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Abstract
On arithmetic surfaces over henselian discrete valuation rings we ex-

amine whether a geometric point has a basis of étale neighborhoods whose
c-completed étale homotopy types are of type Kpπ, 1q with respect to a
full class c of finite groups.

1 Introduction
In [1] Artin proves the comparison theorem of classical with étale cohomology
for a variety over the complex numbers. A crucial point in the proof is the
construction of a special type of neighborhoods now called good Artin neigh-
borhoods. They are open subschemes which admit a successive fibration into
affine curves X Ñ B with smooth compactification X̄ Ñ B such that the com-
plement X̄ ´ X is étale over B. This type of fibration is called elementary
fibration. The construction of a good Artin neighborhood uses Bertini’s theo-
rem in order to find a suitable linear subspace of the ambient projective space
such that projection along this subspace locally yields an elementary fibration.
These neighborhoods are so useful because topologically they are particularly
simple. They are examples of Kpπ, 1q-spaces, i. e. of spaces whose only nontriv-
ial homotopy group is the fundamental group. This property can be drawn from
the long exact homotopy sequence associated with an elementary fibration.

The scenario where X is a smooth variety over an algebraically closed field of
positive characteristic was treated by Friedlander in [6]. He examines whether
an étale neighborhood is Kpπ, 1q with respect to a prime number ` different
from the characteristic of X, i. e. if it is Kpπ, 1q after `-completion of the étale
homotopy type. He also uses elementary fibrations and the homotopy sequence
associated with these fibrations. The major problem he has to deal with is
non-exactness of c-completions for a full class of finite groups c. If c is the class
of finite `-groups, he can prove that under certain conditions `-completion is
indeed exact by using special features of `-groups.

In the arithmetic setting, i. e. considering schemes flat and of finite type
over Z or Zp, the above approach is not promising. In fact, étale bases of
neighborhoods which admit an elementary fibration never exist (see [11], Chap-
ter 3). In case of arithmetic surfaces π : X Ñ B this is quite obvious because
for U Ñ X étale the restriction of π to U is the only possible fibration into
curves (unless the generic fiber is rational but in this case X may be replaced
by an étale neighborhood). Even if X is smooth and projective over B, there are
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open subschemes with no étale neighborhood admitting an elementary fibration.
One just has to take the complement of a non-smooth divisor in X.

As a consequence we cannot expect to work with smooth fibrations of arith-
metic schemes. This makes it hard to use the machinery of long exact sequences
of homotopy groups associated with a fibration. The problem is the lack of a
simple relation between the homotopy theoretic fiber and the geometric fibers.
Instead, we follow a more explicit approach working directly with the Leray
spectral sequence associated with a fibration. Furthermore, we restrict our at-
tention to arithmetic surfaces, the one-dimensional case having been dealt with
in [19].

The present work examines arithmetic surfaces which are of finite type over
some local ring of integers of residue characteristic p. In contrast to Friedlander
we do not need to restrict our attention to `-extensions for a single prime ` ‰ p
but can consider more general classes of finite groups. We say that a noetherian
scheme X is Kpπ, 1q with respect to a full class of finite groups c if the pro-c-
completion of the étale homotopy type of X is Kpπ, 1q. Writing Npcq for the
submonoid of N consisting of all cardinalities of groups in c the main result reads
as follows.

Theorem 1.1. Let B be the spectrum of the ring of integers of the completion K
of an algebraic extension of Qp with finite ramification index. Let c be a full
class of finite groups such that the residue characteristic of B is not contained
in Npcq and for all but finitely many primes ` P Npcq the extension Kpµ`q|K is
a c-extension. Let Y {B be an arithmetic surface and ȳ Ñ Y a geometric point.
Then ȳ has a basis of étale neighborhoods which are Kpπ, 1q with respect to c.

In particular, there exist Kpπ, 1q-neighborhoods with respect to any class of
finite groups of the form cp`1, . . . , `nq for prime numbers `i prime to the residue
characteristic of B. Here, cp`1, . . . , `nq denotes the class of finite groups whose
order is divisible at most by the primes `1, . . . , `n. If the residue field of B is
separably closed, we can take any full class of finite groups with p R Npcq. In
particular, we may take the class of all finite groups whose order is prime to p.

Let us explain more closely what a Kpπ, 1q-scheme is. Consider a connected,
locally noetherian scheme X with geometric point x̄. Following [2] we asso-
ciate with pX, x̄q the étale homotopy type Xet, which is a pro-object of the
homotopy category of pointed, connected CW-complexes. We obtain homo-
topy pro-groups πnpXétq and for an abelian group A with a π1pXétq-action
cohomology groups HnpXét, Aq. The first homotopy pro-group of Xét, π1pXétq,
coincides with the "pro-groupe fondamentale enlargi" defined in [5], Exp. X, §6
(see [2], Corollary 10.7). If X is geometrically unibranch (e. g. normal), π1pXétq

is profinite and coincides with the usual fundamental group defined in [10],
Exp. V. Moreover, for an abelian group A with a π1pXétq-action the cohomol-
ogy groups HnpXét, Aq coincide with the étale cohomology groups HnpX,Aq.

Let n be a positive integer andG a pro-group, which is assumed abelian if n ą
1. There exists a pointed, connected pro-CW-complex whose nth homotopy pro-
group is isomorphic to G and whose remaining homotopy pro-groups vanish. It
is unique up to 7-isomorphism (i.e. up to morphisms inducing isomorphisms
on homotopy pro-groups) and called Eilenberg MacLane space of type KpG,nq.
We say that a connected, locally noetherian scheme X with geometric point x̄
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is Kpπ, 1q if the canonical morphism

Xét Ñ Kpπ1pX, x̄q, 1q.

is a 7-isomorphism.
We are interested in a slightly refined version of the Kpπ, 1q property: For

a full class of finite groups c and a pro-CW-complex Z we denote by Zpcq
the pro-c-completion of Z (which exists by [2] Theorem 3.4). We say that X is
Kpπ, 1q with respect to c if Xétpcq isKpπ, 1q. Note that in general, beingKpπ, 1q
neither implies nor is implied by being Kpπ, 1q with respect to c. The reason is
the following: For any pro-CW-complex Z there is a natural isomorphism

π1pZqpcq
„
Ñ π1pZpcqq

but the higher homotopy pro-groups of Zpcq are not necessarily isomorphic to
the c-completion of the respective homotopy pro-groups of Z.

There is a criterion for a scheme to beKpπ, 1q with respect to c which involves
only étale cohomology. In order to explain it let us fix some terminology: A
Galois c-covering of X is a Galois covering with Galois group in c. A c-covering
is a covering which is dominated by a Galois c-covering. The étale coverings
of X constitute a Galois category by [10], Exp. V, §7. From this it is easy to
deduce that the same holds for the c-coverings of X. We have the following
characterization of schemes of type Kpπ, 1q (see [18], Proposition 2.1):

Proposition 1.2. Let c be a full class of finite groups and X a locally noetherian
scheme. The following assertions are equivalent:

(i) X is Kpπ, 1q with respect to c.

(ii) Let i ě 1 and Λ “ Z{`Z with ` P Npcq. Then, for every c-covering X 1 Ñ X
and every class φ P HipX 1,Λq there is a c-covering X2 Ñ X 1 such that φ
maps to zero under

HipX 1,Λq Ñ HipX2,Λq.

The reader not familiar with étale homotopy theory may safely take this
criterion as a definition of the Kpπ, 1q-property. Throughout the rest of this
article we will work exclusively with the above cohomological characterization.
Note that the condition on the first cohomology group is automatically satisfied
as H1pX 1,Λq classifies Galois coverings of X 1 whose Galois group is a quotient
of Λ and these coverings are c-coverings.

Let us now consider the situation on arithmetic surfaces: We fix a base
scheme B which is the spectrum of an excellent Dedekind ring of dimension
one. In this article we are mainly interested in the case where B is a henselian
discrete valuation ring but in view of future work on global arithmetic surfaces
we formulate most results in more general terms. It is only in Section 6 and in
Section 10 that we restrict our attention to arithmetic surfaces over a henselian
base. By an arithmetic surface over B we mean an irreducible, normal scheme U
of dimension 2 which is flat and of finite type over B with geometrically con-
nected generic fiber. Take a full class of finite groups c such that all prime
numbers in Npcq are invertible on B. Proposition 1.2 leads us to the question
whether a given cohomology class φ P HipU,Λq for i ě 2 can be killed by a
c-covering.
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Assume there is a compactification X̄ of U{B and an open subschemeX of X̄
containing U such that X̄ ´X is the support of a nonempty regular horizontal
divisor intersecting all vertical divisors transversally. Setting Z “ X ´ U (with
the reduced scheme structure) we have the following exact sequence:

. . .Ñ Hi
ZpX,Λq Ñ HipX,Λq Ñ HipU,Λq Ñ Hi`1

Z pX,Λq Ñ . . . . (1)

This reduces the task of killing cohomology classes in HipU,Λq to killing classes
in Hi`1

Z pX,Λq and HipX,Λq.
Let us first have a look at Hi`1

Z pX,Λq. Using resolution of singularities we
achieve that Z is a tidy divisor. This property is slightly stronger than being
an snc divisor (see Section 2 for a definition). For a tidy divisor Z we can
handle Hi`1

Z pX,Λq using absolute cohomological purity. Roughly speaking, a
cohomology class in Hi`1

Z pX,Λq is killed by a c-covering which is sufficiently
ramified along Z (see Section 5).

The cohomology groups HipX,Λq are accessible because π : X Ñ B is quite
close to being an elementary fibration: There is a base change theorem which
asserts that for every geometric point b̄Ñ B we have

pRjπ˚Λqb̄ – HjpXb̄,Λq

(see Proposition 4.3). In particular, Rjπ˚Λ “ 0 for j ě 3. Moreover, Xb̄ is
an affine curve for all b̄ where Xb̄ is regular. As there are only finitely many
singular fibers, this implies that R2π˚Λ is a skyscraper sheaf.

Let us specialize to the case we are primarily interested in in this arti-
cle, namely where B is the spectrum of a henselian discrete valuation ring R.
As mentioned before, H1pX,Λq automatically vanishes in the limit over all c-
coverings. This leaves us to cope with the second cohomology. Unfortunately,
H2pX,Λq is not necessarily killed by a c-covering. However, a glance at se-
quence (1) reveals that it suffices to show that

cokerpH2
ZpX,Λq Ñ H2pX,Λqq

is killed by a c-covering. In Section 6 we give conditions for this to be true.
Having carved out conditions for an arithmetic surface to be Kpπ, 1q with

respect to c we set out to construct étale neighborhoods U on a given arithmetic
surface satisfying these conditions. The main difficulty lies in ensuring that U
has enough c-coverings that are sufficiently ramified along the boundary (see
Section 9).

This article is based on parts of my thesis written under the supervision
of Alexander Schmidt. I would like to thank him for posing this interesting
question and supporting me during the process of answering it. Moreover, my
thanks go to the referee whose suggestions helped me a lot in improving the
overall structure of the paper.

2 Tidy divisors on arithmetic surfaces
LetX be a noetherian scheme. Throughout this article we identify effective Weil
divisors on X with the associated closed subschemes of X whenever this does
not lead to confusion. If the ambient scheme is normal, we can do the same for
effective Cartier divisors. Remember that an effective Cartier divisor D on X
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has simple normal crossings at a point x P D if X is regular at x and there
is a local system of parameters f1, . . . , fn at x and m1, . . . ,mn P N0 such that
fm1

1 ¨ . . . ¨fmn
n provides a local equation for D. The effective Cartier divisor D is

a simple normal crossings (snc) divisor if it has simple normal crossings at each
point. We say that two effective Cartier divisorsD andD1 intersect transversally
at a point x P D XD1 if they have no common irreducible component passing
through x and D `D1 has simple normal crossings at x.

