Uma introdução à Topologia e à Teoria de Nós

José Pedro Quintanilha

Universität Regensburg

15 de Abril de 2019

Estudo de "espaços a menos de deformação contínua".

Estudo de "espaços a menos de deformação contínua".

"Topologia não vê distâncias."

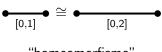
Estudo de "espaços a menos de deformação contínua".

"Topologia não vê distâncias."

"homeomorfismo"

Estudo de "espaços a menos de deformação contínua".

"Topologia não vê distâncias."

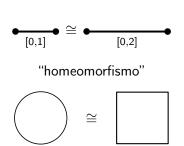




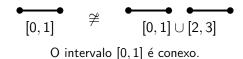
Estudo de "espaços a menos de deformação contínua".

"Topologia não vê distâncias."

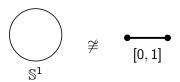
"Geometria de borracha / plasticina"



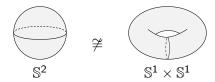
Henry Segerman, Topology Joke



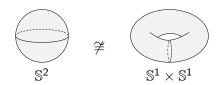
$$[0,1] \not\cong [0,1] \cup [2,3]$$
O intervalo $[0,1]$ é conexo.



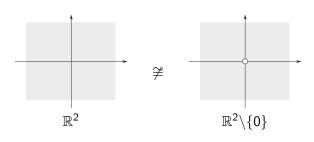
 $\acute{\mathsf{E}}$ impossível desconectar \mathbb{S}^1 removendo apenas um ponto.



Qualquer curva fechada na esfera \mathbb{S}^2 separa-a em duas regiões.



Qualquer curva fechada na esfera \mathbb{S}^2 separa-a em duas regiões.



É possível "dar voltas" a $\mathbb{R}^2 \setminus \{0\}$.

Objetivo: classificar / descrever:

- Espaços topológicos:
 - Variedades (suaves)
 - Complexos-CW
 - Fibrados vetoriais
 - Grupos de Lie
 - ...

- Subespaços
- Funções contínuas
 - a menos de homotopia / isotopia?
- ...

Objetivo: classificar / descrever:

- Espaços topológicos:
 - Variedades (suaves)
 - Complexos-CW
 - Fibrados vetoriais
 - Grupos de Lie
 - . . .

- Subespaços
- Funções contínuas
 - a menos de homotopia / isotopia?
- . . .

(difícil!!)

Objetivo: classificar / descrever:

- Espaços topológicos:
 - Variedades (suaves)
 - Complexos-CW
 - Fibrados vetoriais
 - Grupos de Lie
 - ...

- Subespaços
- Funções contínuas
 - a menos de homotopia / isotopia?
- ...

(difícil!!)

Estratégia: Associar-lhes invariantes (algébricos):

- Números
- Grupos
- Grupos abelianos
- Anéis

- Espaços vetoriais
- Módulos
- Polinómios
- ...

Objetivo: classificar / descrever:

- Espaços topológicos:
 - Variedades (suaves)
 - Complexos-CW
 - Fibrados vetoriais
 - Grupos de Lie
 - ...

- Subespaços
- Funções contínuas
 - a menos de homotopia / isotopia?
- ...

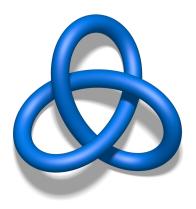
(difícil!!)

Estratégia: Associar-lhes invariantes (algébricos):

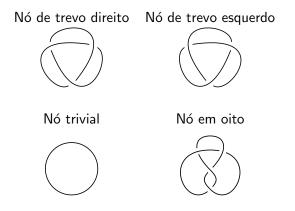
- Números
- Grupos
- Grupos abelianos
- Anéis

- Espaços vetoriais
- Módulos
- Polinómios
- ...

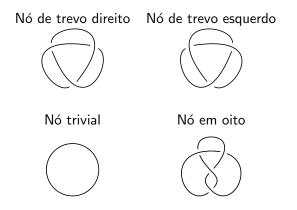
(difícil!)



Um **nó** é uma curva fechada em \mathbb{R}^3 sem auto-interseções*



^{*} Em rigor: uma sub-variedade suave difeomorfa a \mathbb{S}^1 .



