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1. Introduction

Consider a smooth discretely ringed adic space X over a �eld k. Here, discretely
ringed means that X is locally isomorphic to the spectrum of a Huber pair (A,A+),
where A and A+ carry the discrete topology. The space X comes with two structure
sheaves, OX and O+

X . One might ask for a similar partner Ω+ for the sheaf of di�erentials
ΩX = Ω1

X /k. It should be a subsheaf of Ω := Ω1
X de�ned by a condition |ωx| ≤ 1 for

suitable OX ,x-seminorms | · | on the stalks ΩX ,x for every point x ∈X . Such a sheaf Ω+

will be useful for investigating cohomological purity for p-torsion sheaves in characteristic
p > 0. As explained in the introduction to [Hüb20], the logarithmic deRham sheaves ν(r)
play a crucial role in cohomological purity. They are de�ned by an exact sequence

0→ ν(r)→ Ωr
d=0

C−1−→ Ωr → 0,
1
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in the étale topology. However, we expect purity to hold only for the tame topology (see
[Hüb18]) and the above sequence is not exact in the tame topology. We hope to solve
this problem by replacing Ωr with Ωr,+. This will be subject to future investigations.
In this article we construct a sheaf Ω+ as above using the Kähler seminorms (cf.

[Tem16], � 4.1) on the stalks Ωx de�ned by

|ω|Ω := inf
ω=

∑
i fidgi

max
i
{|fi| · |gi|},

where the in�mum is taken over all representations of ω as a �nite sum
∑

i fidgi (see
Section 5.1). In Section 5.2 we prove that Ω+ is indeed a sheaf on X . In fact, it is even
a sheaf on the tame site Xt of X but not on the étale site.
It turns out that Ω+ has a description in terms of logarithmic di�erentials. After

a preliminary section on the logarithmic cotangent complex (see Section 2), we study
logarithmic di�erentials in Section 4. Let us specify the connection of logarithmic di�er-
entials with Ω+. For a Huber pair (A,A+) over k such that A is a localization of A+,
we equip A+ with the total log structure (A+ \ mA → A+) on A+. The corresponding

logarithmic di�erentials Ωlog
(A,A+) de�ne a presheaf Ωlog but not a sheaf. We prove that the

shea��cation of Ωlog is Ω+ in Section 5.2. An important input is that for a local Huber
pair (A,A+) over k the logarithmic di�erentials Ωlog

(A,A+) are torsion free over A+, i.e., they

imbed into ΩA.
The last section is dedicated to a study of logarithmic di�erentials on adic spaces of the

form Spa(Y, Ȳ ), where Ȳ is a scheme over the �eld k and Y is an open subscheme such
that the associated log structure on Ȳ is log smooth. The main result (Theorem 6.12)
constructs a natural isomorphism

Ω+(Spa(Y, Ȳ )) ∼= Ωlog(Y, Ȳ ),

where Ωlog on the right hand side is the sheaf of logarithmic di�erentials on the log scheme
associated with (Y, Ȳ ). The crucial point is that on the adic space Spa(Y, Ȳ ) we do not
need to shea�fy Ωlog in order to compute the global sections of Ω+. This makes Ω+ a
lot more accessible and it is possible to use the theory of logarithmic di�erentials on
log schemes to inverstigate Ω+. We also want to stress that the above isomorphism is
obtained without assuming resolution of singularities The proof relies on the theory of
unrami�ed sheaves (see Section 6.2), a notion adapted from [Mor12], and techniques
similar to the ones applied in [HKK17] for studying cdh di�erentials.

Acknowledgement: The author wants to thank Michael Temkin for drawing her attention
to Kähler seminorms. Moreover, many thanks go to Ste�en Sagave for his help with the
logarithmic cotangent complex.

2. The logarithmic cotangent complex
{section_log_cotangent}

In [Ols05] Olsson describes two approaches for a logarithmic cotangent complex. His
own construction using log stacks has the advantage that it is trivial for log smooth
morphisms. However, transitivity triangles only exist under certain conditions and the
construction only works for �ne log schemes, i.e. under strong �niteness conditions that
are not satis�ed in our situation. Gabber's version described in [Ols05], �8 is more
functorial but it has the disadvantage that it is not trivial for all log smooth morphisms.
We will use Gabber's log cotangent complex and compare it in special situations to
Olsson's in order to make explicit computations. Slightly more generally we will de�ne
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the log cotangent complex for simplicial prelog rings as described for instance in [Bha12],
�5 or [SSV16], �4.
Let us start with reviewing some de�nitions. Recall that a prelog ring is a ring R

and a (commutative) monoid M together with a homomorphism of monoids M → R,
where R is considered as a monoid with its multiplicative structure. A log ring is a prelog
ring ι : M → R inducing an isomorphism ι−1(R×) → R×. The inclusion of the category
of log rings into prelog rings has a left adjoint, logi�cation (see [Ogu18], Chapter II,
Proposition 1.1.5) We write (Ma → R) or (M → R)a for the logi�cation of (M → R).
Denote by Set, Mon, Ring, and LogRingpre the categories of sets, monoids, rings, and

prelog rings. We write sSet, sMon, sRing, and sLogRingpre for the respective categories
of simplicial objects. We endow sSet with the standard model structure, i.e. the weak
equivalences are the maps inducing a weak homotopy equivalence on geometric realiza-
tions and the �brations are the Kan �brations. De�ning the (trivial) �brations to be the
homomorphisms that are (trivial) �brations on the underlying category of simplicial sets,
we obtain a closed model structure on sRing and sMon (see [Bha12], �4). Now consider
the forgetful functor

ForgetsLogRingpre

sMon×sRing : sLogRingpre −→ sMon× sRing

mapping (M → A) to (M,A). By [SSV16], Proposition 3.3 there is a projective proper
simplicial cellular model structure on sLogRingpre whose �brations and weak equivalences
are the maps that are mapped to �brations and weak equivalences, respectively, under
ForgetsLogRingpre

sMon×sRing. With respect to this model structure ForgetsLogRingpre

sMon×sRing is a left and
right Quillen functor ([Bha12], Propositions 5.3 and 5.5). Its left adjoint is the functor

FreesMon×sRing
sLogRingpre mapping (M,A) to (M → A[M ]).

For a homomorphism (M → A) → (N → B) of simplicial prelog rings we write
sLogRingpre

(M→A)//(N→B) for the category of simplicial (M → A)-algebras over (N → B).

It inherits a model structure from sLogRingpre. Consider the functor

Ω : sLogRingpre
(M→A)//(N→B) → ModB

(L→ C) 7→ Ω1
(L→C)/(N→B) ⊗C B

where Ω1 is de�ned by applying to each level the functor of log Kähler di�erentials (see
[Ogu18], Chapter IV, Proposition 1.1.2; note that a log ring in loc. cit. is what we here
call a prelog ring). Being a left Quillen functor ([SSV16], Lemma 4.6), it has a left derived
functor

LΩ : Ho(sLogRingpre
(M→A)//(N→B))→ Ho(ModB)

on the respective homotopy categories. The image of (N → B) under LΩ is called
the cotangent complex of (N → B) and denoted L(M→A)/(N→B). For a homomorphism
(M → A)→ (N → B) of discrete log rings it can be computed as follows. For shortness

write F := ForgetLogRingpre

Mon×Ring and G := FreeMon×Ring
LogRingpre (the discrete versions of the above

considered functors). We have a canonical free resolution

(1) {{canonical_resolution}}{{canonical_resolution}}. . . GFGF (N → B) GF (N → B) (N → B),

which we denote by P• → (N → B). Then L(M→A)/(N→B) is represented by Ω(P•). In
particular, we recover Gabbers de�nition ([Ols05], De�nition 8.5).
The cotangent complex has the following two important properties (see [SSV16], Propo-

sition 4.12)
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{transitivity_BC}
Proposition 2.1. (i) Transitivity. Let (M → A) → (N → B) → (K → C) be maps

of simplicial prelog rings. Then there is a homotopy co�ber sequence in Ho(ModC)

C ⊗hB L(N→B)/(M→A) → L(K→C)/(M→A) → L(K→C)/(N→B).

(ii) Base change. Let

(N ′ → B′) (N → B)

(M ′ → A′) (M → A)

be a homotopy pushout square in sLogRingpre. Then there is an isomorphism in
Ho(ModB′)

B′ ⊗hB L(N→B)/(M→A)
∼= L(N ′→B′)/(M ′→A′).