Suppose now that X{B is an arithmetic surface. An effective Cartier di-
visor D on X is tidy at a point x P D if it has simple normal crossings at x
and intersects each vertical divisor of X passing through x transversally. A tidy
divisor on X is an effective Cartier divisor D which is tidy at every point of D.
In particular, the horizontal irreducible components of a tidy divisor do not in-
tersect. For a proper closed subscheme Z Ď X we say that a closed point z P Z
is a special point of Z if either Z is not a tidy divisor at z or Z is tidy at z
and Zred is singular at z. The special points of a tidy divisor D are precisely
the points where two irreducible components of D intersect. If D is not tidy
but only snc, the special points are the singular points of Dred and the points
where D intersects a vertical divisor non-transversally.

Let Z Ď X be a proper closed subscheme. We define a minimal desingular-
ization of pX,Zq to be a proper morphism of pairs φ : pX 1, Z 1q Ñ pX,Zq such
thatX 1 is regular at all points of Z 1, the morphism pX 1´Z 1q Ñ pX´Zq is an iso-
morphism and φ is universal with this property, i. e. any other proper morphism
φ2 : pX2, Z2q Ñ pX,Zq as above factors through φ. Minimal desingularizations
of pX,Zq exist by [14] and are unique up to unique isomorphism.

Definition 2.1. Let X{B be an arithmetic surface and Z Ď X a proper closed
subscheme. A tidy desingularization pX 1, Z 1q Ñ pX,Zq of pX,Zq is a birational
morphism X 1 Ñ X such that Z 1 is a tidy divisor of X 1 and pX 1, Z 1q Ñ pX,Zq
factors as

pX 1, Z 1q “ pXn, Znq Ñ . . .Ñ pX1, Z1q Ñ pX0, Z0q Ñ pX,Zq,

where X0 Ñ X is the minimal desingularization of pX,Zq and for i “ 1, . . . , n
the morphisms pXi, Ziq Ñ pXi´1, Zi´1q are blowups of Xi´1 in special points
of Zi´1.

Proposition 2.2. Let X{B be an arithmetic surface and Z Ă X a proper closed
subscheme. Then a tidy desingularization of pX,Zq exists.

Proof. We may assume thatX is regular at all points ofX´Z asX is singular in
at most a finite set of closed points, which we can remove from X if they do not
lie on Z. By [3], Theorems 0.1 and 0.2 there is a desingularization pX 1, Z 1q Ñ
pX,Zq which is an isomorphism over the complement of Z such that Z 1 is an
snc-divisor. Moreover, we can assume that pX 1, Z 1q Ñ pX,Zq is obtained from
the minimal desingularization by successive blow-ups in singular, hence special,
points. Let D1 be the union of Z 1 with the finitely many vertical prime divisors
containing the points where Z 1 intersects a vertical divisor non-transversally.
After removing from X 1 all points of D1 which are not contained in Z 1 and
where D1 is singular, we may assume that the special points of D1 are contained
in Z 1. By construction, they coincide with the singular points of D1red. Blowing
up in singular points of D1red, we achieve that D1 is an snc-divisor. This is
equivalent to saying that Z 1 is tidy.
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Let c be a full class of finite groups and denote by Npcq the submonoid of
the positive integers formed by the orders of all groups in c. For an arithmetic
surface X{B such that all elements of Npcq are invertible on X and a tidy
divisor D on X we want to examine whether U :“ X ´ D is Kpπ, 1q with
respect to c. The cohomological criterion spelled out in Proposition 1.2 leads
us to study the c-coverings of U . We can extend a c-covering U 1 Ñ U to a
finite morphism X 1 Ñ X by taking the normalization of X in U 1. We obtain
a c-covering of pX,Dq, i. e. a finite morphism of pairs pX1, D1q Ñ pX,Dq such
that X1´D1 Ñ X´D is an étale c-covering. Any c-covering of pX,Dq is tame,
i. e. the valuations of KpXq associated with the irreducible components of D
are tamely ramified in the corresponding function field extension. Otherwise
there would be an irreducible component Z of D whose function field is of
characteristic p ą 0 dividing the degree of the covering. However, we assumed
the orders of all groups in c to be invertible on X, hence not divisible by p.

For a tame covering pX1, D1q Ñ pX,Dq the divisor D1 is not tidy in general.
But we find a tidy desingularization pX 1, D1q Ñ pX1, D1q using Proposition 2.2.

Definition 2.3. A desingularized tame covering pX 1, D1q Ñ pX,Dq is the
composition of a tame covering pX1, D1q Ñ pX,Dq and a tidy desingular-
ization pX 1, D1q Ñ pX1, D1q. In this case we define the exceptional divisor
of pX 1, D1q Ñ pX,Dq to be the exceptional divisor of X 1 Ñ X1. A desingu-
larized c-covering is a tame covering pX 1, D1q Ñ pX1, D1q Ñ pX,Dq such that
pX1, D1q Ñ pX,Dq is a c-covering.

3 Setup and Notation
Let c be a full class of finite groups. Remember that a profinite group G is
called c-good if for all Gpcq-modules M P c and all i P N the inflation

HipGpcq,Mq Ñ HipG,Mq

is an isomorphism. IfG is the absolute Galois group of a field k, this is equivalent
to saying that Spec k is Kpπ, 1q with respect to c. We need a slightly stronger
version: Denote by H the kernel of the surjection GÑ Gpcq. We say that G is
strongly c-good if for all G-modules M P c and all i P N

HipGpcq,MHq Ñ HipG,Mq

is an isomorphism. This is equivalent to saying that for all j ě 1

HjpH,Mq “ 0.

One example for a strongly c-good group is Ẑ, the absolute Galois group of a
finite field. For a prime p R Npcq take an algebraic extension of Qp containing
the `th roots of unity for every prime ` P Npcq. Then its absolute Galois group
provides another example for a strongly c-good group.

We now set up the notation for Section 5 and Section 6. We fix an excellent
Dedekind scheme of dimension 1. Furthermore, we take a full class of finite
groups c such that all prime numbers ` P Npcq are invertible on B and µ` – Z{`Z
on B. We assume that the absolute Galois groups of the residue fields of B at
closed points are strongly c-good.
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Over B we fix a proper arithmetic surface X̄ with geometric point x̄ Ñ X̄
lying over a closed point x P X̄. Let D̄ Ď X̄ be a tidy divisor whose support
does not contain x. Let D̄h be the maximal subdivisor of D̄ with support on the
isolated horizontal components of D̄, i. e., on the horizontal components which
do not intersect any other component. Set X “ X̄ ´ D̄h and U “ X̄ ´ D̄ and
denote by D Ď X the restriction of D̄ to X. We write Dv for the maximal
vertical subdivisor of D and Dh for the maximal horizontal subdivisor, such
that D “ Dv`Dh. Notice that Dv is also the maximal vertical subdivisor of D̄.
The maximal horizontal subdivisor of D̄ is given by D̄h ` Dh. Let W denote
the union of all vertical prime divisors which are contained in a singular fiber
of X̄ Ñ B but not in D̄. Put differently, W is the Zariski closure of the union
of all reduced fibers pUbqred where X̄b is singular. Denote by S the finite set of
special points of D̄, i. e., the set of singular points of D̄red .

We denote by IpX̄,D̄q the category of all pointed desingularized c-coverings
of pX̄, D̄q. We will see in Proposition 7.4 that IpX̄,D̄q is cofiltered. Viewing x̄
as geometric point of B we write IB for the category of pointed finite étale c-
coverings of B. By

pB1 Ñ Bq ÞÑ ppX̄ ˆB B
1, D̄ ˆB B

1q Ñ pX̄, D̄qq

IB becomes a full subcategory of IpX̄,D̄q.
For pX̄ 1, D̄1q Ñ pX̄, D̄q in IpX̄,D̄q let

X̄ 1 Ñ B1 Ñ B

be the Stein factorization of X̄ 1 Ñ X̄ Ñ B. Then X̄ 1 is an arithmetic surface
over B1. We use analogous notation for pX̄ 1, D̄1q as for pX̄, D̄q: We write U 1
for X̄ 1 ´ D̄1 and D̄1h for the maximal subdivisor of D̄1 with support on the
isolated horizontal components of D̄1 and so on. Moreover, we write E1 for the
exceptional divisor of X̄ 1 Ñ X̄.

Lemma 3.1. Let π : pX̄ 1, D̄1q Ñ pX̄1, D̄1q Ñ pX̄, D̄q be a desingularized c-
covering. Then π˚D̄h “ D̄1h and D1h is the horizontal part of π˚Dh.

Proof. By the definition of D̄h and Dh it suffices to show that π maps the ir-
reducible components of D̄1h to D̄h and those of D1h to Dh. By the logarithmic
version of Abhyankar’s lemma ([9], Thm. 7.3.44) pX̄1, D̄1q Ñ pX̄, D̄q is Kum-
mer étale, hence flat. Therefore, D̄1 Ñ D̄ is flat and moreover proper and of
finite presentation. It is thus open and closed. We conclude that a connected
component of D̄1 is mapped surjectively onto a connected component of D̄. Fur-
thermore, connected components of D̄1 are mapped surjectively onto connected
components of D̄1. Every irreducible component of D̄1h is thus mapped to an
irreducible component of D̄h.

Since D̄h is regular and does not intersect the other components of D̄, the
tame covering pX̄1, D̄1q Ñ pX̄, D̄q has regular branch locus in a neighborhood
of D̄h. By the generalized Abhyankar lemma (see [10], Exp. XIII, 5.3.0) the
preimage D̄h,1 of D̄h in X̄1 is again regular and X̄1 is regular in a neighborhood
of D̄h,1. In particular, D̄h,1 does not contain special points and thus π˚pD̄hq

is contained in D̄1h. Hence, the image of every irreducible component of D1h is
contained in D1h.
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As a consequence of Lemma 3.1 we have π˚X “ X 1 and π˚Dv “ D1v. The
preimage of Dh is the sum of D1h and a divisor with support in E1.

Our objective is to investigate whether U is Kpπ, 1q with respect to c. In
this article we treat the case where B is local henselian. The above setup is
more general because we plan another paper on the global case, i.e. where B is
an open subscheme of the spectrum of the ring of integers of a finite extension
of Q. A great part of the proof is not much more difficult in the global case.
Hence, we prove many propositions in a more general setting and specialize to
the local case only when this is considerably easier.

For a morphism of schemes f : Y Ñ S, a closed subscheme Z of Y , and a
sheaf F on the étale site of Y we write RjZf˚F for the higher direct images with
support in Z. They are the derived functors of the functor which sends an étale
sheaf F on Y to the sheaf

pS1 Ñ Sq ÞÑ kerpFpY ˆS S
1q Ñ FppY ´ Zq ˆS S

1qq “ H0
ZˆSS1pY ˆS S

1,Fq

on the étale site of S.

Proposition 3.2. In the above notation assume that B is a henselian discrete
valuation ring and that for all primes ` P Npcq setting Λ “ Z{`Z the following
conditions are satisfied:

(1) lim
ÝÑIpX̄,D̄q

Hi
D1pX

1,Λq “ 0 for i ě 3 and

(2) lim
ÝÑIpX̄,D̄q

coker
`

H0pB1, R2
D1π

1
˚Λq Ñ H0pB1, R2π1˚Λq

˘

“ 0.

Then U is Kpπ, 1q with respect to c.

Proof. By Proposition 1.2 it is enough to show that for any i ě 2 and Λ “ Z{`Z
for a prime ` P Npcq

lim
ÝÑ
U 1ÑU

HipU 1,Λq “ 0,

where the limit is taken over all c-coverings of U . Taking the limit of the
excision sequences associated with pX 1, D1q for all desingularized c-coverings
pX 1, D1q Ñ pX,Dq we obtain a long exact sequence

. . .Ñ lim
ÝÑ

IpX̄,D̄q

HipX 1,Λq Ñ lim
ÝÑ

IpX̄,D̄q

HipU 1,Λq Ñ lim
ÝÑ

IpX̄,D̄q

Hi`1
D1 pX

1,Λq Ñ . . . .

Using condition (1) we obtain

lim
ÝÑ

IpX̄,D̄q

HipU 1,Λq – lim
ÝÑ

IpX̄,D̄q

HipX 1,Λq

for i ě 3 and an exact sequence

lim
ÝÑ

IpX̄,D̄q

H2
D1pX

1,Λq Ñ lim
ÝÑ

IpX̄,D̄q

H2pX 1,Λq Ñ lim
ÝÑ

IpX̄,D̄q

H2pU 1,Λq Ñ 0.

