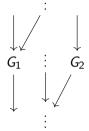
Profinite completions of 3-manifold groups

José Pedro Quintanilha

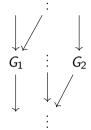
Universität Regensburg jose-pedro.quintanilha@ur.de Advisors: Stefan Friedl & Clara Löh

October 22, 2020

Consider an inverse system* of finite discrete groups:

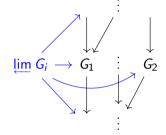


Consider an inverse system* of finite discrete groups:



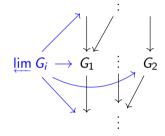
*a commutative diagram indexed by a poset where every two elements have a common upper bound.

Consider an inverse system* of finite discrete groups:



*a commutative diagram indexed by a poset where every two elements have a common upper bound.

Consider an inverse system* of finite discrete groups:



Definition

A topological group obtained as the limit $\varprojlim G_i$ over such a diagram is called a profinite group.

*a commutative diagram indexed by a poset where every two elements have a common upper bound.

Finite (discrete) groups are profinite.

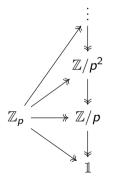
Finite (discrete) groups are profinite.

For p a prime, take:

 $\begin{array}{c} \vdots \\ \downarrow \\ \mathbb{Z}/p^2 \\ \downarrow \\ \mathbb{Z}/p \\ \downarrow \\ \mathbb{Z}/p \\ \downarrow \\ \mathbb{I} \end{array}$

Finite (discrete) groups are profinite.

For p a prime, take:

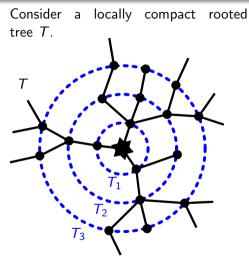


The limit \mathbb{Z}_p over this tower is the group of *p*-adic integers.

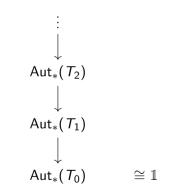
Consider a locally compact rooted tree T.

Consider a locally compact rooted tree T. T_2 T_3

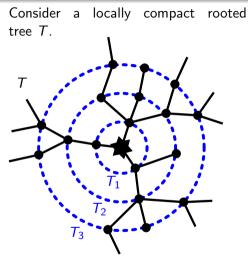
Let T_n be the rooted subtree that lies within distance n from the root.



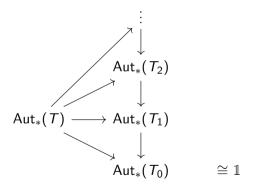
The (finite) automorphism groups of the T_n form an inverse system:



Let T_n be the rooted subtree that lies within distance n from the root.



The (finite) automorphism groups of the T_n form an inverse system:

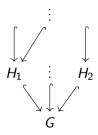


Let T_n be the rooted subtree that lies within distance *n* from the root.

Let G be a discrete group.

Let G be a discrete group.

Consider the inverse system of finiteindex normal subgroups $H \trianglelefteq G$.



Let G be a discrete group.

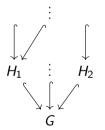
Consider the inverse system of finiteindex normal subgroups $H \underset{\text{f.i.}}{\trianglelefteq} G$.

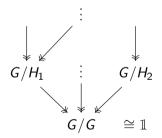
The inclusions $H_1 \hookrightarrow H_2$ induce $G/H_1 \twoheadrightarrow G/H_2$.

Let G be a discrete group.

Consider the inverse system of finiteindex normal subgroups $H \trianglelefteq G$. The inclusions $H_1 \hookrightarrow H_2$ induce $G/H_1 \twoheadrightarrow G/H_2$.

We obtain the inverse system of finite quotients of G:





Definition

The profinite completion of a discrete group G is

$$\widehat{G} := \lim_{\substack{H \leq G \\ f,i.}} G/H.$$

Definition

The profinite completion of a discrete group G is

$$\widehat{G} := \lim_{\substack{H \trianglelefteq G \\ \mathrm{f.i.}}} G/H.$$

• If G is finite, then $\widehat{G} \cong G$.

Definition

The profinite completion of a discrete group G is

$$\widehat{G} := \lim_{\substack{H \leq G \\ \mathrm{f.i.}}} G/H.$$

- If G is finite, then $\widehat{G} \cong G$.
- If G is infinite and finitely generated and "has enough finite quotients", then \widehat{G} has the topology of a Cantor set (it is uncountable, compact and totally disconnected).