In order to apply these results in our setting of discrete prelog rings it would be useful
to know when the homotopy pushouts appearing in (i) and (ii) coincide with the ordinary
pushout. The homotopy pushout in (i) appearing in the co�ber sequence is taken in the
homotopy category of ModC . Suppose that C and B are discrete. Then it is well known
that

C ⊗B L(N→B)/(M→A)
∼= C ⊗hB L(N→B)/(M→A)

in case C is �at over B. In the base change setting for discrete prelog rings it turned out
to be easier to prove the base change result from scratch instead of deducing it from the
homotopy version Proposition 2.1 (ii) for simplicial prelog rings.

{BC_cotangent}
Lemma 2.2. Let

(N ′ → B′) (N → B)

(M ′ → A′) (M → A)

be a pushout square in LogRingpre which is a homotopy pushout square in sLogRingpre.
Then

L(N ′→B′)/(M ′→A′) ∼= L(N→B)/(M→A) ⊗A A′.

Proof. Let (K → P )→ (N → B) be a simplicial resolution in the category of simplicial
(M → A)-algebras. Then the induced map

(K → P )⊗(M→A) (M ′ → A′)→ (N → B)⊗(M→A) (M ′ → A′) = (N ′ → B′)

represents the map from the homotopy pushout to the naive pushout, hence is a weak
equivalence. It is therefore a simplicial resolution of (N ′ → B′) in the category of simpli-
cial (M ′ → A′)-algebras and we can use it to compute the cotangent complex of (N ′ → B′)
over (M ′ → A′):

L(N ′→B′)/(M ′→A′) = Ω1
(K→P )⊗(M→A)(M

′→A′)/(M ′→A′) ⊗P⊗AA′ (B ⊗A A′)

= (Ω1
(K→P )/(M→A) ⊗P B)⊗A A′

= L(N→B)/(M→A) ⊗A A′.

�
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{homotopy_pushout_iff}

Lemma 2.3. Let

(N ′ → B′) (N → B)

(M ′ → A′) (M → A)

be a pushout square in LogRingpre. It is a homotopy pushout square if and only if the
two pushout squares

(2) {{pushout_monoids_rings}}{{pushout_monoids_rings}}

N ′ N B′ B

M ′ M A′ A

are homotopy pushout squares.

Proof. Let (N ′′ → B′′) represent the homotopy pushout of (M → A) → (M ′ → A′) and
(M → A) → (N → B). We obtain a map (N ′ → B′) → (N ′′ → B′′). By the de�nition
of the model structure on sLogRingpre it is a weak equivalence if and only if N ′ → N ′′

and B′ → B′′ are weak equivalences. The pushout in the category of prelog rings is
compatible with the pushouts in the category of monoids and the category of rings:

B′ ∼= A′ ⊗A B and N ′ ∼= M ′ tM N,

i.e., the diagrams (2) are pushout squares. Moreover, as ForgetsLogRingpre

sMon×sRing is a left Quillen
functor, it preserves homotopy colimits. Therefore, B′′ and N ′′ represent the homotopy
pushouts of

N and B

M M A′ A,

respectively. We conclude that (N ′ → B′) → (N ′′ → B′′) is a weak equivalence if and
only if both (N ′ → N ′′) and (B′ → B′′) are. �

{condition_homotopy_pushout}
Corollary 2.4. Let

(3) {{log_pushout_square}}{{log_pushout_square}}

(N ′ → B′) (N → B)

(M ′ → A′) (M → A)

be a pushout square in LogRingpre. Assume that either of the ring homomorphisms A→
B or A → A′ is �at and that either M → N or M → M ′ is an integral homomorphism
of integral monoids. Then the square (3) is a homotopy pushout square.

Proof. By Lemma 2.3 we have to show that the two diagrams in (2) are homotopy pushout
squares. For the diagram of rings this is well known. For the diagram of monoids this is
[Kat89], Proposition 4.1. �

{localization_cotangent}
Corollary 2.5. Let

(M → A)→ (N → B)
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be a homomorphism of prelog rings and S ⊆ A a multiplicative subset. Then

L(N→S−1B)/(M→S−1A)
∼= S−1(L(N→B)/(M→A)).

We �nished our treatment of the compatibility of the logarithmic cotangent complex
with base change. The rest of this section uses transitivity and base change to compute
the log cotangent complex for certain well behaved prelog rings.

{cotangent_polynomial}
Proposition 2.6. Let M → A be a prelog ring and N a �nitely generated free monoid.
Then

Hi(L(M⊕N→A[N ])/(M→A))

vanishes for i ≥ 1 and is isomorphic to Ngp ⊗ A[N ] for i = 0.

Proof. By [Ols05], Theorem 8.16 we know that taking the associated log ring does not
change the cotangent complex:

L(Na→Z[N ])/({±1}→Z)
∼= L(N→Z[N ])/(0→Z).

Since ({±1} → Z) is (obviously) log �at over Z with trivial log structure, Gabber's
cotangent complex L(Na→Z[N ])/({±1}→Z) coincides with Olsson's (see [Ols05], Corollary
8.29), which we denote by LOls

(Na→Z[N ])/({±1}→Z). But

LOls

(Na→Z[N ])/({±1}→Z)
∼= Ω1

(Na→Z[N ])/({±1}→Z)

as ({±1} → Z)→ (Na → Z[N ]) is log �at ([Ols05], 1.1 (iii)) and

Ω1
(Na→Z[N ])/({±1}→Z)

∼= HomMon(N,Z[N ]).

Now consider the pushout square

(M ⊕N → A[N ] (N → Z[N ])

(M → A) (0→ Z).

The ring homomorphism Z → Z[N ] is �at and the monoid N is integral. Hence, by
Corollary 2.4, the above square is a homotopy pushout square. Applying Lemma 2.2
yields an isomorphism

L(M⊕N→A[N ])/(M→A)
∼= L(N→Z[N ])/(0→Z) ⊗Z A.

From this and the above description of L(N→Z[N ])/(0→Z) we obtain the result. �
{cotangent_regular_ideal}

Proposition 2.7. In the situation of Proposition 2.6 let I be a regular ideal of A[N ].
Then

L(M⊕N→A[N ]/I)/(M→A)
∼= (I/I2 −d−→ Ω1

(M⊕N→A[N ])/(M→A) ⊗A[N ] A[N ]/I),

where I/I2 is placed in degree −1 and d is induced from the di�erential.

Proof. The proof is the same as for Olson's cotangent complex ([Ols05], Lemma 6.9): By
Proposition 2.1 (i) we have a homotopy co�ber sequence

L(M⊕N→A[N ])/(M→A)⊗hA[N ]A[N ]/I → L(M⊕N→A[N ]/I)/(M→A) → L(M⊕N→A[N ]/I)/(M⊕N→A[N ]).

Proposition 2.6 gives us

L(M⊕N→A[N ])/(M→A) ⊗hA[N ] A[N ]/I ∼= Ω1
(M⊕N→A[N ])/(M→A) ⊗A[N ] A[N ]/I.
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Moreover,

L(M⊕N→A[N ]/I)/(M⊕N→A[N ])
∼= L(A[N ]/I)/A[N ]

∼= I/I2[1].

We have the �rst isomorphism because the map on monoids is the identity ([Ols05],
Lemma 8.17) and the second one is a classical result for the cotangent complex of rings
([Ill71], III, Proposition 3.2.4).
It remains to show that the resulting map I/I2 → Ω1

(M⊕N→A[N ])/(M→A) is given by the
negative of the di�erential. By functoriality we have a factorization

I/I2 → Ω1
A[N ]/A → Ω1

(M⊕N→A[N ])/(M→A).

The �rst map is the negative of the di�erential by [Ill71], III Proposition 1.2.9 and the
second map is the canonical one. �

{cotangent_free_monoid}
Corollary 2.8. Let A be a ring andM a �nitely generated free commutative submonoid
of A×. Then L(M→A)/({0}→A) is concentrated in degree zero.

Proof. We choose generatorsm1, . . . ,mr ofM . This de�nes an isomorphism of A[M ] with
A[T1, . . . , Tr]. Let I be the ideal of A[T1, . . . , Tr] generated by Ti −mi for i = 1, . . . , r.
This is clearly a regular ideal. By Proposition 2.7 we have

L(M→A)/({0}→A)
∼= (I/I2 −d−→ Ω1

(M→A[M ])/({0}→A) ⊗A[M ] A).

We have a natural identi�cation of I/I2 with the free A-module with generators (Ti−mi).
Moreover, by Proposition 2.6, Ω1

(M→A[M ])/({0}→A)⊗A[M ]A) is isomorphic to Mgp⊗A. The
di�erential d maps (Ti−mi) to dTi = Ti(dTi/Ti) (corresponding to mi⊗mi ∈Mgp⊗A).
This map is injective. �

Finally, we will need that the cotangent complex is compatible with �ltered colimits:
{colimits_cotangent}

Proposition 2.9. Let (M → A) = colimi∈I(Mi → Ai) and (N → B) = colimi∈I(Ni →
Bi) be �ltered colimits in the category of prelog rings. Suppose we are given compatible
homomorphisms (Mi → Ai)→ (Ni → Bi). Then there is a natural isomorphism

L(N→B)/(M→A)
∼= colim

i∈I
L(Ni→Bi)/(Mi→Ai).