For a desingularized c-covering pX 1, D1q Ñ pX,Dq consider the Leray spectral
sequence

HipB1, Rjπ1˚Λq ñ Hi`jpX 1,Λq.
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Let b̄1 Ñ B be a geometric point of B1 lying over the closed point b1 of B1 (com-
patible with x̄). In Section 4 we will see that absolute cohomological purity and
proper base change for X̄{B imply that pRjπ1˚Λqb̄1 “ HipX 1

b̄1
,Λq (see Propo-

sition 4.3). Since X 1
b̄1

is a curve over an algebraically closed field, HjpX 1
b̄1
,Λq

vanishes for j ě 3. Moreover, for i ě 1

lim
ÝÑ
IB1,x̄

HipB1, Rjπ1˚Λq “ lim
ÝÑ
IB1,x̄

Hipkpb1q, HjpX 1b̄1 ,Λqq “ 0

as the absolute Galois group of kpb1q is strongly c-good by assumption. In
total the above limit vanishes whenever i ` j ě 3 and for pi, jq “ p1, 1q and
pi, jq “ p2, 0q. This implies that

lim
ÝÑ

IpX̄,D̄q

HipX 1,Λq “ 0

for i ě 3 and

lim
ÝÑ

IpX̄,D̄q

kerpH2pX 1,Λq
edge
ÝÑ H0pB1, R2π1˚Λqq “ 0. (2)

Consider the diagram

lim
ÝÑ

IpX̄,D̄q

H2
D1pX

1,Λq lim
ÝÑ

IpX̄,D̄q

H2pX 1,Λq lim
ÝÑ

IpX̄,D̄q

H2pU 1,Λq

lim
ÝÑ

IpX̄,D̄q

H0pB1, R2
D1π

1
˚Λq lim

ÝÑ
IpX̄,D̄q

H0pB1, R2π1˚Λq.

edge„ edge

The left vertical arrow is an isomorphism because due to purity RjDπ˚Λ “ 0
for j ď 1. The surjectivity of the lower horizontal arrow is due to condition (2)
and the injectivity of the right vertical arrow is stated above (see (2)). We
conclude that the upper left horizontal map is surjective, whence

lim
ÝÑ

IpX̄,D̄q

H2pU 1,Λq “ 0.

4 Absolute cohomological purity
Before we go into the details of discussing condition (1) in Proposition 3.2
we draw some conclusions from Gabber’s absolute purity theorem that will be
crucial in the treatment of cohomology groups with support.

Let X be a noetherian, regular scheme and Z Ď X a regular closed sub-
scheme of pure codimension c. Then pX,Zq is called a regular pair of codimen-
sion c. Fix a positive integerm invertible onX and set Λ “ Z{mZ. The absolute
cohomological purity theorem proved by Gabber in [7] provides a canonical iso-
morphism

Hn
ZpΛq –

#

0 for n ‰ 2c

ΛZp´cq for n “ 2c.

9



which is induced from the cycle class map sending 1 P Λ to the fundamental
class sZ{X P H2c

Z pX,Λpcqq. Since the étale site of a scheme is equivalent to
the étale site of its reduction, the statement also holds if only Xred and Zred

are regular. We call pX,Zq a weakly regular pair if pXred , Zredq is a regular
pair. Taking into account that the pullback of the fundamental class sZred {Xred

under a morphism pX 1, Z 1q Ñ pX,Zq of weakly regular pairs of codimension c
is e ¨ sZ1red {X1red , where e denotes the ramification index, we obtain the following
compatibility of purity isomorphisms:

Proposition 4.1. Let f : pX 1, Z 1q Ñ pX,Zq be a morphism of weakly regular
pairs of codimension c. Suppose that Z and Z 1 are irreducible and as cycles
on X 1red we have f˚redZred “ e ¨ Z 1red with a positive integer e (the ramification
index). Then, for any m P N invertible on X the following diagram commutes

Hn
ZpX,Z{mZq Hn´2cpZ,Z{mZp´cqq

Hn´2cpZ 1,Z{mZp´cqq

Hn
Z1pX

1,Z{mZq Hn´2cpZ 1,Z{mZp´cqq.

purity

„

¨e

purity

„

Corollary 4.2. Let X be a noetherian, regular scheme and f : X 1 Ñ X a
tamely ramified covering such that the branch locus D Ď X is regular. Let Z be
a regular closed subscheme of D and let Z 1 denote its preimage in X 1. Then,
for any integer m dividing the ramification index of each irreducible component
of Z 1, the canonical map

Hn
ZpX,Z{mZq Ñ Hn

Z1pX
1,Z{mZq

is the zero map for all n P N.

Proof. Without loss of generality we may assume that Z is integral. The scheme
X 1 and the underlying reduced subscheme of Z 1 are regular because the branch
locus D is regular. Denote by Z 1k for k “ 1, . . . , r the irreducible components
of Z 1. For each k we can now apply Proposition 4.1 to the morphism

X 1 ´
ď

i‰k

Z 1i Ñ X

to conclude that

Hn
ZpX,Z{mZq Ñ Hn

Z1k
pX 1 ´

ď

i‰k

Z 1i,Z{mZq

is the zero map. But

Hn
Z1pX

1,Z{mZq “
à

k

Hn
Z1k
pX 1 ´

ď

i‰k

Z 1i,Z{mZq,

and the corollary follows.

Using Gabber’s absolute purity theorem we can prove the following refined
version of the proper base change theorem.
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Proposition 4.3. Let pX,Zq be a weakly regular pair of codimension c and
set U “ X´Z. Let π : X Ñ Y be a proper morphism such that Z intersects Xy

transversally for any closed point y of Y . Set Λ “ Z{mZ for an integer m prime
to the residue characteristics of X. Then for any geometric point ȳ Ñ Y and
any integer d the base change morphisms

pRnpπU q˚Λpdqqȳ Ñ HnpUȳ,Λpdqq

are isomorphisms for any n ě 0.

Proof. Without loss of generality we may assume Y is the spectrum of a strictly
henselian local ring with closed point y. Then, µm – Z{mZ on X and it suffices
to prove the lemma for d “ 0. We need to show that

HnpU,Λq Ñ HnpUy,Λq

is an isomorphism. Consider the following diagram of excision sequences

. . . Hn
ZpX,Λq HnpX,Λq HnpU,Λq . . . .

. . . Hn
Zy
pXy,Λq HnpXy,Λq HnpUy,Λq . . .

The homomorphisms HnpX,Λq Ñ HnpXy,Λq are bijective due to proper base
change. Since by assumption Z intersects Xy transversally, pXy, Zyq Ñ pX,Zq
is a morphism of weakly regular pairs of codimension c yielding a commutative
diagram

Hn
ZpX,Λq Hn´2cpZ,Λp´cqq

Hn
Zy
pXy,Λq Hn´2cpZy,Λp´cqq.

„

„

The horizontal maps are purity isomorphisms and the vertical map on the right
is an isomorphism by proper base change. Hence, the vertical map on the left is
an isomorphism and the lemma follows by applying the five lemma to the above
diagram of exact sequences.

Finally, we prove the following technical result which is a variant of (and
follows from) the compatibility of the purity isomorphisms associated with sub-
schemes Y Ď Z Ď X such that pX,Y q, pX,Zq and pZ, Y q are weakly regular
pairs:

Proposition 4.4. Let X{B be an arithmetic surface and D Ă X an snc-divisor.
Let S Ă D be a set of closed points containing the set Dsing of singular points
of D. Denote by DN the normalization of D and set SN “ S ˆD DN . Then
the following diagram of cohomology groups with coefficients in Λ “ Z{mZ (m
prime to the residue characteristics of X) commutes

11



H3
D´SpX ´ S,Λq H3pX ´ S,Λq H4

SpX,Λq

H1pD ´ S,Λp´1qq H0pS,Λp´2qq

H1pDN ´ SN ,Λp´1qq H2
SN
pDN ,Λp´1qq H0pSN ,Λp´2qq.

δ

δ

purity „ purity „

δ

purity

„

norm

All maps δ are connecting homomorphisms of excision sequences.

Proof. Denote by Di for i “ 1, . . . r the irreducible components of D. Since

H3
D´SpX ´ S,Λq “

à

i

H3
Di´SpX ´ S,Λq,

it suffices to prove the proposition for each component Di separately. We may
thus assume without loss of generality that D is a regular irreducible curve. In
this case the above diagram reduces to

H3
D´SpX ´ S,Λq H3pX ´ S,Λq H4

SpX,Λq

H1pD ´ S,Λp´1qq H2
SpD,Λp´1qq H0pS,Λp´2qq.

δ

δ

purity „

δ

purity „

purity

„

Consider the commutative diagram

H3
D´SpX ´ S,Λq H4

SpX,Λq

H1pD ´ S,H2
D´SpX ´ S,Λqq H2

SpD,H
2
DpX,Λqq

H1pD ´ S,Λp´1qq bH2
D´SpX ´ S,Λp1qq H2

SpD,Λp´1qq bH2
DpX,Λp1qq

H1pD ´ S,Λp´1qq H2
SpD,Λp´1qq.

δ

„

δ

„

„

„

δbres´1

„ bsD´S{X´S

δ

„ bsD{X

The restriction

res : H2
DpX,Λp1qq Ñ H2

D´SpX ´ S,Λp1qq

is an isomorphism which maps the fundamental class sD{X to sD´S{X´S. For
this reason, the homomorphism δ b res´1 in the third line of the diagram is
well defined and the lowermost square commutes. Commutativity of the middle
square follows because HDpXq is a free sheaf which restricts to HD´SpX ´ Sq
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on D ´ S. The upper square commutes due to compatibility of the spectral
sequences

Hi
SpD,H

j
DpX,Λqq ñ Hi`j

S pX,Λq,

HipD ´ S,Hj
D´SpX ´ S,Λqq ñ Hi`j

D´SpX ´ S,Λq.

Furthermore, by [7], Proposition 1.2.1 the following diagram commutes

H4
SpX,Λq

H2
SpD,H

2
DpX,Λqq

H2
SpD,Λp´1qq bH2

DpX,Λp1qq

H2
SpD,Λp´1qq H0pS,Λp´2qq.

„

„

„ bsD{X

„

purity

„

purity

Putting the two diagrams together, the assertion of the proposition follows.

5 Killing cohomology with support
In the setup of Section 3 we derive conditions for hypothesis (1) in Proposi-
tion 3.2 to hold. The idea is to kill cohomology classes with support in D by
c-coverings of pX,Dq which are sufficiently ramified along D (compare Corol-
lary 4.2). More precisely we need the following notion:

Definition 5.1. Let Y be an arithmetic surface and Z Ď Y a Weil divisor.
We say that pY,Zq has enough tame coverings at a closed point y of Z if for
every irreducible component C of Z passing through y there is f P KpY qˆ with
support in Z such that degCpfq ą 0 and degW pfq “ 0 for any other prime
divisor W passing through y. We say that pY,Zq has enough tame coverings if
it has enough tame coverings at every closed point of Z.

If pY, Zq has enough tame coverings at a point y and C is an irreducible
component of Z passing through y, we can construct c-coverings of pY, Zq of
arbitrarily high ramification index in C by taking the normalization of Y in a
function field extension KpY qp d

?
fq|KpY q with f chosen as in Definition 5.1. In

a neighborhood of y this covering ramifies only in C.
Unfortunately, in order to treat condition (1) in Proposition 3.2 we cannot

directly apply Corollary 4.2 as D is not necessarily regular. Instead we proceed
in two steps using the excision sequence

. . .Ñ Hi
SpX,Λq Ñ Hi

DpX,Λq Ñ Hi
D´SpX ´ S,Λq Ñ . . .

and applying Corollary 4.2 to pX ´ S,D ´ Sq and pX,Sq. In case i “ 3 the
argument is a bit subtle and we need to understand the kernel of the map
H3
Z´T pX ´ T,Λq Ñ H4

T pX,Λq for a vertical divisor Z Ă X and a finite set
of closed points T containing the singular points of Z. By Proposition 4.4
the purity isomorphisms translate this map to a map H1pZ ´ T,Λp´1qq Ñ
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H1pS,Λp´2qq which is defined entirely in terms of curves. The following lemma
describes its kernel.