Definition

The profinite completion of a discrete group G is

$$\widehat{G} := \lim_{\substack{H \leq G \\ \mathrm{f.i.}}} G/H.$$

• If G is finite, then $\widehat{G} \cong G$.

• If G is infinite and finitely generated and "has enough finite quotients", then \widehat{G} has the topology of a Cantor set (it is uncountable, compact and totally disconnected).

Slogan: " \widehat{G} is just a neat way of packaging the finite quotients of *G*."

Definition

The profinite completion of a discrete group G is

 $\widehat{G} := \lim_{\substack{H \leq G \\ f.i.}} G/H.$

• If G is finite, then $\widehat{G} \cong G$.

• If G is infinite and finitely generated and "has enough finite quotients", then \widehat{G} has the topology of a Cantor set (it is uncountable, compact and totally disconnected).

Slogan: " \widehat{G} is just a neat way of packaging the finite quotients of G."

Theorem (Dixon, Formanek, Poland, Ribes, 1982)

Let G, H be finitely generated groups. Then G and H have the same set of isomorphism classes of finite quotients if and only if $\widehat{G} \cong \widehat{H}$.

There is a canonical map $\,G
ightarrow \widehat{G}$ with dense image.

Proposition (Universal property of the profinite completion)

If Γ is a profinite group, then any homomorphism $G \to \Gamma$ extends uniquely to a continuous homomorphism $\widehat{G} \to \Gamma$.

Proposition (Universal property of the profinite completion)

If Γ is a profinite group, then any homomorphism $G \to \Gamma$ extends uniquely to a continuous homomorphism $\widehat{G} \to \Gamma$.

Proposition (Universal property of the profinite completion)

If Γ is a profinite group, then any homomorphism $G \to \Gamma$ extends uniquely to a continuous homomorphism $\widehat{G} \to \Gamma$.

$$G \xrightarrow{f} H$$

Proposition (Universal property of the profinite completion)

If Γ is a profinite group, then any homomorphism $G \to \Gamma$ extends uniquely to a continuous homomorphism $\widehat{G} \to \Gamma$.

$$\begin{array}{ccc} G & \stackrel{f}{\longrightarrow} & H \\ \downarrow & & \downarrow \\ \widehat{G} & & \widehat{H} \end{array}$$

Proposition (Universal property of the profinite completion)

If Γ is a profinite group, then any homomorphism $G \to \Gamma$ extends uniquely to a continuous homomorphism $\widehat{G} \to \Gamma$.

$$\begin{array}{ccc} G & \stackrel{f}{\longrightarrow} & H \\ \downarrow & & \downarrow \\ \widehat{G} & \stackrel{\widehat{f}}{\dashrightarrow} & \widehat{H} \end{array}$$

A group G is residually finite if for every non-trivial $g \in G$, there exists a finite quotient $G \to G/H$ mapping g to a non-trivial element.

A group G is residually finite if for every non-trivial $g \in G$, there exists a finite quotient $G \rightarrow G/H$ mapping g to a non-trivial element.

Equivalently: G is residually finite if the map $G \to \widehat{G}$ is injective.

A group G is residually finite if for every non-trivial $g \in G$, there exists a finite quotient $G \to G/H$ mapping g to a non-trivial element.

Equivalently: G is residually finite if the map $G \to \widehat{G}$ is injective.

Theorem (Hempel, 1987 + Geometrization)

The fundamental group of a compact 3-manifold is residually finite.

A group G is residually finite if for every non-trivial $g \in G$, there exists a finite quotient $G \to G/H$ mapping g to a non-trivial element.

Equivalently: G is residually finite if the map $G \to \widehat{G}$ is injective.

Theorem (Hempel, 1987 + Geometrization)

The fundamental group of a compact 3-manifold is residually finite.

(Not true for 4-manifolds!)

Profinite rigidity for 3-manifolds

Profinite rigidity for 3-manifolds

From now on, assume all 3-manifolds are connected.

Profinite rigidity for 3-manifolds

From now on, assume all 3-manifolds are connected.

Question ("profinite rigidity"): Suppose M, N are 3-manifolds with $\widehat{\pi_1(M)} \cong \widehat{\pi_1(N)}$. Does it follow that $\pi_1(M) \cong \pi_1(N)$?

Question ("profinite rigidity"): Suppose M, N are 3-manifolds with $\widehat{\pi_1(M)} \cong \widehat{\pi_1(N)}$. Does it follow that $\pi_1(M) \cong \pi_1(N)$?

No. There are surface bundles over \mathbb{S}^1 with isomorphic $\widehat{\pi_1}$, but non-isomorphic π_1 (Hempel, 2014).

