(i, j). Now consider Equation 1. If we multiply both sides by τf(i,j) we are left with a translation on
the right hand side. Thus the left hand side will also be a translation and all in all the translational part will
consist of three vectors possibly multiplied by an element of O(n) and then added up. Since we made sure
that all vectors wi have norm at most n

2 , we yield∣∣∣∣∣
n∑

k=1

cijkwk

∣∣∣∣∣ ≤ 3n

2
.

Denoting by vk the component of wk orthogonal to all other wi, we yield |cijkvk| ≤ 3n
2 . By Lemma 5, we

have |vk| > (n+ 2)−n. Hence, for each cijk we have

|cijk| ≤
3n

2
(n+ 2)n.

This is the first part.
Turning towards f(i, j), it suffices to show thatm is bounded. We first consider

m− n = [Γ : H] = [Γ : T (Γ)] · [T (Γ) : H].

We know that the translations among τn+1, . . . , τm form a complete set of coset representatives ofH in T (Γ).
By construction they have norm at most n

2 and there are by Lemma 3 at most (n+ 1)n of them. So we see

[T (Γ) : H] ≤ (n+ 1)n.

Next we observe that [Γ : T (Γ)] = |Π|. Let A be in Π. Then A is uniquely determined by its action on a basis
of Rn. (w1, . . . , wn) is a basis. We remember that all wi have norm 1. Applying Lemma 3 we get that Awi is
one of at most 3n unit vectors in (Γ) (we know that the point group acts on L(Γ)). So together we get

[Γ : T (Γ)] ≤ (3n)n.

So all in all we have

m ≤ n+ (3n)n(n+ 1)n,

which finishes the proof.

Remark. The exact numbers are:

n 1 2 3 4 5 6

2 17 219 4 783 222 018 28 927 915

Table 1: The number of isomorphism classes for the first few n.
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3 Isomorphisms & the splitting group

In order to show that all isomorphisms between crystallographic groups are induced by affine projections, we
need to introduce a special extension of Γ, called Γ∗, which we will define shortly. The advantage is that Γ∗

has an additional nice property, namely it makes a certain sequence split. We will then be able to extend all
isomorphisms between crystallographic groups to these new groups and solve the problem there.

Definition. Let Γ be an n-dimensional crystallographic group and let m be the order of its point group Π.
Denote by

T (Γ)
1
m :=

{w

m
+ I | w + I ∈ T (Γ)

}
.

Then we call

Γ∗ := ⟨T (Γ)
1
m ,Γ⟩ ≤ I(En)

the splitting group of Γ.

Proposition 2. Γ∗ is an n-dimensional crystallographic group with

T (Γ∗) = T (Γ)
1
m and

L(Γ∗) =
1

m
L(Γ).

Additionally its point group coincides with the point group of Γ.

Proof. Γ∗ cannot contain any matrix terms not already present in Γ. Hence, the point groups coincide. Also
by construction we see that T (Γ∗) coincides with T (Γ)

1
m . This shows also the form of L(Γ∗). Also, since Π

coincides for the two groups, we see that T (Γ∗) has finite index in Γ∗. Next we see that

[T (Γ∗) : T (Γ)] = [L(Γ∗) : L(Γ)] = [(m−1Z)n : Zn] = mn

holds. By Proposition 1, we yield that T (Γ∗) has rank n. All in all we have shown, that Γ∗ is a crystallographic
group of dimension n.

Lemma 7. The following exact sequence splits:

1 → T (Γ∗) → Γ∗ → Π → 1.

Furthermore, there exists a splittingσ : Π → Γ∗ such thatσ(Π) has a fixed pointx ∈ En and (x+ I)−1σ(Π)(x+ I) =
Π holds.

Proof. Denote by p : Γ∗ → Π the natural projection. Then for each A ∈ Π we choose a preimage ΦA ∈ Γ
(observe the missing ∗). Then for each A,B ∈ Π there must exist a τ(A,B) ∈ T (Γ), such that

ΦAΦB = τ(A,B)ΦAB
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holds. Let ΦA = aA + A for each A. Then by computing the above expression and comparing the two sides
we yield

τ(A,B) = aA +AaB − aAB + I.