Lemma 5.2. Let C be a projective curve over an algebraically closed field k
with only ordinary double points and let ΓC denote its dual graph. Let T Ă

C be a finite set of closed points containing the set Csing of singular points
of C. Define CN :“

š

i Ci, where Ci are the normalizations of the irreducible
components of C. Set TN “ TˆCCN . Form P N prime to the characteristic of k
consider the homomorphism β of cohomology groups with coefficients in Z{mZ
defined by

H1pCN ´ TN q H2
TN
pCN q H0pTN qp´1q H0pT qp´1q,

H1pC ´ T q

α „

purity norm

β

where α is the connecting homomorphism of the excision sequence associated
with pCN , TN q. Then

kerpβq

kerpαq
– H1pΓC ,Z{mZq,

where H1pΓC ,Z{mZq denotes singular homology with coefficients in Z{mZ.

Proof. The group H1pΓC ,Z{mZq can be calculated using a cellular chain com-
plex. The zero-skeleton pΓCq0 consists of the nodes of the graph which corre-
spond to the irreducible components Ci and the one-skeleton pΓCq1 is all of ΓC .
Thus, the one-cells are the edges of the graph, which correspond to the points
in Csing . We give each edge s a direction by choosing an initial node C1psq and
an end node C2psq. Then H1pΓC ,Z{mZq is the first homology of the sequence

0 Ñ H1ppΓCq1, pΓCq0,Z{mZq d
Ñ H0ppΓCq0,Z{mZq Ñ 0

and the map d can be identified with
à

sPCsing

Z{mZ ¨ sÑ
à

i

Z{mZ ¨ Ci.

s ÞÑ C2psq ´ C1psq.

Let us now compute kerpβq{ kerpαq.

kerpβq

kerpαq
“ ker

ˆ

H1pC ´ T q

kerpαq
Ñ H0pT qp´1q

˙

“ kerpImpαq Ñ H0pT qp´1qq

“ kerpkerpH2
TN
pCN q Ñ H2pCN qq Ñ H0pT qp´1qq

“ kerpH2
TN
pCN q Ñ H2pCN qq X kerpH2

TN
pCN q Ñ H0pT qp´1qq.

We identify the map H2
TN
pCN q Ñ H2pCN q with

à

sNPTN

Z{mZ ¨ sN Ñ
à

i

Z{mZ ¨ Ci,

sN ÞÑ CpsN q
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where CpsN q is the component of CN which contains sN and H2
TN
pCN q Ñ

H0pT qp´1q with
à

sNPTN

Z{mZ ¨ sN Ñ
à

sPT

Z{mZ ¨ s, (3)

sN Ñ spsN q (4)

where spsN q is the image of sN in T . In particular, we obtain an isomorphism
à

sPCsing

Z{nZ ¨ sÑ kerp
à

sNPTN

Z{nZ ¨ sN Ñ
à

sPT

Z{nZ ¨ sq,

s ÞÑ psN q2psq ´ psN q1psq

where psN qipsq P Cipsq are the two preimages of s in CN . Therefore, kerpβq{ kerpαq
is isomorphic to the kernel of the composition

à

sPCsing

Z{mZ ¨ sÑ
à

sNPTN

Z{mZ ¨ sN Ñ
à

i

Z{mZ ¨ Ci,

which maps s P Csing to C2psq ´ C1psq. Comparing with the calculation
of H1pΓC ,Z{mZq at the beginning of the proof we see that

kerpβq

kerpαq
– H1pΓC ,Z{mZq.

In the following we call a (not necessarily integral) projective curve C over
a field k a rational tree if H1pC,OCq “ 0. By flat base change C is rational
if and only if its base change C̄ to the separable closure k̄ of k is rational.
This is the case precisely if every irreducible component of C̄ is isomorphic to
P1
k̄
and moreover the dual graph of C̄ is a tree, i. e. simply connected (see [4],

Definition 4.23).

Lemma 5.3. Let Z ď Dv be a subdivisor whose connected components are
rational trees. Suppose that for every geometric point b̄ above a closed point b P B
the natural map

π1pb, b̄qpcq Ñ π1pB, b̄qpcq

is injective. Then

lim
ÝÑ
IB

H3
S1pX

1,Λq Ñ lim
ÝÑ
IB

H3
Z1YS1pX

1,Λq

is surjective (Remember that S1 is the set of special points of D̄1.)

Proof. Using the excision sequence for S1 Ď Z 1 Y S1 Ď X 1 we see that the
required surjectivity is equivalent to the injectivity of

lim
ÝÑ
IB

H3
Z1´S1pX

1 ´ S1,Λq Ñ lim
ÝÑ
IB

H4
S1pX

1,Λq.

In other words, for B1 Ñ B in IB and ϕ P H3
Z1´S1pX

1 ´ S1,Λq we have to
construct B2 Ñ B1 in IB such that ϕ maps to zero in H4

S2pX
2,Λq. As the

assumptions are stable under étale base change, we may assume B1 “ B. By
Proposition 4.4 we have the following commutative diagram
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H3
Z´SpX ´ S,Λq H4

SpX,Λq

H1pZ ´ S,Λp´1qq H0pS,Λp´2qq,
βp´1q

„

where βp´1q is the p´1q-twist of the map β defined in Lemma 5.2. It thus
suffices to show that the kernel of β vanishes in the limit over IB . Without loss
of generality we may assume that Z is connected. In particular, it is contained
in a single closed fiber of X Ñ B over some point b P B with residue field kpbq.
Let kpbq be an algebraic closure of kpbq and denote by Z̄ and S̄ the base change
of Z and S, respectively, to kpbq. Moreover, write ZN for the normalization
of Z and Z̄N for its base change to kpbq. Consider the diagram of cohomology
groups with coefficients in Λ

H2pkpbqqd H2pkpbqqd

0 H1pZ̄N q
Gkpbq H1pZ̄ ´ S̄qGkpbq H0pS̄qp´1qGkpbq

0 H1pZN q H1pZ ´ Sq H0pSqp´1q,

H1pkpbqqd H1pkpbqqd

0 0

“

β̄

β

“

where d is the number of components of ZN . The vertical sequences are induced
by the Hochschild-Serre spectral sequences

Hipkpbq, HjpZ̄N q,Λqq ñ Hi`jpZN ,Λq,

Hipkpbq, HjpZ̄N ´ S̄N ,Λqq ñ Hi`jpZN ´ SN ,Λq.

The upper horizontal sequence is exact by the following reason: According to
Lemma 5.2, the first homology group H1pΓZ ,Λq of the dual graph ΓZ of Z̄ is
isomorphic to kerpβ̄q{ kerpᾱq, where ᾱ denotes the connecting homomorphism
of the excision sequence associated with S̄N ãÑ Z̄N . As Z is a rational tree, ΓZ
is simply connected, and thus its first homology group vanishes. It follows that
the kernel of β̄ equals the image of the map

γ : H1pZ̄N ,Λq ãÑ H1pZ̄N ´ S̄N ,Λq “ H1pZ̄ ´ S̄,Λq.

Taking Gkpbq-invariants we obtain the upper sequence of the above diagram,
which is therefore exact. A diagram chase now shows the exactness of the lower
horizontal sequence.

Again by the rationality assumption on Z, the cohomology group H1pZ̄N q
vanishes. The above diagram shows that the kernel of β equals H1pkpbqqd. By
the assumption on fundamental groups it vanishes in the limit over IB .

Proposition 5.4. Suppose that the following conditions are satisfied:

16



(i) pX̄, D̄q has enough tame coverings.

(ii) Every connected component of D has at least one horizontal component.

(iii) For every geometric point b̄ above a closed point b P B the natural map

π1pb, b̄qpcq Ñ π1pB, b̄qpcq

is injective.

Then, for any n ě 3
lim
ÝÑ

IpX̄,D̄q

Hn
D1pX

1,Λq “ 0.

Proof. Let pX̄ 1, D̄1q be an object of IpX̄,D̄q and ϕ an element of Hn
D1pX

1,Λq. We
have to show that there is a desingularized c-covering pX̄2, D̄2q Ñ pX̄ 1, D̄1q such
that the image of ϕ in Hn

D2pX
2,Λq is zero. We will see in Proposition 8.1 that

the property of having enough tame coverings is stable under desingularized
tame coverings. Moreover, it is easy to check that this is true for the remain-
ing assumptions as well. Hence, we may assume pX̄ 1, D̄1q “ pX̄, D̄q. We first
construct pX̄ 1, D̄1q in IpX̄,D̄q such that the image of ϕ in Hn

D1pX
1,Λq lifts to

Hn
S1pX

1,Λq.
Let us treat the case n “ 3. Since pX̄, D̄q has enough tame coverings, there

is a desingularized c-covering

pX 1, D1q Ñ pX1, D1q Ñ pX,Dq,

such that m divides the ramification index of each irreducible component of D1.
We have the following commutative diagram of excision sequences with coeffi-
cients Λ:

H3
SpXq H3

DpXq H3
D´SpX ´ Sq

H3
S1YE1pX

1q H3
D1pX

1q H3
D1´S1YE1pX

1 ´ S1 Y E1q.

Let ϕ1 denote the image of ϕ in H3
D1pX

1,Λq. Applying Corollary 4.2 to X 1 ´
S1YE1 Ñ X ´S, we conclude that the rightmost vertical map is the zero map.
Consequently, ϕ1 is mapped to zero in H3

D1´S1YE1pX
1 ´ S1 Y E1,Λq. Hence,

there is ϕ11 P H3
S1YE1pX

1,Λq mapping to ϕ1. In Proposition 7.1 we will see that
the exceptional fibers of a desingularized c-covering are always rational trees.
Therefore, we can apply Lemma 5.3 with Z “ E1 to obtain a finite étale c-
covering B2 Ñ B1 and thus via base change a finite étale c-covering X̄2 Ñ X̄ 1

such that the image of ϕ11 inH3
S2YE2pX

2,Λq lifts to an element ϕ22 P H3
S2pX

2,Λq.
Changing notation we may assume that ϕ lifts to ϕ2 P H

3
SpX,Λq.

Now assume that n ě 4. By the same argument as for n “ 3 there is a desin-
gularized c-covering pX̄ 1, D̄1q Ñ pX̄, D̄q such that the image of ϕ in Hn

D1pX
1,Λq

lifts to Hn
S1YE1pX

1,Λq. In particular, it lifts to Hn
D1v
pX 1,Λq and thus we may

assume that ϕ lifts to Hn
Dv
pX,Λq right away.

Consider the excision sequence

. . .Ñ Hn
S pX,Λq Ñ Hn

Dv
pX,Λq Ñ Hn

Dv´SpX ´ S,Λq Ñ . . . .
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By purity we have

Hn
Dv´SpX ´ S,Λq – Hn´2pDv ´ S,Λp´1qq.

For each component Zi of Dv lying over a closed point bi P B with geometric
point b̄i consider the Hochschild-Serre spectral sequence

Hrpbi, H
sppZi ´ Sqb̄i ,Λqq ñ Hr`spZi ´ S,Λq.

Since pZi´Sqb̄i is an affine curve over an algebraically closed field, its cohomo-
logical dimension is less or equal to one. Moreover, for r ě 1, Hrpbi, H

sppZi ´
Sqb̄i ,Λqq vanishes in the limit over IB as the absolute Galois group of kpbiq is
c-good and π1pb, b̄qpcq Ñ π1pB, b̄qpcq is injective. We conclude that Hn´2pZi ´
S,Λq vanishes in the limit over IB for n ě 4. As before we replace X̄ by X̄ 1
and may assume that ϕ1 maps to 0 in Hn

Dv´S
pX ´ S,Λq. Hence, ϕ1 lifts

to ϕ2 P H
n
S pX,Λq.