Question ("profinite rigidity"): Suppose M, N are 3-manifolds with $\widehat{\pi_1(M)} \cong \widehat{\pi_1(N)}$. Does it follow that $\pi_1(M) \cong \pi_1(N)$?

No. There are surface bundles over \mathbb{S}^1 with isomorphic $\widehat{\pi_1}$, but non-isomorphic π_1 (Hempel, 2014).

We may ask questions of profinite rigidity restricted to certain classes of manifolds.

Question ("profinite rigidity"): Suppose M, N are 3-manifolds with $\widehat{\pi_1(M)} \cong \widehat{\pi_1(N)}$. Does it follow that $\pi_1(M) \cong \pi_1(N)$?

No. There are surface bundles over \mathbb{S}^1 with isomorphic $\widehat{\pi_1}$, but non-isomorphic π_1 (Hempel, 2014).

We may ask questions of profinite rigidity restricted to certain classes of manifolds.

Theorem (Boileau, Friedl, 2015)

 $\widehat{\pi_1}$ detects the exterior of the unknot, the trefoil knot, and the figure eight knot, among all other knot exteriors.

Question ("profinite rigidity"): Suppose M, N are 3-manifolds with $\widehat{\pi_1(M)} \cong \widehat{\pi_1(N)}$. Does it follow that $\pi_1(M) \cong \pi_1(N)$?

No. There are surface bundles over \mathbb{S}^1 with isomorphic $\widehat{\pi_1}$, but non-isomorphic π_1 (Hempel, 2014).

We may ask questions of profinite rigidity restricted to certain classes of manifolds.

Theorem (Boileau, Friedl, 2015)

 $\widehat{\pi_1}$ detects the exterior of the unknot, the trefoil knot, and the figure eight knot, among all other knot exteriors.

Question: What features of 3-manifolds are detected by $\widehat{\pi_1}$?

Profinite invariants of 3-manifolds: H₁

The first homology is a profinite invariant.

The first homology is a profinite invariant. That is, if M, N are 3-manifolds with $\widehat{\pi_1(M)} \cong \widehat{\pi_1(N)}$, then $H_1(M) \cong H_1(N)$.

The first homology is a profinite invariant. That is, if M, N are 3-manifolds with $\widehat{\pi_1(M)} \cong \widehat{\pi_1(N)}$, then $H_1(M) \cong H_1(N)$.

Proof: More generally, we show that if G is a finitely generated group, then G^{ab} is determined by \widehat{G} .

The first homology is a profinite invariant. That is, if M, N are 3-manifolds with $\widehat{\pi_1(M)} \cong \widehat{\pi_1(N)}$, then $H_1(M) \cong H_1(N)$.

Proof: More generally, we show that if G is a finitely generated group, then G^{ab} is determined by \widehat{G} . Remember that \widehat{G} contains information about all finite quotients of G.

The first homology is a profinite invariant. That is, if M, N are 3-manifolds with $\widehat{\pi_1(M)} \cong \widehat{\pi_1(N)}$, then $H_1(M) \cong H_1(N)$.

Proof: More generally, we show that if G is a finitely generated group, then G^{ab} is determined by \widehat{G} . Remember that \widehat{G} contains information about all finite quotients of G. Let $G^{ab} \cong \mathbb{Z}^r \oplus \text{torsion}$.

The first homology is a profinite invariant. That is, if M, N are 3-manifolds with $\widehat{\pi_1(M)} \cong \widehat{\pi_1(N)}$, then $H_1(M) \cong H_1(N)$.

Proof: More generally, we show that if G is a finitely generated group, then G^{ab} is determined by \widehat{G} . Remember that \widehat{G} contains information about all finite quotients of G.

Let $G^{ab} \cong \mathbb{Z}^r \oplus \text{torsion}$. Then r is the largest integer such that for every $n \in \mathbb{N}$, G has a quotient isomorphic to $(\mathbb{Z}/n)^r$.

The first homology is a profinite invariant. That is, if M, N are 3-manifolds with $\widehat{\pi_1(M)} \cong \widehat{\pi_1(N)}$, then $H_1(M) \cong H_1(N)$.

Proof: More generally, we show that if G is a finitely generated group, then G^{ab} is determined by \widehat{G} . Remember that \widehat{G} contains information about all finite quotients of G.

Let $G^{ab} \cong \mathbb{Z}^r \oplus \text{torsion}$. Then *r* is the largest integer such that for every $n \in \mathbb{N}$, *G* has a quotient isomorphic to $(\mathbb{Z}/n)^r$.