- * Em rigor: uma sub-variedade suave difeomorfa a \mathbb{S}^1 .
- ** Em rigor: a menos de isotopia suave do espaço ambiente \mathbb{R}^3 .

- * Em rigor: uma sub-variedade suave difeomorfa a \mathbb{S}^1 .
- ** Em rigor: a menos de isotopia suave do espaço ambiente \mathbb{R}^3 .

^{*} Em rigor: uma sub-variedade suave difeomorfa a \mathbb{S}^1 .

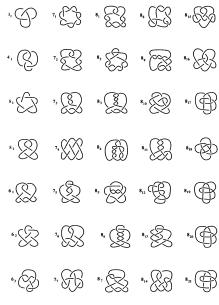
^{**} Em rigor: a menos de isotopia suave do espaço ambiente \mathbb{R}^3 .

^{*} Em rigor: uma sub-variedade suave difeomorfa a \mathbb{S}^1 .

^{**} Em rigor: a menos de isotopia suave do espaço ambiente \mathbb{R}^3 .

- * Em rigor: uma sub-variedade suave difeomorfa a \mathbb{S}^1 .
- ** Em rigor: a menos de isotopia suave do espaço ambiente \mathbb{R}^3 .

- * Em rigor: uma sub-variedade suave difeomorfa a \mathbb{S}^1 .
- ** Em rigor: a menos de isotopia suave do espaço ambiente \mathbb{R}^3 .

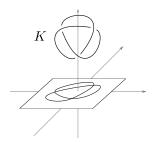


Lickorish, An Introduction to Knot Theory

Definição Um diagrama para um nó K é a seguinte informação:

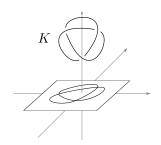
Um diagrama para um nó K é a seguinte informação:

• a imagem de (um representante de) K pela projeção no plano z=0



Um diagrama para um nó K é a seguinte informação:

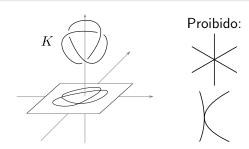
 a imagem de (um representante de) K pela projeção no plano z = 0, tal que todas as auto-interseções desta curva envolvem no máximo dois segmentos



Proibido:

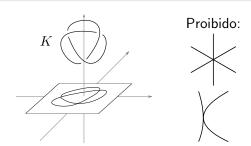
Um diagrama para um nó K é a seguinte informação:

 a imagem de (um representante de) K pela projeção no plano z = 0, tal que todas as auto-interseções desta curva envolvem no máximo dois segmentos, e são transversais



Um diagrama para um nó K é a seguinte informação:

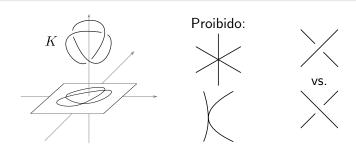
 a imagem de (um representante de) K pela projeção no plano z = 0, tal que todas as auto-interseções desta curva envolvem no máximo dois segmentos, e são transversais*;



* É sempre possível encontrar um tal representante.

Um diagrama para um nó K é a seguinte informação:

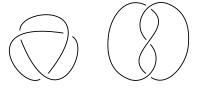
- a imagem de (um representante de) K pela projeção no plano z = 0, tal que todas as auto-interseções desta curva envolvem no máximo dois segmentos, e são transversais*;
- para cada auto-interseção, informação sobre qual dos dois pontos de K na pré-imagem tem maior cota.



* É sempre possível encontrar um tal representante.

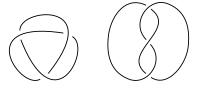
... mas diagramas diferentes podem representar o mesmo nó.

... mas diagramas diferentes podem representar o mesmo nó.



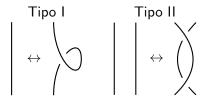
Questão fundamental: Dados dois diagramas, como determinar se representam o mesmo nó?

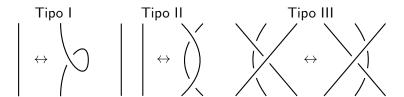
... mas diagramas diferentes podem representar o mesmo nó.

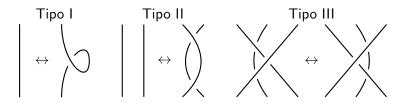


Questão fundamental: Dados dois diagramas, como determinar se representam o mesmo nó?