Proof. The functors F and G in the canonical resolution (1) commute with �ltered col-
imits and so does the formation of log di�erentials. �

3. Unramified and tame extensions

For a valued �eldK we will adopt the following notation. The valuation of an element x
in K is written |x|K or only |x| when it does not cause confusion. We denote the valuation
ring of K by K+ and the value group of the valuation by ΓK . We endow K+ with the
total log structure (K+ \ {0} → K+). For an extension L|K of valued �elds we de�ne

L
log
L/K := L(L+\{0}→L+)/(K+\{0}→K+).

Remember that a �nite extension L|K of valued �elds is unrami�ed if Lsh = Ksh

(strict henselization). It is tamely rami�ed (or tame for short) if [Lsh : Ksh] is prime
to the residue characteristic of K+. In this case [ΓL : ΓK ] = [Lsh : Ksh]. An algebraic
extension L|K of valued �elds is tame if all its �nite subextensions are tame.

{cotangent_unramified}
Lemma 3.1. Let L|K be unrami�ed. Then Llog

L/K
∼= 0. In particular, Ωlog

L/K = 0.
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Proof. Since L|K is unrami�ed, ΓL = ΓK , so the total log structure of L+ is the logi�ca-
tion of (K+ \ {0} → L+). We can thus compute the logarithmic cotangent complex as
follows:

L
log
L/K
∼= L(K+\{0}→L+)/(K+\{0}→K+)

∼= LL+/K+
∼= 0.

The left hand isomorphism is due to [Ols05], Theorem 8.16, the middle one to [Ols05],
Lemma 8.17, and the right hand one to [GR03], Theorem 6.3.32 and the well known fact
that the di�erentials vanish for unrami�ed extensions. �

{cotangent_tame}

Proposition 3.2. For any tame extension L|K of valued �elds the logarithmic cotangent

complex is trivial: Llog
L/K
∼= 0. In particular, Ωlog

L/K
∼= 0.

Proof. Using Lemma 3.1 and transitivity (Proposition 2.1 (i)) for the extensions in the
diagram

Lsh

Ksh L

K.

we reduce to the case where K is strictly henselian. Moreover, since the logarithmic
cotangent complex is compatible with �lterd colimits (Proposition 2.9),we can reduce
to the case of a �nite extension. We decompose the extension L|K into a chain of
subextensions of prime degree:

K = L0 ⊆ L1 ⊆ . . . ⊆ Ln = L

such that [Li+1 : Li] is a prime number. Transitivity (Proposition 2.1 (i)) allows us to
treat each extension separately. We may thus assume [L : K] is a prime number ` (prime
to the residue characteristic as L|K is tame).
We have L = K[a1/`] for some a ∈ K with |a| < 1. The valuation ring L+ is the �ltered

colimit of its subalgebras Rb = K+[ba1/`] with b ∈ K such that |ba1/`| < 1 (see the proof
of [GR03], Proposition.3.13 (i)). We equip Rb with the prelog structure

Mb := (K+ \ {0} ⊕N)/ ∼→ Rb,

where the equivalence relation is generated by (b`a, 0) ∼ (1, `) (note that the �rst compo-
nent is written multiplicatively and the second one additively) and (x, r) ∈Mb is mapped
to x(ba1/`)r ∈ Rb. We claim that the total log structure of L+ is the logi�cation of the
colimit of the prelog rings (Mb → Rb). Since Mb and Rb are naturally contained in L+

and we already know that L+ = colimbRb, this amounts to checking that every element
y ∈ L+ \ {0} can be written in the form y = ux(ba1/`)r for x ∈ K+, r ∈ N, b ∈ K
such that |ba1/`|L < 1, and u a unit of L+. We choose b ∈ K such that y ∈ Rb. Then
|y|L = |x(ba1/`)r| for some x and r as above. Setting u = yx−1(ba1/`)−r, the claim follows.
Using that logi�cation does not change the cotangent complex ([Ols05], Theorem 8.16)

and Proposition 2.9 this reduces us to showing that L(Mb→Rb)/(K+\{0}→K+) is concentrated
in degree 0.
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We now consider the following pushout square of prelog rings:

(Mb → Rb) (N→ Rb)

(K+ \ {0} → K+) (N→ K+),

where the prelog structures on the right hand side are given by r 7→ (ba1/`)r and r 7→
(b`a)r, the right hand vertical monoid homomorphism is r 7→ `r, the upper horizontal one
r 7→ (1, r), and the lower one r 7→ (b`a)r. The identity on K+ is (obviously) �at and the
right hand vertical map of monoids is integral. Hence, the diagram is also a homotopy
pushout (see Corollary 2.4). We conclude that

L(Mb→Rb)/(K+\{0}→K+)
∼= L(N→Rb)/(N→K+).

By [Ols05], Theorem 8.16

L(N→K+)/(N→Rb)
∼= L(N→K+)a/(N→Rb)a .

The logi�cation of (N→ K+)→ (N→ Rb) is a log étale, integral homomorphism of �ne,
integral log rings. Its cotangent complex is thus isomorphic to Olsen's cotangent complex
([Ols05], Corollary 8.29), which in turn is concentrated in degree zero by log smooth-
ness ([Ols05], (1.1 (iii))). Moreover, it vanishes in degree zero by [Ogu18], Chapter IV,
Propostion 3.1.3. �

4. Logarithmic differentials on adic spaces
{section_log_diff_adic}

All Huber pairs in this section will be endowed with the discrete topology and all adic
spaces will be discretely ringed, i.e., locally isomorphic to a Huber pair with the discrete
topology. Recall from [Hüb18], De�nition 6.1, that a Huber pair (A,A+) is local if A
is a local ring with maximal ideal mA and A+ is the preimage in A of a valuation ring
of A/mA. Given a local Huber pair (A,A+), we endow A+ with the total log structure

given by

(A+ ∩ A× → A+) = (A+ \mA → A+).

This extends the de�nition of the total log structure of a valuation ring. For a morphism
of Huber pairs (A,A+)→ (B,B+), we de�ne

Ωn,log
(B,B+)/(A,A+) := Ωn

(B+∩B×→B+)/(A+∩A×→A+).

If n = 1, we omit n and just write Ωlog
(B,B+)/(A,A+). For this section we �x a �eld k and a

valuation ring k+ of k. We assume that one of the following properties is satis�ed:

• the residue characteristic of k+ is 0,
• k is algebraically closed,
• k = k+ is perfect.

For a Huber pair (A,A+) over (k, k+) we use the short notation Ωn
A+ for Ωn

A+/k+ and

Ωn,log
(A,A+) for Ωn,log

(A,A+)/(k,k+).
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4.1. Logarithmic di�erentials on local Huber pairs. The following is a reformula-
tion of results of [GR03], � 6.5.

{Omega_valuation_tf}
Proposition 4.1. Let (K,K+) be any extension of valued �elds of (k, k+). Then Ωn,log

(K,K+)

and Ωn
K+ are torsion free for all n ≥ 1.

Proof. The statement about ΩK+ is [GR03], Theorem 6.5.15 and Corollary 6.5.21. In
[GR03], � 6.5 Gabber and Ramero examine the natural homomorphism

ρK+/k+ : Ωlog
k+/Z ⊗k+ K+ → Ωlog

K+/Z.

The cokernel of ρK+/k+ is isomorphic to Ωlog
(K,K+) ([Ogu18], Chapter IV, Proposition 2.3.1).

Therefore the result for n = 1 follows from [GR03] Lemma 6.5.16, Theorem 6.5.20, and
Corollary 6.5.21. The general case (n > 1) follows as well as over a valuation ring exterior
products of torsion free modules are torsion free ([HKK17]). �

We want to extend this result to local Huber pairs over (k, k+). To achieve this, we
need some preparation.

{torsionfree}
Lemma 4.2. Let (A,A+) be a local Huber pair and M+ an A+-module. Denote by m
the maximal ideal of A and set K+ = A+/m. Then M+ is torsion free over A+ if and
only if M+

m is torsion free over A and M+/mM+ is torsion free over K+.