Having determined r, the maximal p-subgrop of G^{ab} is the maximal abelian p-group H such that for all $n \in \mathbb{N}$, G has a quotient isomorphic to $H \oplus (\mathbb{Z}/n)^r$.

If Γ is a profinite group, one can define its "continuous cohomology" $H^*(\Gamma; M)$ with coefficients in a discrete Γ -module M.

If Γ is a profinite group, one can define its "continuous cohomology" $H^*(\Gamma; M)$ with coefficients in a discrete Γ -module M.

If G is a discrete group and M is a finite G-module, then the homomorphism $G \to \operatorname{Aut}_{\mathbb{Z}}(M)$ extends to $\widehat{G} \to \operatorname{Aut}_{\mathbb{Z}}(M)$, making M a \widehat{G} -module.

If Γ is a profinite group, one can define its "continuous cohomology" $H^*(\Gamma; M)$ with coefficients in a discrete Γ -module M.

If G is a discrete group and M is a finite G-module, then the homomorphism $G \to \operatorname{Aut}_{\mathbb{Z}}(M)$ extends to $\widehat{G} \to \operatorname{Aut}_{\mathbb{Z}}(M)$, making M a \widehat{G} -module.

Definition (Serre)

A finitely generated discrete group G is cohomologically good if for every finite G-module M, all induced maps $H^*(\widehat{G}; M) \to H^*(G; M)$ are isomorphisms.

If Γ is a profinite group, one can define its "continuous cohomology" $H^*(\Gamma; M)$ with coefficients in a discrete Γ -module M.

If G is a discrete group and M is a finite G-module, then the homomorphism $G \to \operatorname{Aut}_{\mathbb{Z}}(M)$ extends to $\widehat{G} \to \operatorname{Aut}_{\mathbb{Z}}(M)$, making M a \widehat{G} -module.

Definition (Serre)

A finitely generated discrete group G is cohomologically good if for every finite G-module M, all induced maps $H^*(\widehat{G}; M) \to H^*(G; M)$ are isomorphisms.

Theorem (Cavendish, 2012)

If M is a compact 3-manifold, then $\pi_1(M)$ is cohomologically good.

If Γ is a profinite group, one can define its "continuous cohomology" $H^*(\Gamma; M)$ with coefficients in a discrete Γ -module M.

If G is a discrete group and M is a finite G-module, then the homomorphism $G \to \operatorname{Aut}_{\mathbb{Z}}(M)$ extends to $\widehat{G} \to \operatorname{Aut}_{\mathbb{Z}}(M)$, making M a \widehat{G} -module.

Definition (Serre)

A finitely generated discrete group G is cohomologically good if for every finite G-module M, all induced maps $H^*(\widehat{G}; M) \to H^*(G; M)$ are isomorphisms.

Theorem (Cavendish, 2012)

If M is a compact 3-manifold, then $\pi_1(M)$ is cohomologically good.

Corollary: If *M* is aspherical, then $\widehat{\pi_1(M)}$ detects whether *M* is closed.

If Γ is a profinite group, one can define its "continuous cohomology" $H^*(\Gamma; M)$ with coefficients in a discrete Γ -module M.

If G is a discrete group and M is a finite G-module, then the homomorphism $G \to \operatorname{Aut}_{\mathbb{Z}}(M)$ extends to $\widehat{G} \to \operatorname{Aut}_{\mathbb{Z}}(M)$, making M a \widehat{G} -module.

Definition (Serre)

A finitely generated discrete group G is cohomologically good if for every finite G-module M, all induced maps $H^*(\widehat{G}; M) \to H^*(G; M)$ are isomorphisms.

Theorem (Cavendish, 2012)

If M is a compact 3-manifold, then $\pi_1(M)$ is cohomologically good.

Corollary: If *M* is aspherical, then $\widehat{\pi_1(M)}$ detects whether *M* is closed. **Proof:** *M* is closed $\iff H^3(M; \mathbb{F}_2) \cong \mathbb{F}_2$

If Γ is a profinite group, one can define its "continuous cohomology" $H^*(\Gamma; M)$ with coefficients in a discrete Γ -module M.

If G is a discrete group and M is a finite G-module, then the homomorphism $G \to \operatorname{Aut}_{\mathbb{Z}}(M)$ extends to $\widehat{G} \to \operatorname{Aut}_{\mathbb{Z}}(M)$, making M a \widehat{G} -module.

Definition (Serre)

A finitely generated discrete group G is cohomologically good if for every finite G-module M, all induced maps $H^*(\widehat{G}; M) \to H^*(G; M)$ are isomorphisms.