With this motivation in mind we define

f : Π×Π → L(Γ), (A,B) 7→ aA +AaB − aAB.

Summing over this definition for all B ∈ Π, we arrive at the expression∑
B∈Π

f(A,B) = maA +A
∑
B∈Π

aB −
∑
B∈Π

aB

= maA + (A− I)s,

where s :=
∑

B∈Π aB . With this we define

σ : Π → Γ∗, σ(A) := − 1

m

∑
B∈Π

f(A,B) + aA +A = − 1

m
(A− I)s+A.

Looking at products, we see

σ(AB) = − 1

m
(AB − I) +AB

= − 1

m
(A− I)− 1

m
(AB −A) +AB

= σ(A)σ(B).

Therefore, σ is a homomorphism and the above sequence is split. Additionally, we see that x := s
m is a fixed

point of σ(A) for all A ∈ Π. Applying the conjugation with the by x induced translation shows, that this
cancels σ.

Theorem (7.5.4, Bieberbach’s theorem 3). Let ξ : Γ1 → Γ2 be an isomorphism of n-dimensional crystallo-
graphic groups. Then there is an affine bijection α of Rn such that

ξ(Φ) = αΦα−1

holds for each Φ ∈ Γ1.

Proof. Since the T (Γi) are characterized via their property to be uniquely maximal abelian, ξ restricts to
an isomorphism between the two translational subgroups. Therefore, using the five lemma, we obtain an
isomorphism ξ̄ : Π1 → Π2. We try to extend ξ to the splitting groups. In order to do, we choose for each
A ∈ Π1 a preimage ΦA ∈ Γ1. Then {ΦA | A ∈ Π1} is a set of coset representatives for T (Γ∗

1) in Γ∗
1. Let τ be

an arbitrary element in T (Γ∗
1). Then we define

ξ∗ : Γ∗
1 → Γ∗

2, ξ
∗(τΦA) := [ξ(τm)]

1
m ξ(ΦA).
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Restricted to T (Γ∗
1), this is easily seen to be a homomorphism and even an isomorphism between T (Γ∗

1)
and T (Γ∗

2). Additionally, it agrees with ξ̄. So if we can show that ξ∗ is a homomorphism, we can automatically
apply the five lemma which guarantees that it is an isomorphism.
The proof that we really found a homomorphism is an arduous computation with the central ingredient

being the proof that we can commute the above formula in the sense that

ξ∗(ΦAτ) = ξ(ΦA)[ξ(τ
m)]

1
m

holds. With this in hand we can easily show the homomorphism property. However, we will skip this com-
putation here.
As a last propertywe see that ξ∗ extends ξ. Now, we can restrict our attention to ξ∗ and if we can show that it

is represented by an affinemap, this is automatically also true for ξ. The advantage of working with Γ∗
i instead

of Γi lies in the splitting property, which we can exploit. Let σi : Πi → Γ∗
i be the splitting homomorphisms

from Lemma 7. By conjugating the Γ∗
i with the translations induced by the respective fixed points, we may

assume that σi(Πi) = Πi holds. ξ∗ can be adapted accordingly also by conjugation with translations, i. e.
conjugation with affine transformations. After that we have that every element in Γ∗

i has the form τA, where
τ lies in T (Γ∗

i ) and A lies in Πi.
Next, we choose a basis (v1, . . . , vn) of L(Γ1). Using ξ we can push this to a basis (w1, . . . , wn) of L(Γ2).

Now we define α ∈ Aut(Rn) by α(vj) = wj . For A ∈ Π1 and a ∈ L(Γ∗
1) we have

A(a+ I)A−1 = Aa+ I and hence
ξ(A)α(a) + I = ξ∗(A)(α(a) + I)ξ∗(A)−1

= ξ∗(A(a+ I)A−1)

= ξ∗(Aa+ I)

= αAa+ I.

In short, we yield ξ∗(A)α = αA or ξ∗(A) = αAα−1. All in all we get

ξ∗(τA) = ξ∗(τ)ξ∗(A) = (ατα−1)(αAα−1) = α(τA)α−1,

which proves the claim.

Corollary 1. Two n-dimensional crystallographic groups are isomorphic if and only if they are conjugate in
the group of affine bijections of Rn.
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