Proof. Suppose M+ is torsion free over A+. Torsion freeness of M+
m is clear as A is �at

over A+. In order to show that M+/mM+ is torsion free, take a ∈ A+ \m and m ∈M+

such that am ∈ mM+. Since m is an ideal of A, the action of A+ on mM+ extends to A.
But a is a unit in A, whence m ∈ mM+.
Let us now assume that M+

m and M+/mM+ are both torsion free. Take a ∈ A+ and
m ∈M+ such that am = 0. From the torsion freeness of M+

m we obtain that either a = 0
or there is s ∈ A+ \ m such that sm = 0. In the latter case we use the torsion freeness
of M+/mM+ to conclude that m ∈ mM+. But mM+ extends to an A-module and s is a
unit in A, so m = 0. �

{local_torsion_free}
Proposition 4.3. Let (A,A+) be a local (k, k+)-algebra such that A is the localization

of a smooth k-algebra. Then Ωn
A+ and Ωn,log

(A,A+) are �at A+-modules. In particular, they

torsion free.

Proof. We give the proof for Ωn,log
(A,A+). For Ωn

A+ the argument is the same. We �rst show

that Ω := Ωn,log
A is torsion free. Let m be the maximal ideal of A, K = A/m, and

K+ = A+/m. By Lemma 4.2 we have to show that Ω/mΩ is torsion free over K+ and Ωm

is torsion free over A. Since A+ → A is a localization, we have by [Ogu18], Chapter IV,
Proposition 1.1.3

Ωm
∼= Ωn

A/k

and this is torsion free (even free) as A is the localization of a smooth k-algebra. Now
consider the short exact sequence (see [Ogu18], Chapter IV, Proposition 2.3.2 and The-
orem 3.2.2)

0→ m/m2 → Ω/m→ Ωlog
(K,K+) → 0.

Since m/m2 is a K-vector space, it is torsion free over K+. Moreover, Ωlog
(K,K+) is torsion

free by Proposition 4.1.
Knowing that Ω is torsion free and Ωm is �at and we can now apply [Hüb18], Proposi-

tion 10.7 to conclude that Ω is �at. �
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{section_presheaf_log_diff}

4.2. The presheaf of logarithmic di�erentials. The naive idea of de�ning logarithmic
di�erentials on an adic space X is to set for an a�noid open Spa(A,A+)

Ωlog(Spa(A,A+)) = Ωlog
(A,A+)

and to glue these for general open subspaces. This approach is too naive fo various
reasons. Unfortunately the sheaf condition is not satis�ed. Consider for instance the
following

Example 4.4. Let X be the a�noid adic space Spa(k[T, T−1], k) over an algebraically
closed �eld k. On the one hand,

Ωlog
(k[T,T−1],k) = Ω(k\{0}→k)/(k\{0}→k) = 0.

On the other hand, X = Spa(Gm,k,P1
k) is covered by the a�noid open subspaces

Spa(k[T, T−1], k[T ]) and Spa(k[T, T−1], k[T−1]). The logarithmic di�erentials dT/T and
−dT−1/dT−1 on Spa(k[T, T−1], k[T ]) and Spa(k[T, T−1], k[T−1]), respectively, coincide
on the intersection but do not lift to a global section. Hence, the sheaf condition is not
satis�ed.
Apart from the fact that the above de�ned presheaf of logarithmic di�erentials is not a

sheaf, its secions on Spa(k[T, T−1], k) are not the ones we would expect. Intuitively there
should be a global section lifting dT/T and −dT−1/dT−1.

To overcome the problem described in the example we only work with strict a�noids,
which are de�ned as follows.

De�nition 4.5. We say that a Huber pair (A,A+) is strict if A is a localization of A+.
An a�noid adic space Spa(A,A+) is strict if (A,A+) is strict. For an adic space X we
denote the category of strict a�noid open subspaces by Xstraff .

{strict_neighborhood_basis}
Lemma 4.6. Let X be an adic space locally of the form Spa(A,A+) with A/A+ essen-
tially of �nite type. Then the strict a�noids of X form a basis of the topology.

Proof. Without loss of generality we may assume that X is of the form Spa(A,A+) with
A/A+ essentially of �nite type. Given an a�noid open subspacee Spa(B,B+) we have a
diagram

B A

B+ A+

such that SpecB → SpecA is an open immersion and B+ is the normalization in B of
an A+-algebra of �nite type. In particular, B is essentially of �nite type over B+. It thus
has a compacti�cation Y → SpecB+. By [Hüb18], Lemma 7.5 we have an identi�cation
Spa(B,B+) = Spa(B, Y ). Covering Y by a�nes SpecA+

i and each SpecB ∩ SpecA+
i by

a�nes SpecAij, we obtain a cover of Spa(B, Y ) by the strict a�noids Spa(Aij, A
+
i ). �

{tensor_product}
Lemma 4.7. Let (A,A+), (B,B+), and (C,C+) be strict a�noids. Then the tensor
product

(D,D+) = (B,B+)⊗(A,A+) (C,C+)

is strict.
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Proof. Let S = D+ ∩D×. We claim that D = S−1D+. Every element of S is invertible
in D, whence the existence of a natural homomorphism S−1D+ → D. Injectivity is
clear as D+ ⊂ D. Let d ∈ D. We want to write d = d+/s for d+ ∈ D+ and s ∈ S.
Without loss of generality we may assume d = b ⊗ c for b ∈ B and c ∈ C. But by
assumption b = b+/s and c = c+/t for b+ ∈ B+, s ∈ B+ ∩ B×, and b ∈ C+ ∩ C×. Hence
d = (b+ ⊗ c+)/(s⊗ t). �

Let X → S be a morphism of schemes which is essentially of �nite type. We equip
Spa(X,S)straff (see [Tem11], � 3.1 for the de�nition) with the topology whose coverings are
surjective families. Note that by Lemma 4.7 the necessary �ber products for the structure
of a site exist. We denote by Spa(X,S)top the site associated with the topological space
Spa(X,S). By Lemma 4.6 the corresponding topoi of Spa(X,S)straff and Spa(X,S)top are
equivalent. If F is a presheaf on Spa(X,S)straff we can view its shea��cation as a sheaf G
on all of Spa(X,S). Slightly abusing notation we will say that G is the shea��cation
of F . We have thus justi�ed the restriction to strict a�noids.
Our presheaf of interest is the presheaf of logarithmic di�erentials Ωlog. It is de�ned

on Spa(X,S)straff as

Ωlog(Spa(A,A+)) := Ωlog
(A,A+).

Similarly we de�ne Ωn,log by

Ωn,log(Spa(A,A+)) := Ωn log
(A,A+).

Even restricted to strict a�noids Ωlog is not a sheaf as the following example shows.

Example 4.8. For positive integers d and r we consider the action of µd on C[X0, . . . , Xr]
induced by the diagonal embedding of µd in Glr+1(C). In other words, ξ ∈ µd acts by
multiplying each coordinate with ξ. We consider the quotient spaces

Xr,d := (SpecC[X0, . . . , Xr])/µd = SpecC[X0, . . . , Xr]
µd .

They are normal and can also be described as the a�ne cone of the dth Veronese embed-
ding of PrC . Moreover, note that

A+
r,d := C[X0, . . . , Xr]

µd

is the C-subalgebra of C[X0, . . . , Xr] generated by all monomials of degree d. In [GR11],
Proposition 4.1 it is shown that ΩXr,d

has torsion if and only if d ≥ 3.

Let Ur,d = SpecAr,d be the open subscheme of Xr,d de�ned by inverting Xd
0 . Then

(Ar,d, A
+
r,d) is a strict Huber pair. By transitivity (Proposition 2.1 (i)) and the vanishing

of H1(L((Xd
0 )N→A+

r,d)/({0}→A+
r,d)) (Corollary 2.8) we know that

ΩA+
r,d/k
→ Ωlog

(Ar,d,A
+
r,d)/(C,C)

is injective. Hence, Ωlog

(Ar,d,A
+
r,d)/(C,C)

has torsion as well for d ≥ 3.

Let Yr,d → Xr,d be the blowup in the origin. Denote by D the Cartier divisor of Yr,d
which is the pullback of the Cartier divisor of Xr,d de�ned by Xd

0 . Then Yr,d is smooth
and D is a simple normal crossings divisor. In particular, (Ur,d, Yr,d) is log smooth, so

Ωlog
(Ur,d,Yr,d)/(C,C) is torsion free.

We cover Yr,d by a�ne schemes SpecB+
i . As the complement of Ur,d in Yr,d is the sup-

port of a principal Cartier divisor, the intersection of SpecBi with Ur,d is still a�ne. We
denote the corresponding ring byBi. The strict a�noids Spa(Bi, B

+
i ) cover Spa(Ar,d, A

+
r,d).
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Moreover, Ωlog

(Bi,B
+
i )/(C,C)

is a �nitely generated free B+
i -module as (Bi, B

+
i ) is log smooth

over (C,C). In particular, Ωlog

(Bi,B
+
i )/(C,C)

is torsion free over A+
r,d. But then

Ωlog

(Ar,d,A
+
r,d)/(C,C)

→
∏
i

Ωlog

(Bi,B
+
i )/(C,C)

cannot be injective because Ωlog

(Ar,d,A
+
r,d)/(C,C)

has torsion. We conclude that the sheaf axiom

is not satis�ed.