Theorem (Cavendish, 2012)

If M is a compact 3-manifold, then $\pi_1(M)$ is cohomologically good.

Corollary: If *M* is aspherical, then $\widehat{\pi_1(M)}$ detects whether *M* is closed. **Proof:** *M* is closed \iff $H^3(M; \mathbb{F}_2) \cong \mathbb{F}_2 \stackrel{M \text{ aspherical}}{\iff} H^3(\pi_1(M); \mathbb{F}_2) \cong \mathbb{F}_2$

If Γ is a profinite group, one can define its "continuous cohomology" $H^*(\Gamma; M)$ with coefficients in a discrete Γ -module M.

If G is a discrete group and M is a finite G-module, then the homomorphism $G \to \operatorname{Aut}_{\mathbb{Z}}(M)$ extends to $\widehat{G} \to \operatorname{Aut}_{\mathbb{Z}}(M)$, making M a \widehat{G} -module.

Definition (Serre)

A finitely generated discrete group G is cohomologically good if for every finite G-module M, all induced maps $H^*(\widehat{G}; M) \to H^*(G; M)$ are isomorphisms.

Theorem (Cavendish, 2012)

If M is a compact 3-manifold, then $\pi_1(M)$ is cohomologically good.

Corollary: If *M* is aspherical, then $\widehat{\pi_1(M)}$ detects whether *M* is closed. **Proof:** *M* is closed \iff $H^3(M; \mathbb{F}_2) \cong \mathbb{F}_2 \xrightarrow[\pi_1(M) \text{ good}]{} H^3(\pi_1(M); \mathbb{F}_2) \cong \mathbb{F}_2$ $\xrightarrow{\pi_1(M) \text{ good}} H^3(\widehat{\pi_1(M)}; \mathbb{F}_2) \cong \mathbb{F}_2.$

INTERLUDE Why do we care?

E INTERLUDE

• There is a rich theory about profinite groups.

= INTERLUDE

- There is a rich theory about profinite groups.
- Many questions of profinite rigidity for abstract groups remain open.

JINTERLUDE

- There is a rich theory about profinite groups.
- Many questions of profinite rigidity for abstract groups remain open. Namely: If G is a finitely generated residually finite group with $\widehat{G} \cong \widehat{F_n}$, does it follow that $G \cong F_n$?

JINTERLUDE

- There is a rich theory about profinite groups.
- Many questions of profinite rigidity for abstract groups remain open. Namely: If G is a finitely generated residually finite group with $\widehat{G} \cong \widehat{F_n}$, does it follow that $G \cong F_n$?
- The fact that 3-manifold groups are residually finite and cohomologycally good makes them particularly well-suited to profinite methods.

JINTERLUDE

- There is a rich theory about profinite groups.
- Many questions of profinite rigidity for abstract groups remain open. Namely: If G is a finitely generated residually finite group with $\widehat{G} \cong \widehat{F_n}$, does it follow that $G \cong F_n$?
- The fact that 3-manifold groups are residually finite and cohomologycally good makes them particularly well-suited to profinite methods.
- Finite quotients have topological meaning: they correspond to finite regular covers.

JINTERLUDE

- There is a rich theory about profinite groups.
- Many questions of profinite rigidity for abstract groups remain open. Namely: If G is a finitely generated residually finite group with $\widehat{G} \cong \widehat{F_n}$, does it follow that $G \cong F_n$?
- The fact that 3-manifold groups are residually finite and cohomologycally good makes them particularly well-suited to profinite methods.
- Finite quotients have topological meaning: they correspond to finite regular covers.
- In practice, 3-manifolds are often distinguished by finite quotients of π_1 .

JINTERLUDE

- There is a rich theory about profinite groups.
- Many questions of profinite rigidity for abstract groups remain open. Namely: If G is a finitely generated residually finite group with $\widehat{G} \cong \widehat{F_n}$, does it follow that $G \cong F_n$?
- The fact that 3-manifold groups are residually finite and cohomologycally good makes them particularly well-suited to profinite methods.
- Finite quotients have topological meaning: they correspond to finite regular covers.
- In practice, 3-manifolds are often distinguished by finite quotients of π₁.
 Statements about profinite rigidity tell us to what extent such methods have a chance of working.

Definition

An orientable 3-manifold M is prime if:

Definition

An orientable 3-manifold M is prime if:

• if
$$M \cong M_1 \# M_2$$
, then $M_1 \cong \mathbb{S}^3$ or $M_2 \cong \mathbb{S}^3$,

Definition

An orientable 3-manifold M is prime if:

- if $M \cong M_1 \# M_2$, then $M_1 \cong \mathbb{S}^3$ or $M_2 \cong \mathbb{S}^3$, and
- *M* is not homeomorphic to \mathbb{S}^3 .