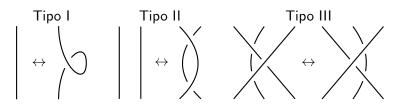
Como se relacionam dois diagramas para um mesmo nó?







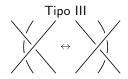
Alterar um diagrama por um movimento de Reidemeister não muda o nó representado.

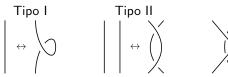


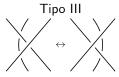
Alterar um diagrama por um movimento de Reidemeister não muda o nó representado.

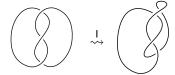
Teorema (Reidemeister)

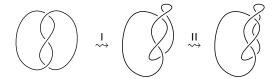
Quaisquer dois diagramas para um mesmo nó diferem por uma sequência de movimentos de Reidemeister (e "deformações" do plano).

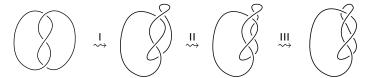


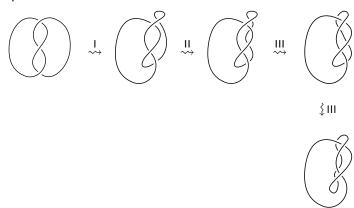


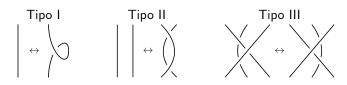


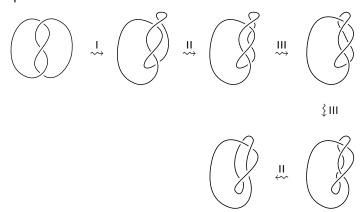


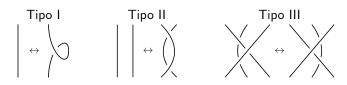


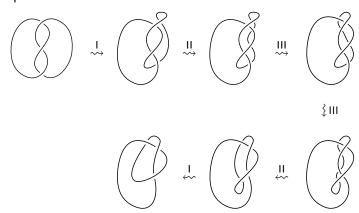


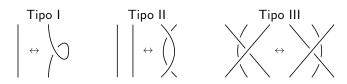


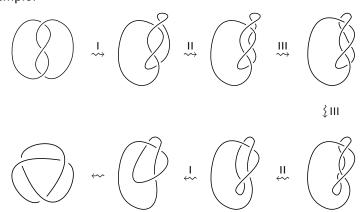












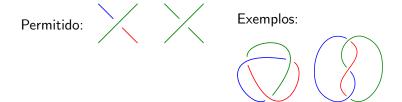
Um diagrama diz-se **tricolor** se for possível pintar cada **arco** com uma de três cores (vermelho, verde, azul)

Um diagrama diz-se **tricolor** se for possível pintar cada **arco** com uma de três cores (vermelho, verde, azul), de tal modo que:

• não pintamos todos os arcos da mesma cor,

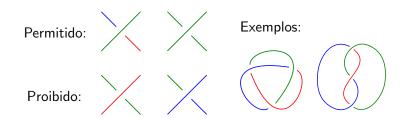
Um diagrama diz-se **tricolor** se for possível pintar cada **arco** com uma de três cores (vermelho, verde, azul), de tal modo que:

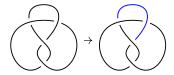
- não pintamos todos os arcos da mesma cor,
- em cada cruzamento ocorre uma das seguintes possiblidades:
 - os arcos envolvidos são todos de cor diferente.
 - os arcos envolvidos são todos da mesma cor.

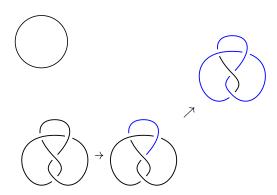


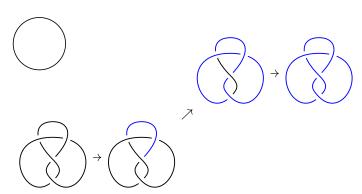
Um diagrama diz-se **tricolor** se for possível pintar cada **arco** com uma de três cores (vermelho, verde, azul), de tal modo que:

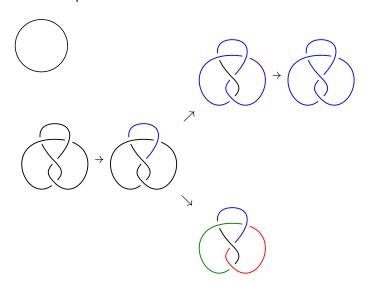
- não pintamos todos os arcos da mesma cor,
- em cada cruzamento ocorre uma das seguintes possiblidades:
 - os arcos envolvidos são todos de cor diferente,
 - os arcos envolvidos são todos da mesma cor.