The example already suggests that the problems lie in the singularities of SpecA+.
Indeed we will see in Section 6 that the di�erentials are well behaved for log smooth
Huber pairs.
We are now interested in the shea��cation of Ωn,log. For a strict Huber pair (A,A+)

over (k, k+) and n ≥ 1, we consider the natural map

Ωn,log
(A,A+) → Ωn,log

(A,A+) ⊗A+ A
∼→ ΩA.

If (A,A+) is local and A is the localization of a smooth k-algebra, it is injective. (Proposi-
tion 4.3). We conclude that the shea��cation of Ωn,log is a subsheaf of Ωn in case Spa(X,S)
is smooth over (k, k+). It will turn out that the shea��cation can be described in terms
of the Kähler seminorm which we study in the next subsection.

5. The Kähler seminorm
{section_Kaeher_local}

5.1. The Kähler seminorm for local Huber pairs. Fix (k, k+) as before. Moreover,
throughout this subsection (A,A+) is a local Huber pair over (k, k+) equipped with the
discrete topology. We denote by m the maximal ideal of A+.

De�nition 5.1. We de�ne the Kähler seminorm on ΩA by

|ω|Ω := inf
ω=

∑
fidgi

max
i
{|fi|A|gi|A},

where the in�mum is over all representations of ω as a �nite sum ω =
∑

i fidgi.

The Kähler seminorm has been studied in [Tem16], � 5 for real valued �elds. As our
setting is a little bit di�erent, we give the proofs of the properties we need although they
are similar as in loc. cit. By Proposition 4.3 we can consider Ωlog

(A,A+) as an A
+-submodule

of ΩA.
{unit_ball}

Lemma 5.2. We have
Ωlog

(A,A+) = {ω ∈ ΩA | |ω|Ω ≤ 1}.

Proof. For ω =
∑

i fidgi/gi in Ωlog
(A,A+) we have

|ω|Ω ≤ max
i
{|fi|} ≤ 1.

Now take ω ∈ Ω1
A with |ω|Ω ≤ 1. By de�nition there is a representation ω =

∑
i fidgi

with
max
i
{|fi|A|gi|A} ≤ 1,

i.e., |fi|A|gi|A ≤ 1 for all i. So figi ∈ A+.
In case gi /∈ m we write gi = g′i/g

′′
i with g′i, g

′′
i ∈ A+ \m. Then

fidgi = figi
dg′i
g′i

+ figi
dg′′i
g′′i
∈ Ωlog

(A,A+).
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Suppose now that gi ∈ m. If fi ∈ m as well, then in particular, fi and gi are both elements
of A+. Hence, fidgi ∈ ΩA+ ⊂ Ωlog

(A,A+) (ΩA+ is torsion free by Proposition 4.3). Finally, if

gi ∈ m but fi /∈ m, we write

fidgi = d(figi)− gidfi.
The �rst term is in Ω1

A+ ⊂ Ωlog
(A,A+) and the second term in Ωlog

(A,A+) by the same reasoning

as above. We conclude that ω ∈ Ωlog
(A,A+). �

{characterization_Kaehler}
Lemma 5.3. The Kähler seminorm is the maximal A-seminorm on ΩA with |Ωlog

A |Ω ≤ 1
and |dx|Ω = 0 for x ∈ m.

Proof. We already know from Lemma 5.2 that the Kähler seminorm is less or equal to
one on logarithmic di�erentials. It is also clear from the de�nition that |dx|Ω = 0 for

x ∈ m. It remains to show the maximality. Let | − | be a seminorm such that |Ωlog
A | ≤ 1

and |dx| = 0 for x ∈ m. Let ω ∈ ΩA and pick a representation ω =
∑

i fidgi. For every i
such that gi /∈ m take g′i, g

′′
i ∈ A+ \m such that gi = g′i/g

′′
i . Then

fidgi = figi(
dg′i
g′i

+
dg′′i
g′′i

).

For i with gi ∈ m we have |fidgi| = 0. Hence, by the strong triangle inequality,

|ω| ≤ max
i,gi /∈m

{|figi|A|
dg′i
g′i
|, |figi|A|

dg′′i
g′′i
|}.

By our assumption |dg
′
i

g′i
| ≤ 1 and |dg

′′
i

g′′i
| ≤ 1, whence

|ω| ≤ max
i,gi /∈m

{|fi|A|gi|A} = max
i
{|fi|A|gi|A}.

Since this holds for all representations ω =
∑

i figi, we obtain |ω| ≤ |ω|Ω. �

De�nition 5.4. For a local Huber pair (A,A+) and an A+-moduleM we de�ne the adic
seminorm by

|x|ad := inf
a+∈A+

x∈a+M

|a+|A.

We can consider the adic seminorm on Ωlog
A . On the other hand, we have an inclusion

Ωlog
(A,A+) ↪→ ΩA (see Proposition 4.3). We thus obtain a seminorm on Ωlog

(A,A+) by restricting

the Kähler seminorm to Ωlog
(A,A+).

{Kaehler_adic}
Lemma 5.5. For ω ∈ Ωlog

(A,A+) we have |x|Ω = |x|ad

Proof. By Lemma 5.3 it su�ces to show that |Ωlog
(A,A+)|ad ≤ 1, |dx|ad = 0 for x ∈ m, and

|ω|Ω ≤ |ω|ad for all ω ∈ Ωlog
(A,A+). The �rst assertion is obvious as |Ωlog

(A,A+)|ad ⊆ |A
+|A. For

the second one take x ∈ m and a+ ∈ A+ \m. Then x is divisible by a+ and

dx = d(a+ · x
a+

)− (
x

a+
)da+ = a+(d(

x

a+
)− x

(a+)2
)da+,

i.e., dx ∈ a+Ωlog
(A,A+). By the de�nition of the adic seminorm, this means |dx| ≤ |a+|.

As a+ was arbitrary, this implies |dx| = 0.
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Let us now prove the last assertion. Take ω ∈ Ωlog
(A,A+) and a

+ ∈ A+ with ω ∈ a+Ωlog
(A,A+).

So there is a representation ω =
∑

i a
+fidgi/gi with fi ∈ A+ and gi ∈ A+ \m. Then

|ω|Ω ≤ max
i
{|a+|A · |fi|A} ≤ |a+|A.

Since this holds for all a+ ∈ A+ with ω ∈ a+Ωlog
(A,A+), we obtain

|ω|Ω ≤ |ω|ad.
�

{isometry}

Proposition 5.6. Let (B,B+)/(A,A+) be a tame extension of local Huber pairs. Then

ΩA ⊗A B
∼−→ ΩB

is an isometry (with respect to the Kähler seminorm).

Proof. Consider the following map of distinguished triangles

L
log
(A,A+) ⊗

L
A+ B+ L

log
(B,B+) L

log
(B,B+)/(A,A+)

LA ⊗LA B LB LB/A .

+1

+1

Since B/A is étale, LB/A ∼= 0 ([Ill71], Proposition 3.1.1). Moreover, (B,B+)/(A,A+)

is tame, whence Llog
(B,B+)/(A,A+)

∼= 0 (see Proposition 3.2). Furthermore, B is �at over A

and B+ is �at over A+ (see [Hüb18], Proposition 10.7). Hence the derived tensor products
are naive tensor products. We thus obtain a diagram

Ωlog
(A,A+) ⊗A+ B+ Ωlog

(B,B+)

ΩA ⊗A B ΩB.

∼
φ

∼
ψ

The vertical maps are localizations by Corollary 2.5. Hence, in order to show that ψ is
an isometry, it su�ces to show that φ is an isometry. But the restriction of the Kähler
seminorm to logarithmic di�erentials coincides with the adic seminorm (Lemma 5.5) and
the adic seminorm is unique for a given A+-module. �

{section_Kaehler_adic}
5.2. The Kähler seminorm on adic spaces. For a discretely ringed adic space X , a
point x ∈ X , and an open neighborhood U ⊂ X of x we de�ne the Kähler seminorm
| − |x on ΩX (U ) associated with x as follows. For ω ∈ ΩX (U ) let ωx be the image of ω
in ΩX ,x = ΩOX ,x

. Then

|ω|x := |ωx|Ω,
where | − |Ω is the Kähler seminorm on ΩOX ,x

associated with the local Huber pair

(OX ,x,O
+
X ,x).