Definition

An orientable 3-manifold M is prime if:

- if $M \cong M_1 \# M_2$, then $M_1 \cong \mathbb{S}^3$ or $M_2 \cong \mathbb{S}^3$, and
- *M* is not homeomorphic to \mathbb{S}^3 .

Theorem (Prime decomposition theorem)

Let M be a compact, oriented 3-manifold without spherical boundary components.

Definition

An orientable 3-manifold M is prime if:

- if $M \cong M_1 \# M_2$, then $M_1 \cong \mathbb{S}^3$ or $M_2 \cong \mathbb{S}^3$, and
- *M* is not homeomorphic to \mathbb{S}^3 .

Theorem (Prime decomposition theorem)

Let M be a compact, oriented 3-manifold without spherical boundary components. Then there exist oriented prime 3-manifolds M_1, \ldots, M_m such that

$$M\cong M_1\#\ldots\#M_m.$$

Definition

An orientable 3-manifold M is prime if:

- if $M \cong M_1 \# M_2$, then $M_1 \cong \mathbb{S}^3$ or $M_2 \cong \mathbb{S}^3$, and
- *M* is not homeomorphic to \mathbb{S}^3 .

Theorem (Prime decomposition theorem)

Let M be a compact, oriented 3-manifold without spherical boundary components. Then there exist oriented prime 3-manifolds M_1, \ldots, M_m such that

 $M\cong M_1\#\ldots\#M_m.$

The M_i are unique up to orientation-preserving homeomorphism.

Definition

An orientable 3-manifold M is prime if:

- if $M \cong M_1 \# M_2$, then $M_1 \cong \mathbb{S}^3$ or $M_2 \cong \mathbb{S}^3$, and
- *M* is not homeomorphic to \mathbb{S}^3 .

Theorem (Prime decomposition theorem)

Let M be a compact, oriented 3-manifold without spherical boundary components. Then there exist oriented prime 3-manifolds M_1, \ldots, M_m such that

 $M\cong M_1\#\ldots\#M_m.$

The M_i are unique up to orientation-preserving homeomorphism.

(The analogous statement for 4-manifolds is false!)

Since the prime manifold $\mathbb{S}^1 \times \mathbb{S}^2$ is not irreducible, is often treated separately from other factors in the prime decomposition.

Since the prime manifold $\mathbb{S}^1 \times \mathbb{S}^2$ is not irreducible, is often treated separately from other factors in the prime decomposition.

Theorem (Wilton, Zalesskii, 2019)

Let M, N be closed, orientable 3-manifolds with prime decompositions

$$M = M_1 \# \ldots \# M_m \# r(\mathbb{S}^1 \times \mathbb{S}^2), \qquad N = N_1 \# \ldots \# N_n \# s(\mathbb{S}^1 \times \mathbb{S}^2).$$

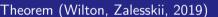
Since the prime manifold $\mathbb{S}^1 \times \mathbb{S}^2$ is not irreducible, is often treated separately from other factors in the prime decomposition.

Let M, N be closed, orientable 3-manifolds with prime decompositions

$$M = M_1 \# \ldots \# M_m \# r(\mathbb{S}^1 \times \mathbb{S}^2), \qquad N = N_1 \# \ldots \# N_n \# s(\mathbb{S}^1 \times \mathbb{S}^2).$$

If $f: \widehat{\pi_1(M)} \to \widehat{\pi_1(N)}$ is an isomorphism of profinite groups, then m = n, r = s, and each $f(\widehat{\pi_1(M_i)})$ is conjugate to a $\widehat{\pi_1(N_j)}$.

Since the prime manifold $\mathbb{S}^1 \times \mathbb{S}^2$ is not irreducible, is often treated separately from other factors in the prime decomposition.



Let M, N be closed, orientable 3-manifolds with prime decompositions

$$M = M_1 \# \ldots \# M_m \# r(\mathbb{S}^1 \times \mathbb{S}^2), \qquad N = N_1 \# \ldots \# N_n \# s(\mathbb{S}^1 \times \mathbb{S}^2).$$

If $f: \overline{\pi_1(M)} \to \overline{\pi_1(N)}$ is an isomorphism of profinite groups, then m = n, r = s, and each $f(\overline{\pi_1(M_i)})$ is conjugate to a $\overline{\pi_1(N_j)}$.

Wilton and Zalesskii also show a similar result for the JSJ decomposition (in the closed case).