Having lifted ϕ to ϕ2 P H
n
S pX,Λq for any n ě 2 we now construct pX̄ 1, D̄1q

in IpX̄,D̄q such that ϕ2 maps to zero in Hn
D1pX

1,Λq. The cohomology group
Hn
S pX,Λq is the direct sum of all Hn

s pX,Λq for the finitely many points s P
S. For s P S choose an irreducible component Ds of D passing through s.
Since pX̄, D̄q has enough tame coverings, we find a desingularized c-covering
pX̄ 1, D̄1q Ñ pX̄1, D̄1q Ñ pX̄, D̄q such thatm divides the ramification indices of all
irreducible components of D̄1 lying over Ds and is unramified in all other prime
divisors passing through s. Since the branch locus is regular in a neighborhood
of s, the pair pX̄1, D̄1q is regular at all preimage points s11, . . . , s1r of s. Hence,
X̄ 1 Ñ X̄1 is an isomorphism in a neighborhood of s11, . . . , s1r. Therefore, by
Corollary 4.2, the homomorphism

Hn
s pX,Λq Ñ

à

i

Hn
s1i
pX 1,Λq

is the zero map. Take a desingularized c-covering pX̄2, D̄2q Ñ pX̄, D̄q dominat-
ing the coverings pX̄ 1, D̄1q Ñ pX̄, D̄q constructed for each s P S.

We obtain a commutative diagram

Hn
S pX,Λq Hn

DpX,Λq

Hn
S2YE2pX

2,Λq Hn
D2pX

2,Λq,

where the left vertical homomorphism is the zero map. This implies the asser-
tion.

6 Killing the Cohomology of higher direct im-
ages

In this section we still keep the notation of Section 3 and examine condition (2)
of Proposition 3.2, i.e. we strive to kill the cokernel of

H0pB,R2
Dπ˚Λq Ñ H0pB,R2π˚Λqq.

In the following lemma we explain how to relate this homomorphism with the
intersection matrix of the irreducible components of the singular fibers.
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Lemma 6.1. Suppose that B is strictly henselian with closed point s. Denote
by ρ the intersection matrix of the components of the special fiber of π̄ : X̄ Ñ B.
Then, for any integer c the following diagram commutes

H2
Dv
pX,Λpc` 1qq H2pX,Λpc` 1qq

H0pDv,Λpcqq H2pXs,Λpc` 1qq

à

CĎDv

Λpcq ¨ C
à

CĎX̄s,CXD̄h“H

Λpcq ¨ C.

base change„purity „

deg„„

ρ

Proof. It suffices to prove the lemma for c “ 0. Consider the commutative
diagram

H2
Dv
pX,µmq H2pX,µmq H2pXs, µmq

à

CĎDv

H1
CpX,Gmq b Λ PicpXq b Λ

à

CXD̄h“H

PicpCq b Λ

à

CĎDv

Λ ¨ C
à

CXD̄h“H

Λ ¨ C.

„

„ „ „

„ pdegCqC
„

The direct sums on the right hand side run only over irreducible components
of X̄s with trivial intersection with D̄h as these are precisely the components
of Xs which are proper over B. The upper right horizontal isomorphism comes
from Proposition 4.3. The upper vertical maps are connecting homomorphisms
of the Kummer sequence. The concatenation of the left hand side vertical arrows
yields the purity isomorphism and the right hand vertical arrows give the degree
map on H2pXs, µmq. The restrictions

PicpXq Ñ PicpCq

are given by D ÞÑ D ¨ C where D ¨ C denotes the intersection product of the
divisor D with the curve C. Composition with degC yields the intersection
number pD ¨Cq. We conclude that the lower horizontal map is indeed given by
the intersection matrix ρC1,C2 “ pC1 ¨ C2q.

We set
Zpcq “ lim

ÐÝ
nPNpcq

Z{nZ “
ź

`PNpcq prime

Z`.

Lemma 6.2. Assume that pX̄, D̄q has enough tame coverings. Then, for every
integer d P Npcq there is a desingularized c-covering pX̄ 1, D̄1q Ñ pX̄, D̄q such
that the image of

H2
DpX,Zpcqp1qq Ñ H2

D1pX
1,Zpcqp1qq

is divisible by d.

19



Proof. By purity we have
à

CĎD

Zpcq ¨ C „
Ñ H2

DpX,Zpcqp1qq.

Moreover, if pX̄ 1, D̄1q Ñ pX̄, D̄q is a desingularized c-covering, the induced map
à

CĎD

Zpcq ¨ C Ñ
à

C1ĎD1
Zpcq ¨ C 1

is given by the pull-back of divisors. Let C Ď D be an irreducible component
and c P C a closed point of D. Since pX̄, D̄q has enough tame coverings, there
is fc P KpX̄qˆ with support in D̄ such that in a Zariski neighborhood Uc of c
we have div fc “ mcC with mc ą 0. Denote by m1c the maximal factor of mc

contained in Npcq. Let φc : pX̄c, D̄cq Ñ pX̄, D̄q be a desingularized c-covering
with function field extension

KpX̄cq “ KpX̄q
`

m1cd
a

fc
˘

|KpX̄q.

Then div fc is divisible by m1cd as an element of Div Xc. Thus, φ˚c |Uc
pC|Uc

q

is divisible by d, i. e., the coefficients of all irreducible components of φ˚c pCq
whose generic points lie over Uc are divisible by d. This property is conserved
by further desingularized coverings.

There are finitely many closed points c1, . . . , cn P C such that the open
subschemes Uc1 , . . . , Ucn cover C. Let pX̄ 1, D̄1q Ñ pX̄, D̄q be a desingularized c-
covering dominating all coverings pX̄ci , D̄ciq Ñ pX̄, D̄q constructed above. Then
the pullback of C to X̄ 1 is divisible by d.

Lemma 6.3. Let B0 be the strict henselization of B at a geometric point of B
over a closed point. Denote by X0 and D0 the base change of X and D, respec-
tively, to B0. Assume that D̄h is nonempty and meets all irreducible components
of W . If pX̄, D̄q has enough tame coverings, the cokernel of

H2
D0
pX0,Zpcqp1qq Ñ H2pX0,Zpcqp1qq

vanishes in the limit over IpX̄,D̄q.

Proof. We may replace B by B0. We just have to check that all tame coverings
of pX̄0, D̄0q occurring in the proof come from coverings of pX̄, D̄q. It suffices to
prove that the cokernel of

φ : H2
Dv
pX,Zpcqp1qq Ñ H2pX,Zpcqp1qq

vanishes in the limit over IpX̄,D̄q as H2
Dv
pX,Zpcqp1qq is a direct summand of

H2
DpX,Zpcqp1qq. Taking the inverse limit over all Λ – Z{nZ with n P Npcq of

the diagrams in Lemma 6.1 and setting c “ 0, we obtain

H2
Dv
pX,Zpcqp1qq H2pX,Zpcqp1qq

H0pDv,Zpcqq H2pXs,Zpcqp1qq

à

CĎDv

Zpcq ¨ C
à

CĎDv

Zpcq ¨ C.

φ

base change„purity „

deg„„

ρ
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Since we assumed that D̄h meets all irreducible components of W , we have that
C X D̄h “ H if and only if C Ď Dv. By [15], Theorem 9.1.23 the intersection
matrix of the components of the special fiber is negative semidefinite and its
radical is generated by a rational multiple of the special fiber. Since we assumed
that D̄h is nonempty, the support of D does not comprise all irreducible com-
ponents of the special fiber. Hence, the restriction ρ of the intersection matrix
to the components of Dv is negative definite. We conclude that

φbQ : H2
DpX,Zpcqp1qq bQÑ H2pX,Zpcqp1qq bQ

is an isomorphism and thus the cokernel of φ is c-torsion. Take d P Npcq such
that d¨cokerφ “ 0. By Lemma 6.2 there is a desingularized c-covering pX̄ 1, D̄1q Ñ
pX̄, D̄q of pX̄, D̄q such that the image of

H2
DpX,Zpcqp1qq Ñ H2

D1pX
1,Zpcqp1qq

is divisible by d. Taking into account that multiplication by d is injective
on H2pX 1,Zpcqp1qq this proves the result.

We can now specify sufficient conditions for assertion (2) in Proposition 3.2
to hold:

Proposition 6.4. Assume that D̄h is nonempty and intersects all irreducible
components of W and that pX̄, D̄q has enough tame coverings. Then

cokerp lim
ÝÑ

IpX̄,D̄q

H0pB1, R2
D1π

1
˚Λq Ñ lim

ÝÑ
IpX̄,D̄q

H0pB1, R2π1˚Λqq “ 0.

Proof. Since the assumptions are stable under desingularized tame coverings
(see Proposition 8.1), it suffices to show that the cokernel of

H0pB,R2
Dπ˚Λq Ñ H0pB,R2π˚Λq

is killed by a desingularized c-covering. We have a direct sum decomposition
indexed by the irreducible components Di of D:

R2
Dπ˚Λ “

à

i

R2
Di
π˚Λ.

It is sufficient to prove that the cokernel of the vertical part vanishes after a
desingularized c-covering. Both R2

Dv
π˚Λ and R2π˚Λ are skyscraper sheaves

with support in the singular locus of X Ñ B. We can treat each singular fiber
separately and thus assume that B is a henselian discrete valuation ring. We
only have to make sure that the constructed desingularized c-covering extends to
a desingularized c-covering above the initial base scheme. We have the following
diagram of exact sequences

H0pB,R2
Dv
π˚Zpcqq H0pB,R2

Dv
π˚Zpcqq H0pB,R2

Dv
π˚Λq

H0pB,R2π˚Zpcqq H0pB,R2π˚Zpcqq H0pB,R2π˚Λq.

¨m

ρ ρ ρ

¨m

(5)

The exactness of the above sequences can be checked by using the explicit de-
scription of the cohomology groups involved.
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In order to show that the cokernel of the right hand side vertical map
in diagram (5) vanishes after a desingularized c-covering it suffices to show
that the cokernel of the middle vertical map does so. The stalk of the mor-
phism R2

Dv
π˚Zpcq Ñ R2π˚Zpcq at b̄ is

H2
Db̄
pXsh ,Zpcqq Ñ H2pXsh ,Zpcqq.

By Lemma 6.1 it is given by the intersection matrix ρ of the components of Db̄.
Since Db̄ does not contain all components of the geometric special fiber, ρ is
injective. Denote by F the cokernel. By Lemma 6.3 there is a desingularized c-
covering pX̄ 1, D̄1q Ñ pX̄, D̄q such that FÑ F1 is the zero map (where F1 is the
respective cokernel defined on X 1). We have an exact sequence

0 Ñ H0pB,R2
Dv
π˚Zpcqq Ñ H0pB,R2π˚Zpcqq Ñ H0pB,Fq.

So the cokernel of H0pB,R2
Dv
π˚Zpcqq Ñ H0pB,R2π˚Zpcqq is a subgroup of F.

This shows the result.

7 Exceptional fibers
Remember that we postponed the discussion of three issues: Firstly, we have to
show that the category IpX̄,D̄q is cofiltered. Secondly, we have yet to see that the
dual graph of the exceptional divisor of a desingularized tame covering is simply
connected. Finally, we need that the property of having enough tame coverings
is stable under desingularized c-coverings. All three assertions rely upon an
examination of the exceptional fibers of a desingularized tame covering. In this
section we describe the structure of these exceptional fibers and answer the first
two questions. The treatment of the third question is completed in Section 8.

Let us call curve a noetherian scheme whose irreducible components are one-
dimensional. We say that a curve C is a chain of P1’s if it is a scheme of finite
type over a field k whose irreducible components C1, . . . , Cn are isomorphic
to P1

k, for i “ 1, . . . , n ´ 1 the curve Ci intersects Ci`1 in exactly one point,
which is moreover k-rational, and Ci X Cj is empty for |i ´ j| ě 2. If C is a
closed subscheme of another curve C0, we say that C is a bridge of P1’s in C0

if C is a chain of P1’s and C intersects exactly two of the remaining irreducible
components of C0 and this intersection takes place in two k-rational points
c1 P C1 and cn P Cn.

The following result was proved in case B is the spectrum of a discrete
valuation ring with algebraically closed residue field by Viehweg (see [20]). In
general, it boils down to the fact that logarithmic singularities on a surface are
of type An. This should be well known. However, the author was not able to
find a good reference. Therefore, we include a proof.