Recall from [Hüb18], that an étale morphism f : X → Y of adic spaces is strongly
étale at a point x ∈ X if the residue �eld extension k(x)|k(f(x)) is unrami�ed with
respect to the valuation of k(x) corresponding to x. Moreover, f is tame if k(x)|k(f(x))
is tamely rami�ed. The tame (strongly étale) morphisms to X together with surjective
families form a site Xt (Xsét), called the tame (strongly étale) site.
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De�nition 5.7. We de�ne the subpresheaf Ω+ of Ω on Xt by

Ω+(U ) := {ω ∈ Ω(U ) | |ω|x ≤ 1 ∀x ∈ U }.

Notice that this construction is indeed functorial: For V → U in Xt, ω ∈ Ω+(U ),
and x ∈ V we have

|ω|V |x = |ω|f(x) ≤ 1

by Proposition 5.6. By restriction, we obtain a presheaf on the topological space X and
on the strongly étale site Xsét, as well. We denote all of these Ω+. Moreover, we set
Ωn,+ :=

∧n Ω+.

Proposition 5.8. The presheaf Ω+ is a sheaf on Xt.

Proof. For a covering (ϕi : Ui → U ) in Xt consider the diagram

0 Ω+(U )
∏

i Ω
+(Ui)

∏
ij Ω+(Ui ×U Uj)

0 Ω(U )
∏

i Ω(Ui)
∏

ij Ω(Ui ×U Uj).

The lower row is exact as Ω is a sheaf. We have to show that the upper row is exact.
Since Ω+ → Ω is injective, exactness on the left hand side is clear. Let (ωi)i ∈

∏
i Ω

+(Ui)
be such that

ωi|Ui×U Uj
= ωj|Ui×U Uj

∀i, j.
There is ω ∈ Ω(U ) such that ω|Ui

= ωi for all i. In order to show that ω ∈ Ω+(U ), take
x ∈ U . Since (ϕi : Ui → U ) is a covering, there is i and xi ∈ Ui such that ϕi(xi) = x.
By Proposition 5.6

|ω|x = |ω|Ui
|xi = |ωi|xi ≤ 1.

Hence ω ∈ Ω+(U ). �

Remark 5.9. For a morphism ϕ : V → U in Xét that is not tame, ω ∈ Ω(U ), and
x ∈ V , it is not true in general that |ω|V |x = |ω|ϕ(x) (compare [Tem16], Theorem 5.6.4).
We only have |ω|V |x ≤ |ω|ϕ(x). So Ω+ is a presheaf on the étale site but not necessarily
a sheaf.

Proposition 5.10. Let n ≥ 1 and X a (discretely ringed) adic space. As a sheaf on the
topological space X , Ωn,+ is the shea��cation of Ωn,log. In particular, Ωn,+ is a subsheaf
of Ωn.

Proof. Let us �rst show the proposition for n = 1. The homomorphism Ωlog → Ω factors
through Ω+ as for an open U ⊆X , ω ∈ Ωlog(U ) and x ∈ U we have

ωx ∈ Ωlog

(OX ,x,O
+
X ,x)

and ∣∣Ωlog

(OX ,x,O
+
X ,x)
|Ω ≤ 1

by Lemma 5.2. It thus su�ces to show that for all x ∈ X the induced homomorphism
on stalks

Ωlog
x → Ω+

x

is an isomorphism. This is precisely the assertion of Lemma 5.2.
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For n ≥ 1 it is clear by de�nition and from the result for n = 1 that the shea��cation
of Ωn,log is Ωn,+. It then follows from Proposition 4.3 that the natural homomorphism
Ωn,+ → Ωn is injective. �

Note that the shea��cation of Ωn,log on the topological space X also provides the
shea��cation on the strongly étale and on the tame site as Ωn,+ is a tame sheaf.

6. Differentials on smooth adic spaces
{section_differentials_smooth}

6.1. Setup. Recall from [Hub96], De�nition 1.6.5 that a morphism X → Y of adic
spaces is smooth if it is locally of �nite presentation and for every morphism Spa(A,A+)→
Y from an a�noid adic space and every ideal I of A with I2 = 0, the homomorphism

HomY (Spa(A,A+),X )→ HomY (Spa(A,A+)/I,X )

is surjective.
We �x a perfect �eld k and consider discretely ringed adic spaces over Spa(k, k). For

short we will speak of adic spaces over k.
A pair of schemes (X, X̄) is called log smooth if X is an open subscheme of X̄ (we

implicitly take the immersion X → X̄ as part of the datum) such that the associated log
structure on X̄ is log smooth over k. We say that X → X̄ is a log smooth presentation of
an adic space X over k if X = Spa(X, X̄) and (X, X̄) is log smooth. In particular, if X
has a log smooth presentation, it is smooth. The converse direction only holds under the
assumption that resolutions of singularities exist over k.
For a morphism of schemes X → S such that Spa(X,S) is a smooth adic space over k,

we consider the following site (X,S)log: The objects are �nite disjoint unions of log
smooth pairs (Y, Ȳ ) �tting into a diagram

Y X

Ȳ S

such that Y → X is an open immersion and Ȳ → S is the normalization in Y of a scheme
of �nite type over S. The morphisms are compatible morphisms of pairs over (X,S) (but
we do not require the associated morphism of log schemes to be log smooth). If (X,S)
itself is log smooth, it is a �nal object of (X,S)log. A morphism (Y ′, Ȳ ′) → (Y, Ȳ ) in
(X,S)log is called an open immersion if the associated morphism of log schemes is an
open immersion, i.e., Ȳ ′ → Ȳ is an open immersion and Y ′ = Y ×Ȳ Ȳ ′. We de�ne the
coverings of (X,S)log to be surjective families

((Yi, Ȳi)→ (Y, Ȳ ))i∈I

of open immersions. In other words, the topology is the Zariski topology on Ȳ .
On (X,S)log we consider the sheaf Ωn,log of logarithmic di�erentials (compare [Ogu18],

Theorem 1.2.4). It is no coincidence that the symbol Ωn,log is the same as for the presheaf
of logarithmic di�erentials on the site of strict a�noids studied in Section 4.2. In fact for
a strict a�noid Spa(A,A+) such that (SpecA, SpecA+) is log smooth, we have

Ωn,log
(A,A+) = Ωn,log(SpecA, SpecA+)

by construction. Because of this compatibility the use of Ωn,log in both situations will not
cause confusion.
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For an object (Y, Ȳ ) of (X,S)log the induced morphism

Spa(Y, Ȳ )→ Spa(X,S)

is an open immersion. We thus obtain a morphism of sites

` : Spa(X,S)top → (X,S)log.

For log smooth Huber pairs (A,A+) Lemma 5.2 provides functorial homomorphisms

Ωn,log(SpecA, SpecA+) −→ Ωn,+
(A,A+) = `∗Ω

n,+(SpecA, SpecA+).

Since the log smooth pairs of the form (SpecA, SpecA+) form a basis of the topology of
(X,S)log and both Ωn,log and `∗Ω

n,+ are sheaves on (X,S)log, the above homomorphism
extends to a homomorphism of sheaves

ϕ : Ωn,log → `∗Ω
n,+.

Our goal is to prove that if Spa(X,S) is smooth, ϕ is an isomorphism. Since we do not
want to use resolution of singularities, the argument is somewhat intricate. It is inpired
from [HKK17]. However, we have adapted the constructions to our situation to produce
a more streamlined argument.

{section_unramified_sheaves}
6.2. Unrami�ed sheaves.

De�nition 6.1. We say that a morphism of schemes Y → Z is an isomorphism in
codimension one if there is an open subscheme U ⊆ Z containing all points of codimension
≤ 1 such that the base change Y ×Z U → U is an isomorphism. A morphism (Y, Ȳ ) →
(Z, Z̄) in (X,S)log is an isomorphism in codimension one if Ȳ → Z̄ is an isomorphism in
codimension one and Y = Z ×Ȳ Z̄. In this case we write (Y, Ȳ ) ∼1 (Z, Z̄).

In a similar way as in [Mor12], De�nition 2.1, we de�ne unrami�ed sheaves:

De�nition 6.2. A sheaf F on (X,S)log is called unrami�ed if for any open immersion
(Y ′, Ȳ ′)→ (Y, Ȳ ) in (X,S)log with dense image the restriction

F (Y, Ȳ )→ F (Y ′, Ȳ ′)

is injective and an isomorphism if (Y ′, Ȳ ′) ∼1 (Y, Ȳ ) .
A presheaf G on Spa(X,S) is called unrami�ed if `∗G is an unrami�ed sheaf.