Since the prime manifold $\mathbb{S}^1 \times \mathbb{S}^2$ is not irreducible, is often treated separately from other factors in the prime decomposition.

Let M, N be closed, orientable 3-manifolds with prime decompositions

$$M = M_1 \# \ldots \# M_m \# r(\mathbb{S}^1 \times \mathbb{S}^2), \qquad N = N_1 \# \ldots \# N_n \# s(\mathbb{S}^1 \times \mathbb{S}^2).$$

If $f: \widehat{\pi_1(M)} \to \widehat{\pi_1(N)}$ is an isomorphism of profinite groups, then m = n, r = s, and each $f(\widehat{\pi_1(M_i)})$ is conjugate to a $\widehat{\pi_1(N_j)}$.

Wilton and Zalesskii also show a similar result for the JSJ decomposition (in the closed case). Their proof uses an adaptation of Bass-Serre theory to the profinite setting!

Profinite invariants of 3-manifolds: fiberedness

A 3-manifold M is said to **fiber over** \mathbb{S}^1 if M is the total space of a fiber bundle $M \to \mathbb{S}^1$, with fiber a compact orientable connected surface.

A 3-manifold M is said to **fiber over** \mathbb{S}^1 if M is the total space of a fiber bundle $M \to \mathbb{S}^1$, with fiber a compact orientable connected surface. A homomorphism $\phi: \pi_1(M) \to \mathbb{Z}$ is **fibered** if it is induced by such a bundle map.

A 3-manifold M is said to **fiber over** \mathbb{S}^1 if M is the total space of a fiber bundle $M \to \mathbb{S}^1$, with fiber a compact orientable connected surface. A homomorphism $\phi: \pi_1(M) \to \mathbb{Z}$ is **fibered** if it is induced by such a bundle map.

Suppose M, N are aspherical orientable compact 3-manifolds and $\widehat{\pi_1(N)} \cong \widehat{\pi_1(M)}$.

A 3-manifold M is said to **fiber over** \mathbb{S}^1 if M is the total space of a fiber bundle $M \to \mathbb{S}^1$, with fiber a compact orientable connected surface. A homomorphism $\phi: \pi_1(M) \to \mathbb{Z}$ is **fibered** if it is induced by such a bundle map.

A 3-manifold M is said to **fiber over** \mathbb{S}^1 if M is the total space of a fiber bundle $M \to \mathbb{S}^1$, with fiber a compact orientable connected surface. A homomorphism $\phi: \pi_1(M) \to \mathbb{Z}$ is **fibered** if it is induced by such a bundle map.

$$\begin{array}{cccc}
\widehat{\pi_1(N)} & \stackrel{\cong}{\longrightarrow} & \widehat{\pi_1(M)} \\
& \uparrow & & \uparrow \\
\pi_1(N) & & \pi_1(M) \\
& & \downarrow^{\phi} \\
& \mathbb{Z}
\end{array}$$

A 3-manifold M is said to **fiber over** \mathbb{S}^1 if M is the total space of a fiber bundle $M \to \mathbb{S}^1$, with fiber a compact orientable connected surface. A homomorphism $\phi: \pi_1(M) \to \mathbb{Z}$ is **fibered** if it is induced by such a bundle map.

$$\begin{array}{cccc}
\widehat{\pi_1(N)} & \stackrel{\cong}{\longrightarrow} & \widehat{\pi_1(M)} \\
& \uparrow & & \uparrow \\
\pi_1(N) & \stackrel{?}{\dashrightarrow} & \pi_1(M) \\
& & \downarrow^{\phi} \\
& \mathbb{Z}
\end{array}$$

A 3-manifold M is said to **fiber over** \mathbb{S}^1 if M is the total space of a fiber bundle $M \to \mathbb{S}^1$, with fiber a compact orientable connected surface. A homomorphism $\phi: \pi_1(M) \to \mathbb{Z}$ is **fibered** if it is induced by such a bundle map.

$$\begin{array}{ccc}
\widehat{\pi_1(N)} & \stackrel{\cong}{\longrightarrow} & \widehat{\pi_1(M)} \\
& & \uparrow & & \uparrow \\
\pi_1(N) & \stackrel{?}{\dashrightarrow} & \pi_1(M) \\
& & \downarrow^{\phi} \\
& & \mathbb{Z}
\end{array}$$

• Boileau, Friedl, 2015: Yes, if the map
$$\widehat{H_1(N)} \to \widehat{H_1(M)}$$
 takes $H_1(N)$ into $H_1(M)$.