Proposition 7.1. Let X{B be an arithmetic surface and D Ď X a tidy divisor.
Let pX1, D1q Ñ pX,Dq be a tame covering of pX,Dq and pX 1min , D

1
minq Ñ

pX1, D1q the minimal desingularization of pX1, D1q. Then D1min is a tidy divisor
and the exceptional fibers of X 1min Ñ X1 are bridges of P1’s in D1min (i. e.
the singularities of X1 at points in D1 are of type An, or Hirzebruch-Jung
singularities). In particular, pX 1min , D

1
minq Ñ pX,Dq is a tidy desingularization

of pX,Dq. Moreover, for any other desingularized tame covering pX 1, D1q Ñ
pX,Dq the exceptional fibers are bridges of P1’s in D1, as well.
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Proof. We view pX,Dq as a log scheme with log structure given by the divisorD.
Since D has normal crossings, pX,Dq is log-regular and the corresponding log
structure is toric. The tame covering pX1, D1q Ñ pX,Dq is Kummer étale by the
logarithmic version of Abhyankar’s lemma (see [9], Thm. 7.3.44). In particular,
it is log-smooth and thus pX1, D1q is log-regular and the corresponding log struc-
ture MD1

Ñ OX1
toric, as well. In section 10 of [13] Kato associates a fan FD1

to the log scheme pX1, D1q. In this context a fan is a monoidal space which is
locally isomorphic to SpecP for a sharp monoid P . As a topological space the
fan FD1 is the subspace tx P X1|Ipx,MD1q “ mxu of X1, where Ipx,MD1q is the
ideal generated by MD1,xzM

ˆ
D1,x

. The structure sheaf is given by the inverse
image of MD1

zOˆX1
. Since the log structure of pX1, D1q is toric, the fan FD1

corresponds to a classical fan ∆, i.e. a fan of convex polyhedral cones in a
two-dimensional lattice L as described in [8]. We may work locally and thus
assume that ∆ consists of one two-dimensional cone σ together with its two
one-dimensional faces τ and τ 1 and t0u. The faces τ and τ 1 correspond to prime
divisors P and P 1 on X1 constituting the irreducible components of D1 (see [13],
Corollary 11.8). They intersect in one point x1 P X1, which is the only possibly
singular point of X1. By [8], section 2.6 we can find a subdivision ∆1 of ∆ in
cones which are isomorphic to N2. In dimension 2 a subdivision of σ is given by
inserting additional rays τ1, . . . , τn´1 forming the faces of cones σ1, . . . , σn.

τ

τ1

τ2

τ3
τ 1

τ

τ 1

σ1

σ2

σ3

σ4

σ

By [13], 10.4. this provides us with a resolution of singularities pX 1, D1q Ñ
pX1, D1q such that D1 has strictly normal crossings. The exceptional fiber
consists of prime divisors E1, . . . , En´1 corresponding to the rays τ1, . . . , τn´1

and Ei intersects Ei`1 in one point corresponding to the cone σi. The strict
transforms of P and P 1 correspond to the rays τ and τ 1. Hence, P intersects τ1
in one point and P 1 intersects τn´1 in one point. It remains to see that the Ei
are rational. By the proof of [13], Proposition 9.9 we have

X 1 “ X1 ˆZr∆s SpecZr∆1s.

The exceptional fiber is thus given by

Spec kpx1q ˆZr∆s SpecZr∆1s.

Locally this is the spectrum of kpx1qrσ
_
i {σ

_s, which is readily checked to be
rational.

Corollary 7.2. In the situation of Proposition 7.1 let x1 be a special point
of D1. Let Z1 be an irreducible component of D1 containing x1. Denote by Z 1

23



its strict transfer in X 1min and by Z its image in X. Let E1, . . . , En be the
irreducible components of the exceptional fiber of X 1min Ñ X1 above x1 such
that Ei intersects Ei`1 and Z 1 intersects E1. Then above an open neighborhood
of x1 the pullback of Z to X 1min is given by

a0Z
1 ` a1E1 ` . . . anEn

with a0 ą a1 ą . . . ą an ą 0.

Proof. Denote by b the image of x in B and by ϕ the morphism X 1min Ñ X.
In order to simplify notation, we set E0 :“ Z 1. By the projection formula and
Proposition 7.1 we have

0 “ ϕ˚Z ¨ En “ pa0E0 ` a1E1 ` . . . anEnq ¨ En “ rkpx1q : kpbqsan´1 ` anE
2
n.

Since the desingularization X 1min Ñ X1 is minimal, En cannot be a p´1q-curve
and thus E2

n ă ´rkpx1q : kpbqs. (The self-intersection of En has to be negative
by [15], chapter 9, Theorem 1.27.) Hence,

an´1 “ ´anE
2
n ą an.

By induction we may assume that ai`1 ă ai for 0 ă k ď i ă n. Again by the
projection formula we obtain

0 “ ϕ˚Z ¨ Ek “ rkpx1q : kpbqspak´1 ` ak`1q ` akE
2
k.

By induction and using E2
k ď ´2rkpx1q : kpbqs we conclude that

ak´1 “ ´ak`1 ´
ak

rkpx1q : kpbqs
E2
k ě ´ak`1 ` 2ak ą ak.

Corollary 7.3. Let X{B be an arithmetic surface and D Ď X a tidy divisor.
Let pX1, D1q Ñ pX,Dq be a tame covering of pX,Dq and pX 1, D1q Ñ pX1, D1q

a desingularization of pX1, D1q. Assume that every irreducible component of an
exceptional fiber of pX 1, D1q Ñ pX1, D1q intersects the other irreducible compo-
nents of D1 in at least two points. Then pX 1, D1q Ñ pX1, D1q is a tidy desingu-
larization.

Proof. We can factor pX 1, D1q Ñ pX1, D1q as

pX 1, D1q :“ pX 1n, D
1
nq Ñ . . .Ñ pX 11, D

1
1q Ñ pX 10, D

1
0q Ñ pX1, D1q,

where pX 10, D10q Ñ pX1, D1q is the minimal desingularization of pX1, D1q and
for i “ 1, . . . , n the morphism pX 1i, D

1
iq Ñ pX 1i´1, D

1
i´1q is the blowup of X 1i´1

in a closed point d1i´1 of D1i´1. By Proposition 7.1 the minimal desingulariza-
tion pX 10, D10q Ñ pX1, D1q is a tidy desingularization. Moreover, blowing up in
closed points does not destroy the tidiness of a divisor. Hence, D1i is a tidy
divisor of X 1i for all i “ 0, . . . n. Suppose that pX 1, D1q Ñ pX1, D1q is not a
tidy desingularization. Then there is an index i such that d1i´1 is not a special
point of D1i´1, i. e., d1i´1 is a regular point of D1i´1. Let i0 be the biggest such
index. Then the exceptional fiber of pX 1i0 , D

1
i0
q Ñ pX 1i0´1, D

1
i0´1q has only one

intersection point with the other irreducible components of D1i0 . This does not
change by blowing up D1i0 in special points. We thus obtain a contradiction.
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Let D be a tidy divisor on an arithmetic surface X and x̄Ñ U “ X ´D a
geometric point. The explicit description of the exceptional fibers in Proposi-
tion 7.1 enables us to prove that the category IpX,Dq is cofiltered:

Proposition 7.4. The following assertions hold:

(i) If pX 1, D1q Ñ pX,Dq and pX2, D2q Ñ pX 1, D1q are both desingularized c-
coverings, the composite pX2, D2q Ñ pX,Dq is again a desingularized c-
covering.

(ii) If pX 1, D1q Ñ pX,Dq and pX2, D2q Ñ pX,Dq are desingularized c-coverings,
there is a commutative diagram of desingularized c-coverings

pX 1, D1q

pX3, D3q pX,Dq.

pX2, D2q

Proof. (i). Let X1 be the normalization of X in KpX 1q and X2 its normalization
in KpX2q. Furthermore, denote by X 11 the normalization of X 1 in KpX2q. We
obtain a Cartesian diagram

D2 D2 D

X2 X2 X.

Since U 1 “ X 1 ´ D1 is the normalization of U “ X ´ D in KpX 1q and U2 “
X2 ´D2 is the normalization of U 1 in KpX2q, we conclude that U2 is also the
normalization of U inKpX2q. It is thus an open subscheme ofX2 and U2 Ñ U is
a finite étale c-covering as finite étale c-coverings are stable under composition.
Hence, X2 Ñ X2 is birational and an isomorphism on U2. Moreover, D2 Ď
X2 is a tidy divisor. The only remaining question is whether X2 Ñ X2 is
obtained from the minimal desingularization of pX2, D2q by successively blowing
up in special points. By Corollary 7.3 it suffices to show that every irreducible
component of an exceptional fiber of X2 Ñ X2 meets the other irreducible
components of D2 in at least two points. The morphisms X2 Ñ X 1 and X 1 Ñ X
factor as

pX 1, D1q “ pYm, ZmqÑ . . .Ñ pY0, Z0q “ pX1, D1qÑ pX,Dq,

pX2, D2q“ pYn, Znq Ñ . . .Ñ pYm`1, Zm`1q“ pX
1
1, D

1
1qÑ pX 1, D1q,

where pY0, Z0q Ñ pX1, D1q and pYm`1, Zm`1q Ñ pX 11, D
1
1q represent the min-

imal desingularizations of pX 11, D11q and pX1, D1q, respectively, and for i “
1, . . . ,m and i “ m ` 2, . . . , n the morphism pYi, Ziq Ñ pYi´1, Zi´1q is the
blowup of Yi´1 in a special point zi´1 of Zi´1. Let E be an irreducible compo-
nent of an exceptional fiber of X2 Ñ X2. There is i P t1, . . . ,muYtm`2, . . . nu
such that the image of E in Yi is one-dimensional and its image in Yi´1 is a
closed point. This closed point is precisely the point zi´1 and we obtain a finite
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morphism from E to the exceptional fiber of Yi Ñ Yi´1. Since Xi Ñ Xi´1 is the
blowup of Xi´1 in zi´1 and zi´1 is a special point, its exceptional fiber intersects
the other irreducible components of Zi in two points. The intersection points
of E contain the preimages of these two points and thus there are at least two
intersection points.

(ii). Let K3 be the compositum of KpX 1q and KpX2q and X3 the normal-
ization of X in K3. This defines a c-covering pX3, D3q Ñ pX,Dq. We obtain
rational maps X3 99K X 1 and X3 99K X2, which, restricted to U3 “ X3 ´D3,
are finite étale c-coverings of U 1 “ X 1 ´ D1 and U2 “ X2 ´ D2, respectively.
Using elimination of indeterminacies and the existence of tidy desingulariza-
tions we find a desingularization pX3, D3q Ñ pX3, D3q dominating pX 1, D1q
and pX2, D2q such that D3 is tidy. Suppose there is an irreducible compo-
nent E of an exceptional fiber of X3 with only one intersection point with the
other irreducible components of D3. Let us write

pX3, D3q “ pX3n , D
3
n q Ñ . . .Ñ pX30 , D

3
0 q Ñ pX3, D3q,

where pX30 , D30 q Ñ pX3, D3q is the minimal desingularization of pX3, D3q and
for i “ 1, . . . , n the morphism X3i Ñ X3i´1 is the blowup of X3i´1 in a closed
point di´1 P D

3
i´1. There is i P t1, . . . , nu such that the image of E is the

point di´1 and the image of E in X3i is the exceptional fiber Ei of X3i Ñ X3i´1.
Since E has only one intersection point, the same holds for Ei. Furthermore,
the blowup points dk´1 for k “ i`1, . . . , n must not lie above Ei except possibly
above the intersection point zi´1 of Ei´1 with the other irreducible components.
One checks that after blowing up in zi´1 the strict transform of Ei is still
a p´1q-curve. Therefore, we can contract E. Moreover, by similar arguments
as in the proof of part (i) the image of E in X 1 as well as in X2 is a point.
Hence, the contraction still factors through X 1 Ñ X and X2 Ñ X. After
finitely many contractions we may assume that all irreducible components of
exceptional fibers of X3 Ñ X3 have at least two intersection points. Then the
same holds for the exceptional fibers of X3 Ñ X 1 and of X3 Ñ X2 as these
are contained in the exceptional fibers of X3 Ñ X3. The assertion now follows
from Corollary 7.3.