Lemma 6.3. Let F be an unrami�ed sheaf on (X,S)log. If (Y ′, Ȳ ′)→ (Y, Ȳ ) in (X,S)log

induces an isomorphim Spa(Y ′, Ȳ ′)→ Spa(Y, Ȳ ), then the restriction

F (Y, Ȳ )→ F (Y ′, Ȳ ′)

is an isomorphism.

Proof. The morphism Spa(Y ′, Ȳ ′) → Spa(Y, Ȳ ) is an isomorphism if and only if Y ′ ∼= Y
and Ȳ ′ → Ȳ is proper birational. Since (Y, Ȳ ) is log smooth, Ȳ is normal. Hence, the
exceptional locus of Ȳ ′ → Ȳ in Ȳ is of codimension ≥ 2. In other words, its complement
V̄ ⊂ Ȳ contains all points of codimension ≤ 1. By construction Y ⊆ V̄ and the open
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immersion V̄ → Ȳ lifts to an open immersion V̄ → Ȳ ′. We thus obtain a diagram

(Y ′, Ȳ ′)

(Y, V̄ )

(Y, Ȳ ).

The diagonal arrows are open immersions with dense image and the image of the lower
one contains all points of codimension ≤ 1. Applying F yields

F (Y ′, Ȳ ′)

F (Y, V̄ )

F (Y, Ȳ ).

∼

Since F is unrami�ed, the lower diagonal arrow is an isomorphism and the upper one
is injective. Hence, the vertical arrow is an isomorphism (and the upper diagonal one as
well). �

For an open subset U of Spa(X,S) we de�ne the following full subcategory Ulog

of (X,S)log. Its objects are the objects (Z, Z̄) of (X,S)log such that the morphism
Spa(Z, Z̄) → Spa(X,S) induced by the structure morphism factors through U . Ob-
viously, for U ′ ⊆ U we have U ′

log ⊆ Ulog.

In case U = Spa(Y, Ȳ ), all objects (Z, Z̄) of (X,S)log with a morphism (Z, Z̄)→ (Y, Ȳ )
are in Spa(Y, Ȳ )log. But Spa(Y, Ȳ )log might be bigger. For instance, if (Y, Ȳ )→ (Z, Z̄) is
a morphism in (X,S)log such that Ȳ → Z̄ is proper and not an isomorphism and Z = Y ,
then (Z, Z̄) ∈ Spa(Y, Ȳ )log but there is no morphism (Z, Z̄)→ (Y, Ȳ ). Only in the a�ne
case we have the following lemma:

{final_object}
Lemma 6.4. Let (A,A+) be log smooth. Then (SpecA, SpecA+) is a �nal object of
Spa(A,A+)log.

Proof. Let (Y, Ȳ ) be an object of Spa(A,A+)log and set Y = Spa(Y, Ȳ ). Then OY (Y ) =
OY (Y ) and O+

Y (Y ) = OȲ (Ȳ ). By [Hub94], Proposition 2.1 there is a natural isomorphism

Hom((A,A+), (OY (Y ),O+
Y (Y ))) ∼= Hom(Y , Spa(A,A+)).

We thus obtain ring homomorphisms A → OY (Y ) and A+ → OȲ (Ȳ ). By functoriality
they �t into a commutative diagram

OY (Y ) A

OȲ (Ȳ ) A+
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The characterization of morphisms to a�ne schemes by homomorphisms of global sections
of the structure sheaves yields a commutative diagram of schemes

Y SpecA

Ȳ SpecA+.

This de�nes a morphism (Y, Ȳ )→ (SpecA, SpecA+) in Spa(A,A+)log. �
{strict_factorization}

Lemma 6.5. Let Spa(Y, Ȳ ) ⊂ Spa(X,S) be open coming from a diagram of schemes

Y X

Ȳ X̄.

Moreover, let (Z, Z̄) ∈ Spa(Y, Ȳ )log. Then there is an open subscheme Ū ⊆ Z̄ isomorphic
in codimension one, containing Z, and such that (Z, Ū)→ (X,S) factors through (Y, Ȳ ).

Proof. Replacing, if necessary, Ȳ with a compacti�cation of Y over Ȳ , we may assume that
Y → Ȳ is an open immersion with dense image. The morphism Spa(Z, Z̄)→ Spa(Y, Ȳ )
provides an open immersion ϕ : Z → Y and a birational map ϕ̄ : Z̄ → Ȳ . Since Z̄ is
normal, ϕ̄ is de�ned over an open subscheme Ū ⊆ Z̄ containing all points of codimension
≤ 1. Moreover, we may assume that Ū contains Z. By construction (Z, Ū) → (X,S)
factors through (Y, Ȳ ). �

We want to remind the reader of the concept of Riemann-Zariski morphisms (see
[HS20]). A point x of an adic space X is called Riemann-Zariski, if it has no non-
trivial horizontal specialization. A Riemann-Zariski morphism is a morphism of adic
spaces mapping Riemann-Zariski points to Riemann-Zariski points. Let us now consider
morphisms of adic spaces Spa(Y, T )→ Spa(X,S) arising from diagrams of schemes

Y X

T S.

The above diagram is said to have universally closed diagonal if the induced morphism
Y → X ×S T is universally closed. In this case the morphism Spa(Y, T ) → Spa(X,S)
is Riemann Zariski and the converse holds if Y is quasi-compact and all residue �eld
extensions of Y → X are algebraic (see [HS20], Lemma 12.7). In case S is integral, Y is
quasi-compact, and X → S and Y → X (and hence also Y → T ) are open immersions
with dense image, being Riemann Zariski is equivalent to Y ∼= X ×S T .

{find_open_codimension1}
Lemma 6.6. Let (Y, Ȳ ) be in (X,S)log. Let (Spa(Yi, Ȳi) → Spa(Y, Ȳ ))i∈I be a �nite
Riemann-Zariski covering and (Z, Z̄) ∈ Spa(Y, Ȳ )log. Then there is an open immersion
of the form (Z, Ū)→ (Z, Z̄) which is an isomorphism in codimension one such that

• (Z, Ū)→ (X,S) factors through (Y, Ȳ ) and
• setting Zi = Z ×Y Yi and Ūi = Ū ×Ȳ Ȳi, the family ((Zi, Ūi) → (Z, Ū))i∈I is a
covering in (X,S)log.
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Proof. Using Lemma 6.5 we �nd an open subscheme V̄ ⊆ Z̄ containing Z and isomorphic
in codimension one such that (Z, V̄ )→ (X,S) factors through (Y, Ȳ ). Set Zi = Z×Y Yi =
Z ∩ Yi and V̄i = V̄i×Ȳ Ȳi. Since V̄ is normal, for each i the morphism V̄i → V̄ is an open
immersion when restricted to a suitable open subscheme of V̄ isomorphic in codimension
one and containing Z. Denote by Ū the intersection of all of these subschemes for all i.
Setting Ūi = Ū ×V̄ V̄i we obtain a diagram

(Zi, Ūi) (Zi, V̄i) (Yi, Ȳi)

(Z, Ū) (Z, V̄ ) (Y, Ȳ )

(Z, Z̄).

∼1

∼1

All required properties of Ū are clear except maybe that (Ūi → Ū)i∈I is a surjective
family. But by construction the family (Spa(Zi, Ūi) → Spa(Z, Ū))i∈I is the pullback of
the covering (Spa(Yi, Ȳi)→ Spa(Y, Ȳ ))i∈I by Spa(Z, Ū)→ Spa(Y, Ȳ ). In particular, it is
surjective. This implies that (Ūi → Ū)i∈I has to be surjective. �

De�nition 6.7. For an unrami�ed sheaf F on (X,S)log we de�ne a presheaf Flim on
Spa(X,S) as follows:

Flim(U ) = lim
(Y,Ȳ )∈Ulog

F (Y, Ȳ ).

We want to emphazise that in the above de�nition we are taking a limit and not a
colimit. The presheaf Flim is not related to the pullback `∗F . Notice moreover, that the
de�nition of Flim is indeed functorial: For open subsets U ′ ⊆ U in Spa(X,S) we need
a restriction Flim(U )→ Flim(U ′) in

Hom(Flim(U ),Flim(U ′)) = lim
(Y ′,Ȳ ′)

colim
(Y,Ȳ )

Hom(F (Y, Ȳ ),F (Y ′, Ȳ ′)).

In other words, we have to �nd for each (Y ′, Ȳ ′) in U ′
log a (Y, Ȳ ) in Ulog and de�ne a

homomorphism
F (Y, Ȳ )→ F (Y ′, Ȳ ′).

Moreover, these homomorphisms need to be compatible. But for given (Y ′, Ȳ ′) we can
just take (Y, Ȳ ) = (Y ′, Ȳ ′) and the identity homomorphism on F (Y ′, Ȳ ′). This is clearly
functorial.