A 3-manifold M is said to **fiber over** \mathbb{S}^1 if M is the total space of a fiber bundle $M \to \mathbb{S}^1$, with fiber a compact orientable connected surface. A homomorphism $\phi: \pi_1(M) \to \mathbb{Z}$ is **fibered** if it is induced by such a bundle map.

$$\begin{array}{ccc}
\widehat{\pi_1(N)} & \stackrel{\cong}{\longrightarrow} & \widehat{\pi_1(M)} \\
\uparrow & & \uparrow \\
\pi_1(N) & \stackrel{?}{\dashrightarrow} & \pi_1(M) \\
& & \downarrow^{\phi} \\
& & \mathbb{Z}_{\iota}
\end{array}$$

- Boileau, Friedl, 2015: Yes, if the map $\widehat{H_1(N)} \to \widehat{H_1(M)}$ takes $H_1(N)$ into $H_1(M)$.
 - Bridson, Reid, 2015: Yes, if $b_1(M) = 1$.

A 3-manifold M is said to **fiber over** \mathbb{S}^1 if M is the total space of a fiber bundle $M \to \mathbb{S}^1$, with fiber a compact orientable connected surface. A homomorphism $\phi: \pi_1(M) \to \mathbb{Z}$ is **fibered** if it is induced by such a bundle map.

$$\begin{array}{ccc}
\widehat{\pi_1(N)} & \stackrel{\cong}{\longrightarrow} & \widehat{\pi_1(M)} \\
\uparrow & & \uparrow \\
\pi_1(N) & \stackrel{?}{\dashrightarrow} & \pi_1(M) \\
& & \downarrow \phi \\
& & \mathbb{Z}.
\end{array}$$

- Boileau, Friedl, 2015: Yes, if the map $\widehat{H_1(N)} \to \widehat{H_1(M)}$ takes $H_1(N)$ into $H_1(M)$.
- Bridson, Reid, 2015: Yes, if $b_1(M) = 1$.
- Jaikin-Zapirain, 2019: Yes!

• $\widehat{\pi_1}$ detects the Euler characteristic of a compact aspherical 3-manifold (follows from cohomological goodness).

- $\widehat{\pi_1}$ detects the Euler characteristic of a compact aspherical 3-manifold (follows from cohomological goodness).
- $\widehat{\pi_1}$ detects whether a closed aspherical orientable 3-manifold is hyperbolic, and whether it is Seifert-fibered (Wilton, Zalesskii, 2014).

- $\widehat{\pi_1}$ detects the Euler characteristic of a compact aspherical 3-manifold (follows from cohomological goodness).
- $\widehat{\pi_1}$ detects whether a closed aspherical orientable 3-manifold is hyperbolic, and whether it is Seifert-fibered (Wilton, Zalesskii, 2014).
- For E_{κ} the exterior of a knot K, $\widehat{\pi_1(E_{\kappa})}$ detects the genus of K (Boileau, Friedl, 2015).

- $\widehat{\pi_1}$ detects the Euler characteristic of a compact aspherical 3-manifold (follows from cohomological goodness).
- $\widehat{\pi_1}$ detects whether a closed aspherical orientable 3-manifold is hyperbolic, and whether it is Seifert-fibered (Wilton, Zalesskii, 2014).
- For E_{κ} the exterior of a knot K, $\widehat{\pi_1(E_{\kappa})}$ detects the genus of K (Boileau, Friedl, 2015).
- $\widehat{\pi_1(E_K)}$ also determines the Alexander polynomial of K (Ueki, 2018).

Open questions

• Are hyperbolic manifolds profinitely rigid?

- Are hyperbolic manifolds profinitely rigid?
- Is the volume of a hyperbolic 3-manifold a profinite invariant?

- Are hyperbolic manifolds profinitely rigid?
- Is the volume of a hyperbolic 3-manifold a profinite invariant?
- Is there an infinite family of pairwise non-homeomorphic 3-manifolds with isomorphic $\widehat{\pi_1}?$

- Are hyperbolic manifolds profinitely rigid?
- Is the volume of a hyperbolic 3-manifold a profinite invariant?
- Is there an infinite family of pairwise non-homeomorphic 3-manifolds with isomorphic $\widehat{\pi_1}?$
- Are knot complements profinitely rigid among knot complements?

- Are hyperbolic manifolds profinitely rigid?
- Is the volume of a hyperbolic 3-manifold a profinite invariant?
- Is there an infinite family of pairwise non-homeomorphic 3-manifolds with isomorphic $\widehat{\pi_1}$?
- Are knot complements profinitely rigid among knot complements? This would imply that a prime knot K is determined by $\widehat{\pi_1(E_K)}$ (Whiten, 1987).