8 Stability of enough tame coverings
Let us fix an arithmetic surface X{B and a tidy divisor D Ď X. The aim of
this section is to show:

Proposition 8.1. Let π : pX 1, D1q Ñ pX1, D1q Ñ pX,Dq be a desingularized
c-covering. If pX,Dq has enough tame coverings, the same holds for pX 1, D1q.

For the proof of Proposition 8.1 we need to investigate the multiplicities of
the irreducible components of the pullback to X 1 of a prime divisor on X.

Definition 8.2. Let f : pX 1, D1q Ñ pX,Dq be a desingularized c-covering.
Let x1 P D1 be a closed point and denote by x P D the image of x1 in X. Let us
call D1, . . . , Dn (necessarily n “ 1 or n “ 2) the irreducible components of D
passing through x and D11, . . . , D1m (m ď n) the irreducible components of D1
passing through x1. Restricting f to a suitable neighborhood of x1, the pullback
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of Cartier divisors via f induces a homomorphism

Q ¨D1 ‘ . . .‘Q ¨Dn Ñ Q ¨D11 ‘ . . .‘Q ¨D1m.

We call this morphism multiplicity homomorphism at x1 and its transformation
matrix with respect to the above bases multiplicity matrix at x1.

Multiplicity homomorphisms are compatible with composition. If pX2, D2q Ñ
pX 1, D1q is another morphism as above and x2 a closed point of D2 mapping
to x1 P D1, the multiplicity homomorphism of pX2, D2q Ñ pX 1, D1q at x2 is the
composition of the multiplicity homomorphism of pX2, D2q Ñ pX 1, D1q at x2
and the multiplicity homomorphism of pX 1, D1q Ñ pX,Dq at x1.

Lemma 8.3. Let pX 1, D1q Ñ pX,Dq be the blowup of X in a special point x
of D. Then all multiplicity homomorphisms are surjective.

Proof. Denote by D1 and D2 the irreducible components of D passing through x
and by D11 and D12 their strict transforms in X 1. Furthermore, let E denote the
singular fiber of X 1 Ñ X. On E Ď D1 there are two points x11 and x12 where D1
is singular, namely the respective intersection points with D11 and D12. The
pullback of Di is given by D1i `E. Hence, the intersection matrix at x11 as well
as at x12 (with respect to the bases tpD1, D2q, pD

1
1, Equ and tpD1, D2q, pE,D

1
2qu,

respectively) is
ˆ

1 0
1 1

˙

,

which is invertible. If x1 P E is a nonsingular point of D1, its multiplicity matrix
is

`

1 1
˘

,

which is nonzero and thus its multiplicity homomorphism is surjective. The
multiplicity homomorphism at any other closed point of D1 is the identity.

Lemma 8.4. Let ϕ : pX 1, D1q Ñ pX1, D1q Ñ pX,Dq be a desingularized c-
covering. Then all multiplicity homomorphisms are surjective.

Proof. By Lemma 8.3 we may assume that X 1 Ñ X1 is the minimal desingular-
ization of X1. Let x1 P D1 be a closed point and denote by x1 and x the image
of x1 in X1 and X, respectively. If x1 is a regular point of D1, there is only
one irreducible component of D1 passing through x1. Hence, the multiplicity
homomorphism at x1 is surjective if and only if it is nonzero, which is clear by
taking the pullback of any irreducible component of D passing through x.

Suppose that x1 is a singular point of D1. Then also x1 and x are singular
points of D1 and D, respectively. There are two irreducible components Z1

and W1 of D1 passing through x1 mapping to the irreducible components W
and Z of D passing through x. According to Corollary 7.2 we have in a neigh-
borhood of x1

ϕ˚Z “ a0Z
1 ` a1E1 ` . . . anEn

with a0 ą a1 ą . . . an ą 0 and

ϕ˚W “ b1E1 ` . . . bnEn ` bn`1W
1

with b1 ă . . . ă bn ă bn`1, and where Z 1 and W 1 denote the strict transforms
of Z1 and W1, respectively, in X 1. Setting E0 :“ Z 1 and En`1 :“ W 1 we know
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that there is an integer i with 0 ď i ď n such that x1 is the intersection point
of Ei with Ei`1. The multiplicity matrix at x1 is

ˆ

ai bi
ai`1 bi`1

˙

and
det

ˆ

ai bi
ai`1 bi`1

˙

“ aibi`1 ´ ai`1bi ą aibi ´ aibi “ 0

as ai`1 ă ai and bi`1 ą bi. Therefore, also in this case the multiplicity homo-
morphism is surjective.

Proof of Proposition 8.1. Assume that pX,Dq has enough tame coverings. Let
x1 P D1 be a closed point and Z 1 an irreducible component of D1 passing
through x1. We have to find f 1 P KpX 1qˆ with support in D1 such that
degZ1pf

1q ą 0 and degC1pf
1q “ 0 for all other irreducible components C 1 of D1

passing through x1. Let Z1, . . . , Zr (for r “ 1 or r “ 2) denote the irreducible
components of D passing through the image point x P D of x1. Since pX,Dq has
enough tame coverings, for i “ 1, . . . , r there is fi P KpXqˆ with support in D
such that degZi

pfiq ą 0 and degZj
pfiq “ 0 for i ‰ j. The projections of div fi

to
Q ¨ Z1 ‘ . . .‘Q ¨ Zr

constitute a basis of this vector space. Let Z 1 “ Z 11, . . . , Z
1
s denote the irreducible

components of D1 passing through x1. Lemma 8.4 provides the surjectivity of
the multiplicity homomorphism

φx1 : Q ¨ Z1 ‘ . . .‘Q ¨ Zr Ñ Q ¨ Z 11 ‘ . . .‘Q ¨ Z 1s

at x1 induced by pullback. We obtain integers d, k1, . . . , kr with d ą 0 such that

d ¨ Z 11 “ φx1pk1div f1 ` . . . krdiv frq.

In other words, setting f “ fk1
1 ¨ . . . fkrr we have in a neighborhood of x1

div f “ d ¨ Z 1,

what we wanted to prove.

9 Neighborhoods with enough tame coverings
At this point we have completed the discussion of conditions (1) and (2) in
Proposition 3.2. As a result we know that under the assumptions listed in
Proposition 5.4 and Proposition 6.4 the arithmetic surface U is Kpπ, 1q with
respect to c. The remaining task is to construct neighborhoods on a given
arithmetic surface satisfying these assumptions. The property of having enough
tame coverings is the most difficult to realize. It is the aim of this section to
explain how to construct neighborhoods with enough tame coverings. We need
the following variant of prime avoidance.
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Lemma 9.1. Let A be a noetherian ring and p1, . . . , pr and q1, . . . , qs prime
ideals such that for i ‰ j qi is not contained in qj. For j ď s define the
integer mj by

p1 ¨ . . . ¨ pr Ď q
mj

j zq
mj`1
j .

Then there is a P A such that for i ď r we have a P pi and for j ď s we
have a R qmj`1

j .

For the rest of this section we use the following notation: For an integral
closed subscheme Z of an affine scheme Spec A we denote by pZ the prime ideal
of A corresponding to the generic point of Z. Moreover, we write mxpZq for the
multiplicity of a closed subscheme Z in a point x.

Lemma 9.2. Let X{B be a quasi-projective arithmetic surface such that B is
a discrete valuation ring with finitely generated quotient field. Let x1, . . . , xn be
finitely many points of X. Then there are horizontal prime divisors G1, . . . , Gs,
Gs`1, . . . , Gr such that G1, . . . , Gs and Gs`1, . . . , Gr each generate the Weil
divisor class group CH1

pXq of X. Furthermore, the supports of Gi for i “
1, . . . , r do not contain xj for j “ 1, . . . , n and the supports of Gi and Gj
for i ď s and j ą s are disjoint.

Proof. The generic fiberXη ofX Ñ B is a smooth curve over a finitely generated
field. By a generalization of the Mordell-Weil theorem due to Néron (see [16])
its Weil divisor class group is finitely generated. Denote by C1, . . . , Cl the
irreducible components of the special fiber. The Weil divisor class group of X is
generated by the Weil divisor class group of Xη and by C1, . . . , Cl. It is therefore
also finitely generated, by prime divisors D1, . . . , Dm, say.

Since X is quasi-projective over an affine scheme, there is an affine open
subscheme Spec A Ď X containing x1, . . . , xn, as well as the generic points
of D1, . . . , Dm and of C1, . . . , Cl (see [15], Proposition 3.3.36). By Lemma 9.1
we can choose f1, . . . , fm P A such that for i “ 1, . . . ,m

fi P pDizp
2
Di
,

fi R p
mCj

pDiq`1

Cj
for j “ 1, . . . , l,

fi R p
mxj

pDiq`1
xj for j “ 1, . . . , n.

Viewing fi as elements ofKpXqˆ we obtain divisorsD1´div f1, . . . , Dm´div fm
generating the Weil divisor class group. The supports of the divisors Di´div fi
do not contain x1, . . . , xn and the coefficients of C1, . . . , Cl are zero, i. e., Di ´

div fi are horizontal. Denote by G1, . . . , Gs the prime divisors in the support
of D1´div f1, . . . , Dm´div fm. Then G1, . . . , Gs are horizontal prime divisors
generating theWeil divisor class group whose supports do not contain x1, . . . , xn.

Denote by z1, . . . , zt the intersection points of G1, . . . , Gs with the spe-
cial fiber. By the same argument as above we find horizontal prime divisors
Gs`1, . . . , Gr generating CH1

pXq whose supports do not contain x1, . . . , xn nor
z1, . . . , zt. Hence, the support of Gi for i ď s is disjoint from the support of Gj
for j ą s as z1, . . . , zt are the only possible intersection points of Gi with another
divisor.
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Lemma 9.3. Let X{B be an arithmetic surface and let G1, . . . , Gs be horizon-
tal prime divisors generating the Weil divisor class group CH1

pXq of X. Let x
be a closed point of X of codimension 2 such that X is regular at x and x
is not contained in any Gj for j “ 1, . . . , s. Denote by X 1 Ñ X the blowup
of X in x. Let G be a horizontal prime divisor disjoint from G1, . . . , Gs with
nontrivial intersection with the exceptional locus E. Then G1, . . . , Gs, G gener-
ate CH1

pX 1q bQ.

Proof. The Weil divisor class group of X 1 is generated by G1, . . . , Gs and E.
Let G0 denote the image of G in X. Since G1, . . . , Gs generate the Weil divisor
class group of X, there are nj P Z such that

G0 “

s
ÿ

j“1

njGj

in CH1
pXq. By [15], Chapter 9, Proposition 2.23 the pullback of G0 to X 1 is

given by
G`mxpG0q ¨ E.

Since x P G0, the multiplicity mxpG0q is positive. In CH1
pX 1qbQ we thus have

E “
1

mxpG0q
p

s
ÿ

j“1

njGj ´Gq.

Lemma 9.4. Let X be a projective arithmetic surface over a discrete valuation
ring B and D a tidy divisor on X. Let x, z1, . . . , zk P X be closed points such
that X and the reduced special fiber Xs,red are regular at x. Assume moreover
that x is not a special point of D. Then there is a horizontal prime divisor Dx

passing through x and disjoint from z1, . . . , zk such that Dx `D is tidy.

Proof. Denote by s “ Spec k the special point of B and by η “ SpecK the
generic point. Choose an embedding X ãÑ PNB . This induces embeddings Xs ãÑ

PNk and Xη ãÑ PNK . Let T be the finite subscheme of PNk which is the disjoint
union of all singular points of X, all singular points of Xs,red and all special
points of D (they are all contained in the special fiber). In order to prove the
lemma it suffices to find a hyperplane H of PNB intersecting X transversally,
passing through x, and disjoint from T such that Dx :“ HˆPN

B
X is regular and

Dx`D is tidy. By [12], Lemma 1.3 a hyperplane H satisfies these conditions if

(i) Hs intersects Xs transversally, passes through x, and is disjoint from T ,

(ii) Hη intersects Xη transversally.

Assume first that k is finite. By [17], Thm. 1.2 there is a hypersurface Hs

of PNk intersecting Xs,red transversally, passing through x, and disjoint from T .
Changing the projective embedding we may assume that Hs is a hyperplane.
If k is infinite, the existence of the hyperplane Hs follows by the classical Bertini
theorem.

Let H be any hyperplane of PNB with special fiber the hyperplane Hs con-
structed above. We claim that the generic fiber Hη intersects Xη transversally.
Let y P Xη be a closed point in the intersection and choose a point ys of the
special fiber which is a specialization of y. Then ys is not contained in T as Hs

is disjoint from T . Hence, Hs intersects Xs transversally at ys. Since y is a
generalization of ys this implies that Hη intersects Xη transversally at y.
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Proposition 9.5. Let Y {B be an arithmetic surface such that B is a discrete
valuation ring with finitely generated quotient field and x P Y a closed point
in the special fiber. Then there is an open neighborhood V Ď Y of x and a
compactification X̄{B of V such that D̄ “ X̄´V is a tidy divisor and such that
the following assertion holds: For every closed point y P X̄ and every prime
divisor Z of X̄ passing through y there is f P KpX̄qˆ with support in Z Y D̄
such that degZpfq ą 0 and degW pfq “ 0 for all other prime divisors W passing
through y.

Proof. Take an affine open neighborhood V 1 of x such that the complement
contains all singular points except x and all vertical prime divisors not passing
through x. Since V 1 is affine, we can choose a projective compactification V̄ 1

of V 1 over B. Set D1 “ V̄ 1 ´ V 1 with the reduced scheme structure. By [14]
we can replace pV̄ , D1q by a desingularization (in the strong sense) and thus
assume that x is the only possible singular point of V̄ 1 and D1 is a Cartier
divisor. Choose prime divisors G1, . . . , Gr of V̄ 1 not passing through x as in
Lemma 9.2. Making V 1 smaller we may assume that G1, . . . , Gr are contained
in D1.

Let pX̄,D0q Ñ pV̄ 1, D1q be a tidy desingularization, which exists by Propo-
sition 2.2. Since V̄ 1 is regular at every point in D1, the morphism X̄ Ñ V̄ 1

is a consecutive blowup in closed points over D1. Moreover, the exceptional
fiber of each blowup in a closed point z is isomorphic to P1

kpzq (see [15], Chap-
ter 8, Theorem 1.19). Denote by E1, . . . , En the irreducible components of the
exceptional divisor of X̄ Ñ V̄ 1. For each i “ 1, . . . , n choose two different
closed points yi, zi P Ei in the regular locus of D0. By Lemma 9.4 there is a
(horizontal) prime divisor D1 intersecting E1 transversally at y1 and disjoint
from y2, . . . , yn, z1, . . . , zn such that D0 ` D1 is tidy. By the same argument
there is a prime divisor D2 intersecting E2 transversally at y2 and disjoint from
y3, . . . , yn, z1, . . . , zn such that D0 ` D1 ` D2 is tidy. Continuing this way we
obtain for i “ 1, . . . , n horizontal prime divisors Di and Ki intersecting Ei
transversally at yi and zi, respectively, and such that

D̄ :“ D0 `D1 ` . . .`Dn `K1 ` . . .`Kn

is tidy. We set V “ X̄ ´ D̄.
We claim that pX̄, D̄q has the required properties. Let y P X̄ be a closed

point and Z a prime divisor of X̄ passing through y. Either G1, . . . , Gs or
Gs`1, . . . , Gr do not pass through y, sayG1, . . . , Gs. Similarly, eitherD1, . . . , Dn

or K1, . . . ,Kn do not pass through y, say D1, . . . , Dn. By Lemma 9.3 the prime
divisors G1, . . . , Gs, D1, . . . , Dn generate the first Chow group CH1

pX̄q b Q.
Hence, there are m,m1, . . . ,mn, n1, . . . , ns P Z with m ą 0 and f P KpX̄qˆ

such that

mZ “
n
ÿ

j“1

mjDj `

s
ÿ

j“1

njGj ` div f.

The prime divisors D1, . . . , Dn and G1, . . . , Gs do not pass through y. There-
fore, degW pfq “ 0 for all prime divisors W different from Z passing through y
and degZpfq “ m ą 0. Furthermore, D1, . . . , Dn, G1, . . . , Gs are contained in D̄
and thus f has support in Z Y D̄.

As a direct consequence of Proposition 9.5 we obtain:
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Corollary 9.6. In the situation of Proposition 9.5 let U Ď V be a neighborhood
of x such that D1 “ X̄ ´ U is the support of a tidy divisor. Then pX̄,D1q has
enough tame coverings.

10 The main result
We are now in the position to construct neighborhoods on an an arithmetic
surface Y {B satisfying all assumptions made in Proposition 5.4 and Proposi-
tion 6.4. Note that the assumption on the fundamental group of B is automatic
in the local case.

Theorem 10.1. Let B be the spectrum of a henselian discrete valuation ring R
which is formally smooth over a discrete valuation ring with finitely generated
quotient field. Let c be a full class of finite groups such that the residue char-
acteristic of R is not contained in Npcq. Assume that µ` Ď R for all primes
` P Npcq and that the absolute Galois group of the residue field of R is c-good.
Let π : Y Ñ B be an arithmetic surface and x P Y a point. Then there is an
open neighborhood U of x and a compactification U Ď X̄ of U Ñ B such that
the complement D̄ of U in X̄ is a tidy divisor with the following properties.

(i) The horizontal part of D̄ has nontrivial intersection with all vertical prime
divisors on X̄.

(ii) pX̄, D̄q has enough tame coverings.

As a consequence U is Kpπ, 1q with respect to c.

Proof. Without loss of generality we may assume that x is a closed point lying
over the closed point b of B. The arithmetic surface Y {B is of finite presentation.
Hence, it is the base change to B of an arithmetic surface Y0{B0 such that B0 is
a discrete valuation ring with finitely generated quotient field and B is formally
smooth over B0. Formally smooth base change does not affect the tidiness
of a divisor, nor does it disturb properties (i) and (ii). Therefore, it suffices
to construct U with properties (i) and (ii) for B local with finitely generated
quotient field.

Choose an open neighborhood V of x and a compactification X̄{B as in
Proposition 9.5. Denote by D1 the complement of V (with the reduced scheme
structure). On every irreducible component C of X̄b take a closed point cC ‰ x
in the smooth locus of C and not contained in any other irreducible component
of X̄b. Using Lemma 9.4 we construct a horizontal divisorD2 passing through cC
for every vertical prime divisor C such that D̄ :“ D1`D2 is tidy. Then pX̄, D̄q
has enough tame coverings by Corollary 9.6. Moreover, pX̄, D̄q has properties (i)
and (ii).

Setting U “ X̄ ´ D̄ we conclude that U is Kpπ, 1q with respect to c by
combining Proposition 3.2, Proposition 5.4, and Proposition 6.4. Note that the
assumptions on the roots of unity and the residue field of R are part of the
general setup described in Section 3. They are thus implicit in Proposition 5.4
and Proposition 6.4.

Notice that the absolute Galois group of an algebraic extension of a finite
field is c-good for any class of finite groups c. Moreover, completion in formally
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smooth. Therefore, Theorem 10.1 implies Theorem 1.1 as stated in the introduc-
tion. The following corollaries give more explicit examples of situations where
Theorem 10.1 applies. Remember that for given primes `1, . . . , `n, we denoted
by cp`1, . . . , `nq the full class of finite groups whose orders are contained in the
submonoid of N generated by `1, . . . , `n.

Corollary 10.2. Let Y be an arithmetic surface over the spectrum B of a
discrete valuation ring and y P Y a point. Let c be a full class of finite groups
such that the residue characteristic of B is not contained in Npcq. Then there is
a basis of Zariski neighborhoods of y which are Kpπ, 1q with respect to c in the
following cases:

(i) B is the spectrum of the ring of integers of a finite extension K of Qp and c
is of the form cp`1, . . . , `nq for primes `1, . . . , `n ‰ p such that µ`i Ď K.

(ii) B is the spectrum of the ring of integers of the completion of the maximal
unramified extension of a finite extension of Qp.

Corollary 10.3. Let Y be an arithmetic surface over the spectrum B of a
discrete valuation ring and ȳ Ñ Y a geometric point. Let c be a full class of
finite groups such that the residue characteristic of B is not contained in Npcq.
Then there is a basis of étale neighborhoods of ȳ which are Kpπ, 1q with respect
to c in the following cases:

(i) B is the spectrum of the ring of integers of a finite extension of Qp and c
is of the form cp`1, . . . , `nq for primes `1, . . . , `n ‰ p.

(ii) B is the spectrum of the ring of integers of the completion of the maximal
unramified extension of a finite extension of Qp.

References
[1] M. Artin, A. Grothendieck, and J. Verdier. Théorie de topos et cohomologie

étale des schémas (SGA 4). Séminaire de géométrie algébrique du Bois-
Marie - 1963-64. Springer-Verlag Berlin; New York, 1972.

[2] M. Artin and B. Mazur. Etale homotopy. Springer-Verlag, Berlin, 1969.

[3] V. Cossart, U. Jannsen, and S. Saito. Canonical embedded and non-
embedded resolution of singularities for excellent two-dimensional schemes.
arXiv:0905.2191v2, 2009.

[4] O. Debarre. Higher-dimensional algebraic geometry. Universitext. Springer-
Verlag, 2001.

[5] M. Demazure and A. Grothendieck. Schémas en groupes (SGA 3). Sémi-
naire de géometrie algébrique du Bois Marie - 1962-64. Springer-Verlag
Berlin; New York, 1970.

[6] E. M. Friedlander. Kpπ, 1q’s in characteristic p ą 0. Topology, 12:9–18,
1973.

33



[7] K. Fujiwara. A proof of the absolute purity conjecture (after Gabber). In
Algebraic geometry 2000, Azumino (Hotaka), volume 36 of Adv. Stud. Pure
Math., pages 153–183. Math. Soc. Japan, Tokyo, 2002.

[8] W. Fulton. Introduction to Toric Varieties. Princeton University Press,
1993.

[9] O. Gabber and L. Ramero. Foundations of p-adic Hodge theory. Fith
Release:790, 2011.

[10] A. Grothendieck. Revêtements étales et groupe fondamental (SGA 1). Sémi-
naire de géometrie algébrique du Bois Marie - 1960-61. Springer-Verlag
Berlin; New York, 1971.

[11] K. Hübner. Aspherical neighborhoods on arithmetic surfaces. Dissertation,
pages 1–92, 2016.

[12] U. Jannsen and S. Saito. Bertini theorems and Lefschetz pencils over dis-
crete valuation rings, with applications to higher class field theory. J.
Algebraic Geom., 21(4):683–705, 2012.

[13] K. Kato. Toric singularities. American Journal of Mathematics, 116:1075–
1099, 1994.

[14] J. Lipman. Desingularization of two-dimensional schemes. Annals of Math-
ematics, 107:151–207, 1978.

[15] Q. Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford
Graduate Texts in Mathematics. Oxford University Press, Oxford, 2002.

[16] A. Néron. Problèmes arithmétiques et géométriques rattachés à la notion
de rang d’une courbe algébrique dans un corp. Bulletin de la Société Math-
ématique de France, 80:101–166, 1952.

[17] B. Poonen. Bertini theorems over finite fields. Annals of Mathematics,
160:1099–1127, 2004.

[18] A. Schmidt. Rings of integers of type kpπ, 1q. Documenta Mathematica,
12:441–471, 2007.

[19] A. Schmidt. Über pro-p-Fundamentalgruppen markierter arithmetischer
Kurven. Journal für die Reine und Angewandte Mathematik. [Crelle’s Jour-
nal], 640:203–235, 2010.

[20] E. Viehweg. Invarianten der degenerierten Fasern in lokalen Familien von
Kurven. Journal für die reine und angewandte Mathematik (Crelles Jour-
nal), pages 284–308, 1977.

34