{restrictions_injective}

Lemma 6.8. Let F be an unrami�ed sheaf on (X,S)log. Then for all open subspaces
U ′ ⊆ U ⊆ Spa(X,S) the restriction

Flim(U )→ Flim(U ′)

is injective.

Proof. Suppose s = (s(Y,Ȳ ))(Y,Ȳ ) ∈ Flim(U ) maps to zero in Flim(U ′). This means that

s(Y,Ȳ ) = 0 for all (Y, Ȳ ) ∈ U ′
log. Take any (Y, Ȳ ) in Ulog. We have to show that s(Y,Ȳ ) = 0.

Without loss of generality we may assume that (Y, Ȳ ) is connected. There is a dense
open Ȳ ′ ⊆ Ȳ such that, setting Y ′ = Ȳ ′ ∩ Y , the morphism Spa(Y ′, Ȳ ′) → Spa(X,S)
factors through U ′. Then F (Y, Ȳ )→ F (Y ′, Ȳ ′) is injective and s(Y,Ȳ )|(Y ′,Ȳ ′) = 0, whence
s(Y,Ȳ ) = 0. �
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{F_lim_sheaf}
Proposition 6.9. With the above notation Flim is a sheaf on Spa(X,S).

Proof. It su�ces to show the sheaf condition for coverings of the form (ϕi : Spa(Yi, Ȳi)→
Spa(Y, Ȳ ))i∈I with �nite index set I coming from diagrams

Yi Y

Ȳi Ȳ .

ϕ

ϕ̄

Moreover, by [HS20], Lemma 12.10, every such covering has a re�nement which is Riemann-
Zariski. Therefore, we may assume that our covering is Riemann Zariski. We need to
show that the sequence

Flim(Spa(Y, Ȳ ))→
∏
i

Flim(Spa(Yi, Ȳi)) ⇒
∏
ij

Flim(Spa(Yi, Ȳi) ∩ Spa(Yj, Ȳj))

is exact. Exactness on the left is assured by Lemma 6.8. Suppose we are given si =
(si,(Zi,Z̄i))(Zi,Z̄i) in Flim(Spa(Yi, Ȳi)) such that the restrictions of si and sj to Spa(Yi, Ȳi)∩
Spa(Yj, Ȳj) coincide. By de�nition this means that

si,(Z,Z̄) = sj,(Z,Z̄)

for all (Z, Z̄) ∈ (Spa(Yi, Ȳi) ∩ Spa(Yj, Ȳj))log.
We have to �nd s ∈ Flim(Spa(Y, Ȳ )) with s|Spa(Yi,Ȳi) = si for all i. Let (Z, Z̄) be in

Spa(Y, Ȳ )log. In the following we explain how to de�ne s(Z,Z̄). Lemma 6.6 provides us

with an open subscheme Ū ⊆ Z̄ isomorphic in codimension one and containing Z such
that (Z, Ū) → Spa(X,S) factors through (Y, Ȳ ) and ((Zi, Ūi) → (Z, Ū))i∈I is a covering
in (X,S)log (where Zi = Z ×Y Yi and Ūi = Ū ×Ȳ Ȳi). Since F̄ is a sheaf on (X,S)log, the
sequence

0→ F (Z, Ū)→
∏
i

F (Zi, Ūi)→
∏
i,j

F (Zi ∩ Zj, Ūi ∩ Ūj)

is exact. The sections si,(Zi,Ūi) ∈ F (Zi, Ūi) coincide on the intersections (Zi∩Zj, Ūi∩ Ūj).
They thus lift to a unique section s(Z,Ū) of F (Z, Ū). We de�ne s(Z,Z̄) to be the preimage

of s(Z,Ū) under the isomorphism F (Z, Z̄)→ F (Z, Ū). It follows from the fact that F is

unrami�ed that the s(Z,Z̄) are compatible and de�ne an element of Flim(Spa(Y, Ȳ )). We
leave the details to the reader.
Let us show that s|Spa(Yi,Ȳi) = si. This is equivalent to showing that for all (Z, Z̄) ∈

Spa(Yi, Ȳi)log we have s(Z,Z̄) = si,(Z,Z̄). By unrami�edness we can check this equality after

restricting to (Z, Ū) for an open subscheme Ū ⊆ Z̄ isomorphic in codimension one and
containing Z. By Lemma 6.6 we may thus assume that (Z, Z̄)→ (X,S) factors through
(Yi, Ȳi) and ((Zj, Z̄j)→ (Z, Z̄))j∈I (for Zj = Zi×Yi , Yj and Z̄j = Z̄i×Ȳi Ȳj) is a covering in
Spa(X,S)log. By construction, s(Z,Z̄) is uniquely de�ned by the condition s(Z,Z̄)|(Zj ,Z̄j) =

sj,(Zi,Z̄j) for all j ∈ I. In particular, s(Z,Z̄)|(Zi,Z̄i) = si,(Zi,Z̄i). But (Zi, Z̄i) = (Z, Z̄), so
s(Z,Z̄) = si,(Z,Z̄). �

Lemma 6.10. Ωn,log is unrami�ed.

Proof. Theorem 38 in [Mat70] says that a noetherian normal domain is the intersection
of the localizations at its height one prime ideals. It follows from this that the sheaf O
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on (X,S)log de�ned by

(Y, Ȳ ) 7→ OȲ (Ȳ )

is unrami�ed. Since the objects of (X,S)log are log smooth, Ωn,log is a locally free O-
module. Hence, it is unrami�ed as well. �

6.3. The comparison theorem. We have a natural map Ωn,log → Ωn,log
lim of presheaves

on the site of strict a�noids Spa(X,S)straff . Sine Ωn,log
lim is a sheaf by Proposition 6.9, this

map factors through the shea��cation Ωn,+ of Ωn,log:

Ωn,log → Ωn,+ → Ωn,log
lim .

{comparison_straff}
Proposition 6.11. Let (A,A+) be log smooth. Then the natural homomorphism

Ωn,log
(A,A+) → Ωn,+(Spa(A,A+))

is an isomorphism.

Proof. Consider the chain of homomorphisms

Ωn,log
(A,A+)

ϕ1→ Ωn,+(Spa(A,A+))
ϕ2→ Ωn,log

lim (Spa(A,A+))
ϕ3→ Ωn

A.

By Lemma 6.4 we know that (SpecA, SpecA+) is a �nal object of Spa(A,A+)log. Hence,

we can identify Ωn,log
lim (Spa(A,A+)) with Ωn,log

(A,A+) and then ϕ2◦ϕ1 is the identity. Moreover,

ϕ3 ◦ ϕ2 is the natural inclusion. We obtain

Ωn,log
(A,A+) Ωn,+(Spa(A,A+)) Ωn,log

lim (Spa(A,A+)) Ωn
A.

ϕ1

id

ϕ2

inclusion

ϕ3

A diagram chase shows that ϕ1 and ϕ2 are isomorphisms. �
{main_theorem}

Theorem 6.12. Let (Y, Ȳ ) be in (X,S)log. Then

Ωn,+(Spa(Y, Ȳ )) ∼= Ωn,log(Y, Ȳ ),

where Ωn,log denotes the sheaf of logarithmic di�erentials on (X,S)log.

Proof. Consider the subcategory C of (X,S)log of objects of the form (SpaA, SpaA+).
It is a site with the induced topology and the topoi associated with C and (X,S)log are
equivalent. We consider the following morphism of sites

πstraff : Spa(X,S)straff −→ C

Spa(A,A+) 7→(SpecA, SpecA+),

It �ts into the following commutative diagram of morphisms of sites

Spa(X,S)top (X,S)log

Spa(X,S)straff C .

π

ιstraff ιC

πstraff
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It follows by construction that πstraff
∗ ιstraff

∗ F = ιC∗ π∗F for any presheaf F on Spa(X,S)top.
Applying πstraff

∗ to the homomorphism Ωn,log → ιstraff
∗ Ωn,+ of presheaves on Spa(X,S)straff ,

we obtain a homomorphism

πstraff
∗ Ωn,log → ιC∗ π∗Ω

n,+.

Unraveling the de�nitions, we see that πstraff
∗ Ωn,log equals ιC∗ Ωn,log (where now Ωn,log de-

notes the sheaf of logarithmic di�erentials on (X,S)log). By Proposition 6.11 the above
homomorphism is an isomorphism. Since the topoi associated to C and (X,S)log are
equivalent, we obtain an isomorphism

Ωn,log → π∗Ω
n,+

of sheaves on (X,S)log. Evaluating at an object (Y, Ȳ ) in (X,S)log yields the result. �
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