A propriedade "ser tricolor" é preservada entre diagramas para um mesmo nó.

A propriedade "ser tricolor" é preservada entre diagramas para um mesmo nó. Ou seja, é um invariante de nós.

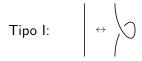
A propriedade "ser tricolor" é preservada entre diagramas para um mesmo nó. Ou seja, é um invariante de nós.

Corolário: O nó de trevo não é trivial, e é também diferente do nó em oito.

A propriedade "ser tricolor" é preservada entre diagramas para um mesmo nó. Ou seja, é um **invariante de nós**.

Corolário: O nó de trevo não é trivial, e é também diferente do nó em oito.

Demonstração: Basta verificar que a propriedade "ser tricolor" é preservada por movimentos de Reidemeister.



 (\rightarrow) Supor que o lado esquerdo é tricolor.

Tipo I:

 (\rightarrow) Supor que o lado esquerdo é tricolor. Usar a mesma cor nos novos arcos.

Tipo I:

 (\rightarrow) Supor que o lado esquerdo é tricolor. Usar a mesma cor nos novos arcos.

 (\leftarrow) Se o lado direito for tricolor, o cruzamento obriga a que sejam ambos os arcos da mesma cor.

 (\rightarrow) Supor que o lado esquerdo é tricolor. Usar a mesma cor nos novos arcos.

 (\leftarrow) Se o lado direito for tricolor, o cruzamento obriga a que sejam ambos os arcos da mesma cor. Usar essa cor no novo arco.

 (\rightarrow) Se os dois arcos à esquerda forem da mesma cor, usá-la nos quatro novos arcos.

 (\rightarrow) Se os dois arcos à esquerda forem da mesma cor, usá-la nos quatro novos arcos. Caso contrário, usar a terceira cor:

 (\rightarrow) Se os dois arcos à esquerda forem da mesma cor, usá-la nos quatro novos arcos. Caso contrário, usar a terceira cor:

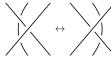
 (\leftarrow) Se os quatro arcos forem da mesma cor, usá-la nos dois novos arcos.

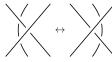
 (\rightarrow) Se os dois arcos à esquerda forem da mesma cor, usá-la nos quatro novos arcos. Caso contrário, usar a terceira cor:

 (\leftarrow) Se os quatro arcos forem da mesma cor, usá-la nos dois novos arcos. Caso contráro, os cruzamentos obrigam a que o padrão de cores seja como ilustrado.

 (\rightarrow) Se os dois arcos à esquerda forem da mesma cor, usá-la nos quatro novos arcos. Caso contrário, usar a terceira cor:

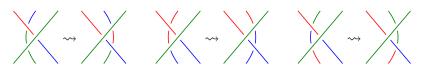
(←) Se os quatro arcos forem da mesma cor, usá-la nos dois novos arcos. Caso contráro, os cruzamentos obrigam a que o padrão de cores seja como ilustrado. Descartamos a cor vermelha:

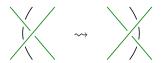




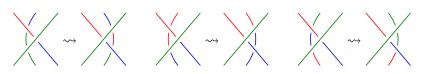
Se os arcos no cruzamento central tiverem cores diferentes, existem três configurações a considerar:

Se os arcos no cruzamento central tiverem cores diferentes, existem três configurações a considerar:



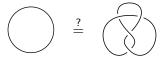


Se os arcos no cruzamento central tiverem cores diferentes, existem três configurações a considerar:

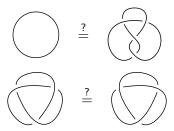


 (\leftarrow) Análogo.

Este não é um invariante muito forte:



Este não é um invariante muito forte:



Este não é um invariante muito forte:

